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ABSTRACT

We study the effect of droplet coalescence on turbulent wall-bounded flows by means of direct numerical simulations. In particular, the
volume-of-fluid and front-tracking methods are used to simulate turbulent channel flows containing coalescing and non-coalescing droplets,
respectively. We find that coalescing droplets have a negligible effect on the drag, whereas the non-coalescing ones steadily increase drag as
the volume fraction of the dispersed phase increases: indeed, at 10% volume fraction, the non-coalescing droplets show a 30% increase in
drag, whereas the coalescing droplets show less than 4% increase. We explain this by looking at the wall-normal location of droplets in the
channel and show that non-coalescing droplets enter the viscous sublayer, generating an interfacial shear stress, which reduces the budget for
viscous stress in the channel. On the other hand, coalescing droplets migrate toward the bulk of the channel forming large aggregates, which
hardly affect the viscous shear stress while damping the Reynolds shear stress. We prove this by relating the mean viscous shear stress inte-
grated in the wall-normal direction to the centerline velocity.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0058632

I. INTRODUCTION

Two-fluid turbulent flows are found in many cases in industry
and nature (Balachandar and Eaton, 2010), such as human arteries,
industrial pipelines, and the injection of bubbles to enable drag reduc-
tion in ships (Ceccio, 2010). In all of these cases, surfactants are known
to have dramatic effects on the flow, often by preventing coalescence
(Takagi and Matsumoto, 2011). However, due to the multi-scale
nature of the problems, the mechanisms by which coalescence affects
drag are not fully known and understood yet. Thus, the objective of
this work is to explain how coalescence affects drag in wall-bounded
flows.

Many experimental studies of surfactants in multiphase flow
have been made. Frumkin and Levich (1947) were the first to describe
the mechanism by which the rising speed of bubbles in water is
reduced by surfactants (see Levich, 1962 for English version).
Descamps et al. (2008) measured the wall shear stress in pipe flows of
air bubbles in water and found that larger bubbles produced less drag.
Duineveld (1997) studied pairs of bubbles rising in a vertical channel;

he showed that coalescence is prevented when the surfactant concen-
tration is above a critical value. As well as preventing coalescence, sur-
factants produce other effects on bubbles, such as clustering (Takagi
et al., 2008), reduction in rising velocity (Frumkin and Levich, 1947;
Levich, 1962), and reduction in shear-induced lift forces (Takagi and
Matsumoto, 2011). Since all these effects can happen at the same time,
the effect of different coalescence rates is difficult to highlight; on the
other hand, simulations allow us to eliminate these effects and solely
focus on the impact of coalescence.

The majority of numerical multiphase flow studies have been
made using interface-tracking methods, such as the front-tracking
(FT) method (Unverdi and Tryggvason, 1992). Front-tracking simula-
tions of homogeneous-isotropic flows (Druzhinin and Elghobashi,
1998) are well suited for investigating the effect of droplet size on the
turbulent length scales, such as bubble arrays (Esmaeeli and
Tryggvason, 1998, 1999) or channel flows (Lu et al., 2006; Dabiri et al.,
2013; Tryggvason and Lu, 2015; Tryggvason et al., 2016; Lu et al.,
2017; Ahmed et al., 2020). An advantage of shear flow and
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channel-flow simulations is the ability to measure the effective viscos-
ity and flow rate, which can then be compared with experiments. In
the case of interface-tracking simulations of channel flows, Lu et al.
(2006) simulated laminar bubbly upflows and downflows, Dabiri et al.
(2013) showed that more deformable bubbles produced lower drag, Lu
et al. (2017) modeled bubbles with insoluble surfactant, and
Ahmed et al. (2020) with soluble surfactant showed their main
effects. However, none of the interface-tracking studies cited here
includes a model for the breakup or coalescence of droplets, with
only a few recent works tackling these phenomena (Lu and
Tryggvason, 2018, 2019).

Interface-capturing methods, such as the volume-of-fluid (VOF)
method (Noh and Woodward, 1976), naturally allow coalescence and
breakup of droplets (Elghobashi, 2019). Interface-capturing simula-
tions of homogenous isotropic turbulence (Dodd and Ferrante, 2016;
Perlekar et al., 2012; Komrakova et al., 2015; Bolotnov, 2013) and
shear flows (De Vita et al., 2019; Rosti et al., 2019) have shed some
light on the effect of coalescence on turbulence. Notably, Dodd and
Ferrante (2016) and Maxey (2017) showed that coalescence is a source
of turbulent kinetic energy, while breakup is a sink. Scarbolo et al.
(2015) investigated the effect of Weber number on breakup and coa-
lescence, Soligo et al. (2019) modeled surfactant laden drops in turbu-
lent channel flows, while Bolotnov et al. (2011) used the level-set
method to simulate bubbly channel flows. Roccon et al. (2017) investi-
gated the coalescence and breakup of large droplets in the channel
flow using the phase field method. Interface capturing methods are
known to over-predict coalescence rates, because numerical coales-
cence occurs whenever the film thickness is less than the numerical
grid spacing. In contrast, in real fluids film rupture occurs at molecular
length-scales, which are in the tens of nanometers, orders of magni-
tude smaller than the Kolmogorov length (Tryggvason et al., 2013;
Soligo et al., 2019). A number of methods have been used to reduce
the coalescence rate of interface capturing methods, such as adaptive
grid refinement (Innocenti et al., 2021), film drainage models
(Thomas et al., 2010), coupling to molecular dynamics simulations
(Chen et al., 2004), and artificial forces (De Vita et al., 2019).

In this paper, we use the front-tracking method to make simula-
tions of droplets, which cannot break up or coalesce, and we use the
volume-of-fluid method to make simulations of droplets that easily
break up and coalesce. As we are interested in the effects of coales-
cence, we do not use any methods to reduce the volume-of-fluid coa-
lescence rate. The two methods give idealized models of a mixture
saturated with surfactants (FT), and completely clean mixture
(VOF). Aside from coalescence and breakup, the physical proper-
ties (surface tension, viscosity, density, etc.) of the fluids in the two
methods are identical. To the authors’ knowledge, this is the first
direct comparison of coalescing and non-coalescing droplets in a
turbulent channel flow.

The manuscript is organized as follows. First, in Sec. II, we
describe the mathematical model governing the problem at hand and
the numerical techniques used to numerically solve them. In particu-
lar, we describe our chosen interface-tracking and interface-capturing
methods in more detail. Section III reports the values of the parame-
ters explored in our simulations. In Sec. IV, we present statistics of the
flow to elucidate how coalescence is affecting drag in the channel.
Finally, Sec. V gives conclusions and places them in the context of the
current literature.

II. GOVERNING EQUATIONS AND FLOW GEOMETRY

We consider turbulent channel flows, such as those shown in
Fig. 1. The numerical domain has size Lx � Ly � Lz ¼ 6L� 2L� 3L,
where L is the half-height of the channel. The flow is laden with an
ensemble of N droplets, initially spherical with radius R ¼ L=8 and
randomly arranged. We impose periodic boundary conditions in the
streamwise (x) and spanwise (z) directions, while the non-slip and
non-penetration boundary conditions are enforced at the two walls
y¼ 0 and y ¼ 2L. An imposed pressure gradient G, uniform through-
out the domain and constant in time, sustains the flow in the x direc-
tion. Balancing the forces on the fluid in the x direction, we obtain an
expression for the shear stress s at the wall, sw � hsjy¼0ixz ¼ GL,
showing that sw remains constant in time. Note that, here and in the
rest of the manuscript, we use angled brackets to represent an average
over the subscripted directions.

The Cartesian components of the fluid velocity field ðu1; u2; u3Þ
� ðu; v;wÞ are found by solving the incompressible multiphase
Navier–Stokes equations at each location x,

ðquiÞ;t þ ðquiujÞ;j ¼ ðlui;j þ luj;iÞ;j � p;i þGdi1 þ cjni dSðxÞ; (1)

ui;i ¼ 0; (2)

where i; j 2 f1; 2; 3g. Throughout this article, we use Einstein nota-
tion (Einstein, 1916) where repeated indices are summed over, and the
subscript comma denotes partial differentiation, i.e., F;i � @F

@xi
. The

scalar p is the pressure field used to enforce the incompressibility
constraint stated in Eq. (2). The density q and dynamic viscosity l are
the local weighted averages among the two phases, i.e., q ¼ /qd
þð1� /Þqc and l ¼ /ld þ ð1� /Þlc, where subscripts d and c

denote properties of the dispersed and continuum phases, respectively.
In the above, / represents the volume fraction of the dispersed phase
in each computational cell of the domain, with / ¼ 1 in the dispersed

FIG. 1. A snapshot of the simulation domain for a 10% suspension of droplets sim-
ulated with (a) the front-tracking method (run FT10a in Table I), and with (b) the vol-
ume-of-fluid method (run VOF10a). The orange and blue surfaces show the
interface between fluid phases. The droplets in (b) can breakup and coalesce, giv-
ing rise to a range of sizes, whereas those in (a) cannot, thus remaining
monodisperse.
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phase and / ¼ 0 in the continuum phase. The Kronecker delta dij is
used to ensure that the pressure gradient is imposed in the x direction.
The last term on the right hand side of Eq. (1) is the volumetric formu-
lation of the surface tension (Popinet, 2018); it is the product of the
surface tension coefficient c, the interface local curvature j, and the
unit normal to the interface ni. Note that we used dSðxÞ in Eq. (1) to
represent the surface delta function, which is zero everywhere except
for the surface S at the interface between the two phases. dSðxÞ has
dimensions of inverse length.

A. Discretization of the Navier–Stokes equations

For simulations of coalescing and non-coalescing droplets, we
use near-identical numerical methods to solve the momentum and
continuity equations [Eqs. (1) and (2)]. This ensures that any differ-
ence in our results is due to the droplets, not the integration scheme.

Equations (1) and (2) are numerically solved using a finite differ-
ence method on a fixed Eulerian grid with a staggered arrangement,
i.e., fluid velocities are located on the cell faces and all other variables
(pressure, density, viscosity, volume-of-fluid, etc.) are located at the
cell centers. All the spatial derivatives appearing in the equations are
discretized with second-order central differences, except for the con-
vective terms in the FT simulations where the QUICK scheme
(Leonard, 1979) is used instead. In the single-phase (SP) and VOF
simulations, time integration is performed with the Adams–Bashforth
method. In the FT simulations, time integration is performed with a
predictor–corrector method, in which the first-order solution (Euler
method) serves as a predictor, which is then corrected by the trapezoi-
dal rule (Tryggvason et al., 2001; Farooqi et al., 2019). Both schemes
are second order in time. Finally, in regard to the pressure solver, the
fractional step technique (Kim and Moin, 1985) presented by Dong
and Shen (2012) and Dodd and Ferrante (2014) is adopted, allowing
for the direct solution of a constant-coefficient Poisson equation using
an FFT-based solver, even in the presence of density differences
among the carrier and dispersed phases.

B. Volume-of-fluid method

We use the volume-of-fluid (VOF) method to simulate droplets
undergoing topological changes, i.e., coalescence and breakup. This is
an Eulerian–Eulerian technique in which the fluid phases are tracked
using the local volume fraction scalar field /. Since Noh and
Woodward (1976), a number of variants of the VOF method have
been developed (Youngs, 1982, 1984; Puckett et al., 1997; Rider and
Kothe, 1998; Xiao et al., 2005; Yokoi, 2007). Here, we use the multi-
dimensional tangent of hyperbola for the interface capturing
(MTHINC) method, developed by Ii et al. (2012). In this method, we
use a smooth hyperbolic tangent function to approximate the interface

H X;Y ;Zð Þ ¼ 1
2
þ 1
2
tanhðb P X;Y ;Zð Þ þ dð ÞÞ; (3)

where b is a parameter controlling the sharpness of the interface and d
is a normalization parameter to enforce

Ð Ð Ð
H dX dY dZ ¼ / in

each cell. P is a three-dimensional function in the cell, with the same
normal and curvature as the interface. Normals are evaluated using
the Youngs approach (Youngs, 1982), while the surface tension force
appearing in momentum Eq. (1) is computed using the continuum
surface force (CSF) approach (Brackbill et al., 1992). See Rosti et al.

(2019) for a detailed description of the volume-of-fluid code employed
in this work, and in several other works (Rosti et al., 2019; De Vita
et al., 2019). See Ii et al. (2012) and De Vita et al. (2020) for validations
against numerical benchmarks and experiments.

C. Front-tracking method

We use the front-tracking (FT) method to simulate droplets that
can deform, but cannot break up or coalesce. This is an
Eulerian–Lagrangian scheme in which the interface between the
phases is tracked by a “front,” composed of triangular elements. The
method was introduced by Unverdi and Tryggvason (1992), with
many refinements over the past 30 years (Tryggvason et al., 2001;
Tryggvason et al., 2011), including techniques to correct for errors in
volume conservation of the phases (Takeuchi and Tryggvason, 2020).
The surface tension force acting on the Lth element is a volume inte-
gral of the surface tension force from Eq. (1),

FL ¼
ð ð ð

V
cjn dALðxÞ dV ¼

ð ð
AL

cjn dA

¼
ð ð

AL

cðn�rÞ � n dA ¼
þ
sL

ct � n ds; (4)

where AL and sL are the area and perimeter of the Lth element and t is
the tangent to the perimeter. The force is then interpolated onto the
Eulerian grid by means of a conservative weighting function and used
to update the fluid velocity, which, in turn, is used to update the posi-
tion of the interface. As the interface evolves, the unstructured grid
can greatly deform, resulting in a non-uniform grid. Thus, periodical
restructuring of the Lagrangian grid is performed to maintain a nearly
uniform size, comparable to the Eulerian grid size. See Muradoglu and
Tryggvason (2014) for a detailed description and validation of the
front-tracking code employed in this work, which used in several other
works (Izbassarov and Muradoglu, 2015; Lu et al., 2017; Ahmed et al.,
2020). Extensive tests of the front tracking method are shown in
Tryggvason et al. (2001).

III. SETUP

Due to the different nature of the numerical schemes used to
describe the presence of the interface, the numerical domain is discre-
tized on two different sets of grids, both verified to provide grid-
independent results. The non-coalescing-droplet simulations use a
uniform grid in the homogenous directions and a non-uniform grid in
the wall-normal direction, with minimum spacing DYFT ¼ 3L� 10�3

at the channel wall. The minimum spacing in wall units is
DYþFT � usDYFT=� ¼ 0:5, where us and � are defined later in this sec-
tion. Overall, the grid size for the non-coalescing droplet simulations
(FT) is Nx � Ny � Nz ¼ 576� 240� 288, which is comparable to
that used in Dabiri and Tryggvason (2015), and gives around 24
Eulerian grid points per droplet diameter. Due to periodic restructur-
ing, we also have around 24 Lagrangian grid points per droplet diame-
ter. The single-phase and coalescing-droplet simulations (VOF) use a
cubic uniform grid with spacing DYþVOF ¼ 0:8, and total size
Nx � Ny � Nz ¼ 1296� 432� 648. This grid has 108 points per ini-
tial droplet diameter. We use more grid points in the VOF simulations
in order to accurately resolve breakup and coalescence events through-
out the domain.
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The values of the non-dimensional parameters used in the simu-
lations are shown in Table I. We consider a total volume fraction of
the dispersed phase in the range 0% � U � 10%, with the continuum
phase being denser and more viscous than the droplet phase, as the
density ratio is fixed equal to qc=qd ¼ 50 and the dynamic viscosity to
lc=ld ¼ 50 for all runs. Thus, the kinematic viscosity � � l=q has
the ratio �c=�d ¼ 1 for all runs. The problem approaches the density
and viscosity ratios of air in water (qwater=qair � 830; lwater=lair
� 55) while still being numerically tractable. The friction Reynolds
number Res � usL=� is set to 180 for all runs, where us �

ffiffiffiffiffiffiffiffiffiffiffiffi
sw=qc

p
is

the friction velocity. We define the capillary number as Ca0 � lcu0=c
(where u0 is the bulk velocity of the single-phase channel flow) for
which two values are considered, Ca0 ¼ 0:05 and 0.10. Based on these
capillary numbers, the friction Weber number Wes � qcu

2
sL=c

assumes that values are smaller or larger than unity. Finally, N is the
number of droplets at the start of the simulation, which are initially
identical spheres in a random arrangement.

The three rightmost columns in Table I report three output sta-
tistics: the bulk Reynolds number, Reb � ubL=�, where ub � huixyzt is
the bulk velocity; the bulk Weber number, Web � qcu

2
bL=c; and the

centerline velocity in plus units uþcen � hujy¼Lixzt=us. In Sec. IV, we
present these and other statistics of the channel flows and discuss their
implications.

IV. RESULTS

We consider turbulent channel flows, in which droplets can coa-
lesce, and compare the results with a configuration where coalescence
is not allowed. The flow is driven by a constant pressure drop; thus, an
increase in the flow rate or bulk velocity indicates drag reduction,
while its reduction is evidence for drag increase. We start by consider-
ing the profile of the streamwise velocity uþ in the channel, reported
in Fig. 2. The single-phase run SP0 shows the typical velocity profile of
a turbulent channel flow, with regions of high shear at the walls and a
flattened profile in the channel center. The runs with coalescing drop-
lets (VOF) mostly collapse onto the single-phase profile, showing only

a slight reduction in uþ toward the center, whereas the runs with non-
coalescing droplets (FT) show a significant reduction in uþ, which
becomes more pronounced as U increases. Also, in the coalescing
droplets runs, variation of the capillary number produces little change
in uþ, while in the non-coalescing runs, the change in uþ with Ca0 is
much more substantial.

This is quantified in the inset of Fig. 2, which shows the bulk
velocity in wall units uþb � huixyzt=us on the left axis, and the skin-
friction coefficient Cf � 2sw=qcu

2
b on the right axis. We see that, rela-

tive to the single-phase run, the coalescing droplets produce a

TABLE I. Details of each turbulent channel flow simulation performed in the present study. The first column gives a unique name to each run for ease of reference, and the sec-
ond describes the colors and markers that are used in the following figures. Input variables are shown in the subsequent columns in the middle, and output statistics are shown
in the three rightmost columns.

Run Marker Method Coalescence U (%) Ca0 Wes N Reb uþcen Web

SP0 N/A N/A 0 N/A N/A 0 2836 18.38 N/A
FT3a FT No 2.5 0.10 1.14 110 2813 18.24 279.0

FT3b FT No 2.5 0.05 0.57 110 2661 17.19 124.8
FT5a FT No 5 0.10 1.14 220 2827 18.50 281.8

FT5b FT No 5 0.05 0.57 220 2602 16.93 119.4
FT10a FT No 10 0.10 1.14 440 2815 18.46 279.4
FT10b FT No 10 0.05 0.57 440 2524 16.54 112.3
VOF3a VOF Yes 2.5 0.10 1.14 110 2803 18.21 277.1

VOF3b VOF Yes 2.5 0.05 0.57 110 2818 18.15 140.0
VOF5a VOF Yes 5 0.10 1.14 220 2764 18.26 269.4

VOF5b VOF Yes 5 0.05 0.57 220 2778 18.07 136.1
VOF10a VOF Yes 10 0.10 1.14 440 2689 18.31 254.9
VOF10b VOF Yes 10 0.05 0.57 440 2685 17.78 127.1

FIG. 2. Main: streamwise velocity profile in wall units uþ, against distance y from
the channel wall. The single-phase run (SP0) is shown as a black line. The profiles
are symmetric about the centerline (y¼ L), so we have plotted runs with non-
coalescing (FT), and coalescing (VOF) droplets on the left and right, respectively.
Each Ca0 ¼ 0:1 run is plotted using the marker listed in Table I, while the regions
between uþ for Ca0 ¼ 0:1 and Ca0 ¼ 0:05 are shaded in color. Inset: dependence
of bulk velocity uþb on the total volume fraction of droplets U. The skin-friction coef-
ficient Cf is shown on the right axis. Runs with coalescing droplets (VOF) are
shown in blue, while runs with non-coalescing droplets (FT) are shown in orange.
Both plots show that drag increases with U and reduces with Ca0 for all non-
coalescing droplet runs, while very limited changes are observable for the coalesc-
ing droplet runs.
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maximum increase in 4% in Cf, whereas the non-coalescing droplets
produce a maximum increase in 30%. In the case of non-coalescing
droplets, the drag is highly dependent on Ca0. The high Ca0 (i.e., more
deformable droplets) runs show little change in Cf, whereas the low
Ca0 (i.e., less deformable droplets) runs show a 30% increase in Cf.
Notably similar drag increases have been measured for rigid particles
in channel flows by Picano et al. (2015) and Rosti and Brandt (2020).
Clearly, the coalescence of droplets in the channel has a profound
effect on the flow. Throughout this section, we present additional sta-
tistics of the flows in order to shed light on the mechanisms of this
effect.

Figure 3 shows the velocity profile again, this time on a semi-log
scale in wall units uþ � u=us, and yþ � y=d� , where d� � �=us is
the viscous length scale (Pope, 2000). Away from the wall and the
channel center d� � y� L, i.e., the length scales affecting the flow
are separated, and the single phase flow profile is approximately paral-
lel to a line with constant slope (the dashed line). This is a manifesta-
tion of the log-law for turbulent channel flows (von K�arm�an, 1930),
which can be derived by assuming that the quantity yþ duþ

dyþ has no
dependence on yþ or y/L (complete similarity). The flow profiles with
coalescing droplets in Fig. 3 are in excellent agreement with the log-
law, suggesting that coalescing droplets do not break the scale separa-
tion. However, the flow profiles with non-coalescing droplets are not
in such good agreement, because these droplets have constant size R,
and y � R, so scale separation is prevented; hence, yþ duþ

dyþ shows a
dependence on y/R.

To further quantify the effect of coalescence on the flow, we fit a
log-law function to each flow profile in the region 30 < yþ < 100.
Our log law function has the form

uþ ¼ ln yþ

0:41
þ 5:89þ Duþ; (5)

where 5.89 is the uþ intercept for run SP0 and Duþ is the shift relative
to SP0. The inset of Fig. 3 shows how the vertical shift Duþ in the log-

law region of the channel is affected by the volume fraction U and
capillary number Ca0 for the different cases. Again, we see relatively
small shifts for simulations with coalescing droplets, and large shifts
for simulations with non-coalescing droplets. In particular, Duþ grows
in magnitude with U, especially for the case with Ca0 ¼ 0:05. This
reinforces our observations of the bulk streamwise velocity shown in
the inset of Fig. 2 that the less-deformable, non-coalescing droplets
produce a significant drag increase.

To understand what generates the differences observed for con-
figurations of coalescing and non-coalescing droplets, we focus our
attention on the total surface area of the droplets. The total interface
area is responsible for the overall surface tension stress and impacts
how droplets disperse across the channel. Figure 4 shows how the total
interface area at steady state hSixyzt depends on the total volume frac-
tion U of the dispersed phase. The figure shows that the non-
coalescing droplets of the FT runs exhibit only 1% increase in area,
due to deformation from their initial spherical shape. On the other
hand, the coalescing droplets of the VOF runs show more than 80%
reduction in interface area, as droplets coalesce and grow in size. In
particular, when the volume fraction is large, droplets have a higher
likelihood of colliding, and hence more coalescence, leading to a
smaller value of hSixyzt=S0.

For the coalescing droplets, the interface area hSixyzt=S0 shows no
dependence on capillary number, differently from what was observed
by Lu and Tryggvason (2018) and Rosti et al. (2019), who found that
that as Ca0 decreases, surface tension increases, the droplets become
more stable to perturbations, hence larger, thus leading to a smaller
interface area hSixyzt=S0. However, in this case, Ca0 � 1, and the coa-
lescing droplets are limited in size by the channel height, not surface
tension. Figure 1(b) supports this hypothesis, as the coalescing droplets
are comparable in size to the channel height.

The inset of Fig. 4 reports the time history of the interface area:
the cases with non-coalescing droplets (FT) rapidly converge to a sta-
tistically steady-state, whereas for the coalescing droplets, convergence
is reached long after, at about tþ � 8000. Interestingly, we observe

FIG. 3. Main: velocity profiles in wall units uþ and yþ. Each run is plotted using the
marker listed in Table I. For ease of comparison, we have moved the U ¼ 5% and
U ¼ 10% volume fraction profiles upward by uþ ¼ 5 and uþ ¼ 10, respectively.
In the region 30 < yþ < 100 shaded in gray, we fit a log-law equation
uþ ¼ ln yþ

0:41 þ 5:89þ Duþ (gray dashed line). Inset: the vertical shift Duþ for each
run. Runs with coalescing droplets (VOF) are shown in blue, while runs with non-
coalescing droplets (FT) are shown in orange. Runs with coalescing droplets show
only small shifts, whereas the runs with non-coalescing, less deformable droplets
show significant drag increase.

FIG. 4. Main: dependence of the total interface area of the droplets hSixyzt on the
total volume fraction U. We have normalized each area by the total initial surface
area S0 of the droplets. The VOF runs (blue) show a major reduction in surface
area due to coalescence, whereas the FT runs (orange) show a slight increase,
due to droplet deformation. Inset: time history of the total interface area. Each run
is plotted according to the colors and markers listed in Table I. Note how the
coalescing droplets (VOF) reach statistical equilibrium after tþ � 8000, while the
non-coalescing droplets (FT) very rapidly converge because of the absence of
topological changes.
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that the coalescing droplet runs with larger capillary number (VOFa)
converge to steady-state more rapidly than the smaller capillary num-
ber runs (VOFb), i.e., the larger Ca0 runs show a higher rate of coales-
cence, although the steady-state areas are roughly the same. This is in
contrast with simulations of droplet coalescence in simple shear flow
in laminar condition by Shardt et al. (2013), which show droplet coa-
lescence occurring only below a critical Ca0. However, as we shall dis-
cuss in the next paragraph, the Ca0 ¼ 0:1 droplets are more tightly
confined in the channel center than the Ca0 ¼ 0:05 droplets, thus
leading to a higher rate of coalescence.

Figure 5 shows how the volume fraction of the dispersed phase /
depends on the distance y from the channel walls. The coalescing
droplet profiles (VOF) clearly show a single peak at the channel center,
y¼ L: this peak arises as the droplets are driven toward the region of
lowest shear (y¼ L) by a “deformation-induced lift force” (Raffiee
et al., 2017; Hadikhani et al., 2018; Alghalibi et al., 2019). Confinement
in the channel center leads to coalescence and the formation of large
droplets, as seen in Fig. 1(b).

The FT droplets cannot coalesce, and the droplet–droplet interac-
tion produces a volume effect, which forces them to spread across the
channel: this manifests as an almost flat volume fraction in the region
0:5L < y < L in Fig. 5. Also, we see that the volume fraction tends to
zero for y < R ¼ L=8, as surface tension preserves the droplet radius
R, and prevents the droplets from fully conforming with the flat chan-
nel walls. For all but one of the non-coalescing droplet runs plotted in
Fig. 5, h/ixzt has a local maximum near the wall, in the region
0:15L < y < 0:3L. This phenomenon is due to the “shear-gradient lift
force,” which is known to act on particles in curved velocity profiles
(Ho and Leal, 1974; Martel and Toner, 2014; Hadikhani et al., 2018;
Alghalibi et al., 2019). Due to the curvature of the velocity profiles
shown in Fig. 2, the droplets experience different flow velocities on
each side, resulting in a lift force toward the wall. From Fig. 5, we also
notice that the more deformable droplets (FT3a, FT5a, and FT10a)
produce a maximum, which is further from the wall: this is mainly
due to (i) an increase in the deformation-induced lift force, and to (ii)
a greater elongation of the droplets in the shear direction, producing a
wider wall layer.

We are now ready to investigate how droplets affect the turbulent
flow, and we start by analyzing the second-order statistics of the flow,
which tell us how momentum is transferred across different parts of
the channel. Figure 6 shows four of the six unique components of the
Reynolds stress tensor in wall units hu0iu0ji

þ � hu0iu0jixzt=u2s , with the
single-phase (SP0) Reynolds stresses shown in black as reference. The
coalescing droplets simulations (VOF) show little change in stresses
relative to single-phase flow. Going from single phase to the non-
coalescing droplets, however, we see a reduction in the streamwise
velocity fluctuations hu02iþ, and an increase in the wall-normal hv02iþ
and spanwise hw02iþ velocity fluctuations. This shows that the isotropy
of the turbulent flow has increased due to the presence of non-
coalescing droplets. A similar effect has been observed for particle-
laden turbulent channel flows, see, e.g., Picano et al. (2015), in which
particles redistribute energy to a “more isotropic state,” inducing an
overall drag increase growing with the volume fraction of the dispersed
phase. We infer that non-coalescing droplets have a back-reaction on
the flow comparable to that of rigid particles, producing an increase in
isotropy, which correlates with an increase in drag. On the other hand,
coalescing droplets produce a weaker back reaction on the flow, which
shows little change in isotropy or drag.

When compared to the other components of the Reynolds
stresses, the shear stress hu0v0iþ shows only a small change due to the
presence of droplets. However, as we shall see next, this shear stress
opposes the pressure gradient in the channel, producing a profound
impact on the drag. The full shear stress balance for the multiphase
problem under investigation can be obtained as follows. We start by
taking average of the streamwise (i¼ 1) component of Eq. (1),

hðqu1Þ;t þ ðqu1ujÞ;jÞixzt ¼ hðq�u1;j þ q�uj;1Þ;jixzt � hp;1ixzt
þ hGd11ixzt þ hcjn1 dSðxÞixzt : (6)

In fully developed turbulent channel flows, most of these terms aver-
age to zero, and the equation simplifies to

hqu0v0ixzt;y ¼ �hqu;yixzt;y þ Gþ hcjn1 dSðxÞixzt ; (7)

where we have moved from the index notation ðu1; u2; u3Þ to (u, v, w)
for the sake of clarity. Hereafter, for brevity we omit the subscripts xzt

FIG. 5. Dependence of the mean volume fraction of droplets h/ixzt on the distance
y from the channel wall. Each run is plotted using the color and marker listed in
Table I. The profiles are symmetric about the centerline (y¼ L), so we have plotted
runs with non-coalescing (FT), and coalescing (VOF) droplets on the left and right,
respectively. Note that for the runs with coalescing droplets, h/ixzt peaks in the
channel center, whereas for the non-coalescing droplet runs, h/ixzt shows a peak
near the wall.

FIG. 6. Variation of Reynolds stresses with the distance yþ from the channel walls.
Stresses for run SP0 are shown by solid black lines. For runs with droplets, the dif-
ference between the Ca0 ¼ 0:1 and Ca0 ¼ 0:05 stress is shaded in color. The
Reynolds stress components exhibit higher isotropy in the non-coalescing droplet
runs (FT) than in the coalescing runs (VOF).
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on angled brackets. Integrating from the wall y¼ 0, to y ¼ n, we
obtain

�Gn ¼ hlu;yi � hqu0v0i
� �y¼n

y¼0þ
ðn

0
hcjn1 dSðxÞidy: (8)

The non-penetration boundary conditions at the walls enforce v0 ¼ 0
and with n1 ¼ 0 at the wall, the lower limit of the right hand side is
hlu;yijy¼0 ¼ sw ¼ GL by the definition of the wall shear stress. We
relabel y ¼ n and obtain

GðL� yÞ ¼ hlu;yi � hqu0v0i þ
ðy
0
hcjn1 dSðxÞidy: (9)

By dividing the equation by sw, we obtain the following dimensionless
expression for the shear stress budget in the channel,

1� y=L ¼ sþ� þ sþRe þ sþr ; (10)

where

sþ� � hlu;yi=sw; (11)

sþRe � �hqu0v0i=sw; and (12)

sþr �
ðy

0

hcjn1dSðxÞidy=sw (13)

are the viscous, Reynolds, and interfacial shear stresses, respectively.
Here, we calculate the viscous stress and Reynolds stress using
Eqs. (11) and (12), while the interfacial stress is calculated as the
remaining part of the total budget in Eq. (10). (Assuming that the
volume fraction / is uncorrelated with the flow, we can separate
the averages of the material properties and the flow velocity. To test
our assumption, we measured the correlations �hqu;yi � �hqihui; y
and hqu0v0i � hqihu0v0i for each of the FT runs and found that the
error in shear stress was always less than 3.5% of sw.)

Figure 7(a) shows the balance of shear stresses from the channel
wall (y¼ 0) to the center (y¼ L). In agreement with previous works
(Pope, 2000), the single-phase run (SP0) produces a viscous stress sþ� ,
which is the highest near the wall where the shear rate is maximum,
and a Reynolds stress sþRe dominates for y > 0:1L, where turbulent
fluctuations abound.

The coalescing droplet runs (VOF) in Fig. 7(a) have an interfacial
stress sþr , which peaks around y ¼ 0:5L. This stress occurs due to the
droplet interfaces, which resist the deforming effects of turbulent fluc-
tuations, at the detriment of the Reynolds stress. Note that sþr is larger
for the smaller capillary number case (VOF10b compared to
VOF10a), because the surface tension coefficient c is larger, so surface
tension forces are larger.

The non-coalescing droplet runs (FT) in Fig. 7(a), on the other
hand, have very little interfacial stress sþr above y> 0.5: instead, the
peak of sþr occurs at roughly the same wall-normal location y as the
peak in the volume fraction h/ixzt seen in Fig. 5. In both Figs. 5 and 7,
the peak moves away from the wall when capillary number increases.
A similar trend is also observed for the location of the maximum tur-
bulent kinetic energy production (not shown here). The correlation of
y locations for these three statistics suggests that the “wall layering”
and “shear-gradient lift forces” discussed above, which produce a peak
in h/ixzt near the channel wall, are also responsible for sþr generation

and kinetic energy generation. The enhanced sþr close to the wall is
compensated in the budget by a reduction in sþ� for the cases of non-
coalescing droplets.

The averaged stresses are shown for all runs in Fig. 7(b). The
mean stresses are calculated by integrating sþ� ; sþRe, and sþr in the wall-
normal direction y from 0 to L, for example,

hsþ� iy �
1
L

ðL
0
sþ� dy: (14)

The averaged form of Eq. (10) is 0:5 ¼ hsþ� iy þ hsþReiy þ hsþr iy , show-
ing the averaged stresses are also in balance with the wall stress budget.
We observe that for coalescing droplets, the dispersed fluid produces
an interfacial stress hsþ� iy , which is entirely compensated by a reduc-
tion in Reynolds stress hsþReiy , with very little change in the viscous
stress hsþ� iy . However, in the case of non-coalescing droplets the
increase in interfacial stress hsþr iy is compensated by a reduction in
both the Reynolds stress hsþReiy , and the viscous stress hsþ� iy .

For the single-phase case, the dynamic viscosity l is constant
throughout the channel, so the mean viscous stress is proportional to
the centerline velocity,

hsþ� iy ¼
1
L

ðL
0

l
sw

dhuixzt
dy

dy ¼ l
Lsw

huixzt
� �y¼L

y¼0¼
l
Lsw

ucen; (15)

FIG. 7. (a) The balance of shear stresses as a function of the distance y from the
channel wall. The dashed line is the total stress budget. Stresses for run SP0 are
shown by solid black lines. The differences between VOF10a and VOF10b stresses
are shown in shades of blue, whereas the differences between FT10a and FT10b
stresses are shown in shades of orange. We see that sþr peaks near the wall for
the runs with non-coalescing droplets (FT), but is spread across the channel for the
coalescing runs (VOF). The different stress distributions across the channel ulti-
mately lead to different values of drag for coalescing and non-coalescing droplets.
(b) Mean shear stresses for all runs. The stacked bars are hsþ� iy ; hsþReiy , and
hsþr iy from bottom to top.
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and hence, the variation of hsþ� iy can be used to quantify drag in the
channel, with a larger/smaller hsþ� iy corresponding to drag reduction/
increase. For the multiphase problem, dynamic viscosity is different
for the carrier phase and dispersed phases, and we should integrate
dhluixzt=dy to the centerline, so the relationship between centerline
velocity and hsþ� iy is not exactly linear. However, due to the low vol-
ume fraction and low changes in viscosity, we found that considering
the variation of the material properties (q, l) and variation of the fluid
velocity as independent produces only small changes in the averaged
statistics. Hence, we can still relate the viscous stress to the centerline
velocity and, thus, to the drag changes in the multiphase simulations.
Indeed, the three runs with the smallest bulk velocity uþb in the inset of
Fig. 2 are FT10b, FT5b, and FT3b, and the three runs with the smallest
mean viscous stress hsþ� iy are also FT10b, FT5b, and FT3b [Fig. 7(b)].
Based on the above discussion, we can now relate the increased drag
for non-coalescing droplets to the wall normal location of the droplets:
the non-coalescing droplets in runs FT10b, FT5b, and FT3b encroach
into the viscous wall region and oppose the shearing flow, reducing
the viscous shear stress and thereby increasing drag.

V. CONCLUSIONS

We perform direct numerical simulations of coalescing and non-
coalescing droplets in turbulent channel flows to single out the effect
of coalescence. Coalescing droplets are simulated using the volume-of-
fluid method, and non-coalescing droplets with the front-tracking
method. We find that the droplets that are non-coalescing and less
deformable produce an increase in drag, whereas the other droplets do
not. We explained this by looking at the wall-normal location of drop-
lets in the channel: the coalescing droplets experience a deformation-
induced lift force, which drives them away from the shearing flow near
the wall, out of the viscous sublayer; this is possible due to the coales-
cence, which allows droplets to accumulate at the centerline. On the
other hand, the non-coalescing droplets do not; indeed, non-
coalescing droplets roughly behave as particles, uniformly distributing
across the channel, forming a wall layer, and increasing the isotropy of
the flow. In this case, droplets remain in the viscous sublayer, generat-
ing an interfacial shear stress, which reduces the budget for viscous
shear stress in the channel. From Eq. (15), we relate a reduction in the
viscous shear stress to a reduction in the centerline velocity and ulti-
mately to an increase in drag.

Our results agree well with the experiments carried out by
Descamps et al. (2008), who found that larger bubbles produce less
drag; in our study, large droplets are obtained through coalescence
and, indeed, produce less drag. Our proposed mechanism for drag
increase is also similar to that proposed by Dabiri et al. (2013), who
showed that less deformable bubbles enter the viscous sublayer, lead-
ing to an increase in viscous dissipation and an increase in drag. We
offer two main developments. First, we extend the study to coalescing
droplets. Second, we believe that viscous shear stress is a better predic-
tor of drag than viscous dissipation, as the proportionality between the
mean viscous shear stress and centerline velocity [Eq. (15)] is exact for
single-phase channel flows and only slightly affected by the change in
material properties. Although we made simulations at a density ratio
of qc=qd ¼ 50, which is greater than that of oil in water (qwater=qoil
� 1:5), but less than that of air in water (qwater=qair � 830), compari-
son with the experimental literature suggests that our current qualita-
tive conclusions still hold for these flows.

Our findings can help to better understand and control multi-
phase flows in a variety of applications, such as arteries, pipelines, or
ships. Through numerical experiments, we have been able to fully
characterize the effect of coalescence alone, without the interference of
other mechanisms, which often arise in experiments with surfactants.
How these results are affected by surfactant concentrations will be the
topic of future research.
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