
The dynamics of a capsule in a wall-bounded oscillating shear flow
LaiLai Zhu, Jean Rabault, and Luca Brandt 
 
Citation: Physics of Fluids 27, 071902 (2015); doi: 10.1063/1.4926675 
View online: http://dx.doi.org/10.1063/1.4926675 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pof2/27/7?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Lateral migration of a small spherical buoyant particle in a wall-bounded linear shear flow 
Phys. Fluids 21, 083303 (2009); 10.1063/1.3206729 
 
Oscillatory shear induced droplet deformation and breakup in immiscible polymer blends 
Phys. Fluids 21, 063102 (2009); 10.1063/1.3153304 
 
Nonlinear dynamics of a two-dimensional viscous drop under shear flow 
Phys. Fluids 18, 072106 (2006); 10.1063/1.2222336 
 
Deformation of a capsule in simple shear flow: Effect of membrane prestress 
Phys. Fluids 17, 072105 (2005); 10.1063/1.1955127 
 
Drop dynamics in an oscillating extensional flow at finite Reynolds numbers 
Phys. Fluids 17, 027103 (2005); 10.1063/1.1844471 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  130.229.133.40 On: Tue, 01 Dec 2015 09:40:54

http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1249890892/x01/AIP-PT/PoF_ArticleDL_1115/PTthruTheYears_v1r3.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=LaiLai+Zhu&option1=author
http://scitation.aip.org/search?value1=Jean+Rabault&option1=author
http://scitation.aip.org/search?value1=Luca+Brandt&option1=author
http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://dx.doi.org/10.1063/1.4926675
http://scitation.aip.org/content/aip/journal/pof2/27/7?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/21/8/10.1063/1.3206729?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/21/6/10.1063/1.3153304?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/18/7/10.1063/1.2222336?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/17/7/10.1063/1.1955127?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/17/2/10.1063/1.1844471?ver=pdfcov


PHYSICS OF FLUIDS 27, 071902 (2015)

The dynamics of a capsule in a wall-bounded oscillating
shear flow

LaiLai Zhu,1,2,a) Jean Rabault,1,3,b) and Luca Brandt1
1Linné Flow Center and SeRC, KTH Mechanics, S-100 44 Stockholm, Sweden
2Laboratory of Fluid Mechanics and Instabilities, Station 9, EPFL,
1105 Lausanne, Switzerland
3École Polytechnique, 91128 Palaiseau Cedex, France

(Received 18 November 2014; accepted 26 June 2015; published online 16 July 2015)

The motion of an initially spherical capsule in a wall-bounded oscillating shear flow is
investigated via an accelerated boundary integral implementation. The neo-Hookean
model is used as the constitutive law of the capsule membrane. The maximum wall-
normal migration is observed when the oscillation period of the imposed shear is of
the order of the relaxation time of the elastic membrane; hence, the optimal capillary
number scales with the inverse of the oscillation frequency and the ratio agrees
well with the theoretical prediction in the limit of high-frequency oscillation. The
migration velocity decreases monotonically with the frequency of the applied shear
and the capsule-wall distance. We report a significant correlation between the capsule
lateral migration and the normal stress difference induced in the flow. The periodic
variation of the capsule deformation is roughly in phase with that of the migration
velocity and normal stress difference, with twice the frequency of the imposed shear.
The maximum deformation increases linearly with the membrane elasticity before
reaching a plateau at higher capillary numbers when the deformation is limited by
the time over which shear is applied in the same direction and not by the membrane
deformability. The maximum membrane deformation scales as the distance to the
wall to the power 1/3 as observed for capsules and droplets in near-wall steady shear
flows. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4926675]

I. INTRODUCTION

The dynamics of a capsule in external flows have attracted enormous interest due to their physi-
ological and biological significance, leading to the discovery of a variety of interesting and complex
phenomena. Since the observation of the tank-treading (TT) motion of a human red blood cell
(RBC) in the viscometer,1,2 real cells and their models have been examined in shear flow, one of the
simplest flows, experimentally, theoretically, and numerically in order to understand the motions of
biological cells.3–16 The focus was on an initially spherical capsule that undergoes shear-induced TT
motion, reaching a steady ellipsoidal shape,17,18 when the membrane elements rotate along the sta-
tionary configuration like the caterpillar driving of a tank. The undeformed shape of biological cells
is, however, seldom a sphere, rather geometrically anisotropic, the bi-concave shape of undeformed
RBCs being a classic example. This non-sphericity introduces a shape memory for the capsules and
tends to orient them in a preferential direction.19 As a consequence, the capsules tank-tread and
oscillate around a preferred direction as the shear rate is above a certain value;20,21 this oscillatory
behavior is termed as the swinging mode.22

Oscillating shear flows have been investigated to account for the physiological pulsation,
and more complex and diverse capsule dynamics explored. Experiments23 showed that the RBCs
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deform more in the retarding phase than in the accelerating phase. Cells in harmonically modulated
shear were examined by theoretical approaches24 to reveal a resonance behavior; a particular combi-
nation of the oscillation frequency and phase can induce the tumbling motion of a capsule which
would otherwise swing under steady shear flow. Dupire et al.25 theoretically produced disordered
motions of the RBCs under sinusoidally varying flows with physiologically relevant parameters.
A similar chaotic behavior was also reproduced in the analytical investigation by Noguchi26 who
found multiple limit-cycle solutions of a model RBC subject to an oscillating shear flow at high
frequency; their tumbling or tank-treading motions were found at high or low shear amplitudes.
The recent numerical simulations in Ref. 27 reproduce the two swinging modes of an initially
oblate capsule by varying the frequency of the external shear; these authors also document the high
sensitivity of the motion of the capsule to its initial orientation, indirectly confirming the chaotic
motion reported in Ref. 25.

These previous studies mainly focused on the dynamics of capsules in an unbounded oscilla-
tory shear flow. In the micro-circulation, however, cells like the RBCs move in strongly confined
oscillating flows, an example being the physiological process called vasomotion. This corresponds
to the spontaneous and rhythmic oscillations of large arteries as well as microvessels.28–30 Vasomo-
tion is independent of the common physiological pulsations induced by the heart beat, innervation,
or respiration,31 but due to the constriction and dilation of the smooth muscle. Its possible benefits
include reducing the time-averaged hydraulic resistance to the blood flow32 and the consequent
enhancement of oxygen transport.33,34 It is therefore important to understand the dynamics of
deformable particles like biological cells in a confined oscillating flow.

In addition to the complexity introduced by the oscillation, the influence of wall confinement
on the cell motion is crucial and has been, thus far, mostly investigated in steady flows where
cells exhibit cross-streamline migrations in most cases. Fåhraeus and Lindqvist35 first unraveled the
biological importance of confinement. They discovered that the RBCs tend to deform significantly
and migrate towards the center of a microvessel owing to the hydrodynamic lift resulting from the
interaction between the cellular deformation and the wall; this migration facilitates a lower flow
resistance and a more effective mass transport. Simulations using the front-tracking method have
been conducted by Doddi and Bagchi36 to investigate the cross-stream lift of a capsule towards
the centerline in a Poiseuille flow; these authors observed that the migration velocity scales as
the distance to the wall to the power 1/3 but varies non-linearly with the capillary number. The
recent numerical study by Pranay et al.,37 based on an accelerated boundary integral method as that
used here, investigates the lateral migration of an individual and a suspension of initially spherical
capsules in wall-bounded Newtonian and viscoelastic shear flows. These authors show that the
migration of the capsule depends on the capillary number, and that it is attenuated by the addition
of polymers. Migration has also been reported for vesicles: in an unbounded Poiseuille flow,38,39 the
migration velocity depends on the flow curvature, vesicle deformability, and viscosity contrast of
the fluid inside and outside the vesicle; in a wall-bounded shear, the migration velocity is propor-
tional to the wall normal component of the particle stresslet and the presence of the wall delays its
transition from the tank-treading motion to trembling and tumbling.40

Recently, two groups41,42 have numerically examined the case of a near-wall single capsule
transported in a Newtonian shear flow, using a front-tracking and a boundary integral method,
respectively. Singh et al.41 document the power-law relations between the migration velocity,
capsule deformation, and the capsule-wall distance, as previously done analytically for a droplet.
These authors also propose a semi-analytical theory identifying two competing mechanisms influ-
encing the lateral migration: the interfacial stresses and the viscosity ratio; this theory agrees well
with the simulation results for large capsule-wall distances. Nix et al.42 pay more attention to the
correlation between the deformation of a capsule and its migration. These authors find that an
asymmetric capsule deformation reduces the migration velocity and this effect is compensated by an
increase in the capsule stresslet, in turn enhancing its migration.

Very recently, Matsunaga et al.43 investigated the motion of capsule in an unbounded oscil-
lating shear flow, observing an overshoot phenomenon when the maximum deformation of capsule
can be larger than its deformation in a steady shear. In this manuscript, we extend the work in
Refs. 41–43 by considering a near-wall individual capsule in oscillating plane shear flow. We hence
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introduce one additional factor, i.e., the unsteadiness of the background flow that is a typical feature
of biological environments. We aim to understand the interplay between the wall and the flow
unsteadiness, explaining its influence on the dynamics of a capsule.

The paper is organized as follows. After the description of the problem setup, we give a brief
introduction to our computational framework based on an accelerated boundary integral method
suited for general geometries. We first report the trajectories of capsules migrating from the wall
and then investigate the dependence of the lateral migration velocity on the capsule capillary num-
ber, the capsule-wall distance, and the frequency of the oscillation of the background shear. We
further analyze the correlation between the migration velocity and the normal stress difference
that arises from the viscoelastic effects due to the deformable particles. Finally, the deformation
of the capsule is examined; the phase difference between the deformation and the applied shear
is measured to quantify the induced viscoelasticity. The paper ends with a summary of the main
findings.

II. PROBLEM SETUP AND NUMERICAL METHODS

A. Problem setup

We compute the motion and deformation of a capsule subject to a wall-bounded shear flow,
see the sketch in Figure 1. The undeformed shape of the capsule is a sphere with radius a and
center of mass initially located at a distance hini/a above the wall. A time-periodic harmonic shear
flow γ̇ (t) = γ̇max cos (ωt) is applied. γ̇max denotes the maximum value of the shear, and ω is the
oscillation frequency. The characteristic time of the flow is thus T = 2π/ω. In the current work, we
study a capsule as a model cell and reproduce its motion and deformation in the micro-circulation
or in micro-fluidic devices. We therefore assume that the capsule is advected by a creeping flow and
the Reynolds number Re, indicating the ratio of inertial over viscous forces, is zero.

The capsule is considered as a fluid-filled droplet enclosed by an infinitely thin elastic mem-
brane. The fluid inside and outside the capsule has the same density ρ and the same dynamic
viscosity µ. For real biological cells, the viscosity of the fluid inside and outside is not necessarily
the same; this is not taken into account here to limit the investigated parameter space. The capsule is
deformed by the fluid flow and the stress on its membrane is determined by the neo-Hookean consti-
tutive law.44 The membrane has a shear modulus Gs and zero bending stiffness. Elastic stresses
develop on the surface of the capsule due to its deformation; this stress modifies the surrounding

FIG. 1. We consider a capsule whose undeformed shape is a sphere of radius a, subject to an oscillating wall-bounded shear
flow γ̇ (t)= γ̇max cos(ωt). The center of mass of the capsule is initially a distance hini above the wall and its lateral migration,
measured from the initial position, is denoted hlat. The distance between the capsule and the wall is thus hcw= hini+hlat.
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flow in return. In this fluid-structure interaction problem, the viscous stress of the flow and elastic
stress of the deformable membrane compete with each other, their ratio defined as the capillary
number Ca = µγ̇max/Gs.

B. Numerical method

The membrane of the capsule is discretized into N Lagrangian points. Neglecting the inertia of
the capsule, the elastic force balances the flow viscous force on its surface,

ρe + (σout − σin) · nout = 0, (1)

where ρe is the elastic force per unit area exerted by the membrane, σout and σin are the stress tensor
of the flow outside and inside the capsule, respectively, and nout is the unit outwards normal vector.
Given the distribution of ρe on the membrane, the flow obeys at each time the Stokes equations with
N point forces exerted on the fluid,

− ∇p + µ∇2u = −
N
i=1

fiδ (x − xi) ,

∇ · u (x) = 0, (2)

where p and u are the pressure and velocity field, respectively. fi denotes the force on the fluid at the
position xi and can be approximated by

fi =

Si

ρe
idSi, (3)

where Si represents the elemental patch around the ith Lagrangian point. We solve the governing
flow equations with a boundary integral method, accelerated by the general geometry Ewald method
(GGEM) proposed by Hernández-Ortiz et al.45 GGEM decomposes the Stokes solution into two
parts: (i) the short-ranged interactions computed by traditional boundary integral techniques and
(ii) the long-ranged interactions handled by a mesh-based Stokes solver. In our implementation, we
take the Stokes sub-solver of the open source software NEK500046 as the mesh-based solver. We
perform singular and nearly singular integration for an accurate near-field solution, see Ref. 47. A
proper treatment of the two is crucial to achieve the necessary numerical accuracy.48,49

The flow domain is infinite and bounded only by a plane wall. However, in the framework
of GGEM, a computational domain of finite size is needed; here, we choose 24a(x) × 24a(y) ×
15a(z). We impose periodic boundary direction in the streamwise (x) and spanwise (z) direction,
while keeping the bottom wall stationary and imposing at the upper boundary a time-periodic ve-
locity in the x direction. The domain is discretized by 4000 cubic spectral elements with 4 × 4 × 4
Gauss-Lobatto-Legendre points and the grid is refined in the region where the capsule moves. This
strategy has been used to study a capsule in an unbounded shear, producing results in agreement
with published data obtained with a traditional boundary integral method.8

Once the flow solution is available, the velocity is known at each Lagrangian point, u (xi).
Due to the no-slip, non-penetrating boundary condition on the membrane of the capsule, the rate of
change of the position of the ith point is given by

dxi

dt
= u (xi) . (4)

Given the new coordinates of the N Lagrangian points, we are able to calculate the elastic force
per unit area on each point. The computation of the stress is based on the displacement with
respect to the undeformed shape of the capsule, through the constitutive law of the membrane, the
neo-Hookean model here. We use a global spectral method based on the spherical harmonics47 to
represent the surface of the capsule and to solve for the elastic force ρe. The advantage of this
approach is twofold: (i) high order spatial derivatives on the material points are computed with high
accuracy, which is crucial for the calculation of the elastic force; (ii) the same spectral discretization
can be used for the boundary integration performed when solving the short-ranged hydrodynamic
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interactions. For the details of our implementation, the readers are referred to Refs. 50 and 51.
One of the important features is the capability of simulating deformable capsules in general geom-
etries, as illustrated by the design of a deformability-based cell sorting device52 and a constricted
micro-fluidic channel that can be used to infer the mechanical properties of cellular particles.53

III. RESULTS

A. Trajectories

We first look at the trajectories of the capsules. The time evolution of the center of mass and
surface centroid of the capsule is depicted in the shear plane (x-y plane) in Figure 2 for three
cases, (Ca,ω/γ̇max) = (0.15,1), (Ca,ω/γ̇max) = (0.3,1), and (Ca,ω/γ̇max) = (0.3,2). Note that the
center of mass is equivalent to the volume centroid, as opposed to the surface centroid, and the two
centroids coincide for centersymmetric objects while they deviate as this symmetry is lost. In this
study, the capsule symmetry is broken by the presence of the wall. The motion is a combination of
oscillations in the streamwise (x) direction due to the oscillating background flow and wall-normal
lateral migration due to the hydrodynamic lift. The trajectories of the two centroids, hlat/a and ĥlat
display significant differences: the center of mass moves vertically in a reciprocal way while the
surface centroid migrates away from the wall continuously.

This is also illustrated in Figure 3 where we display the time migration of the two centroids,
hlat/a and ĥlat/a. They both vary periodically with the frequency of the imposed shear, but neither
resembles a regular sinusoidal as the shear: the former increases with time non-monotonically, its
migration velocity can be negative while the latter increases monotonically and hence the velocity is
always positive. This difference reflects the asymmetry of the shape of the capsule. They neverthe-
less have approximately the same time-averaged value; after all, both centroids represent the motion
of the capsule and thus coincide with each other in a statistical sense. In the following, we mostly
study the time-averaged capsule migration and thus only report results for the center of mass.

We further note that a solid spherical particle will not migrate in the wall-normal direction in
Stokes flow, while its ellipsoidal counterpart will exhibit an oscillatory vertical drift, with a zero
mean. Nonlinearity is the cause of the particle migration, either due to inertial effects, a viscoelastic
fluid, or to the deformable membrane as in our case. As an example of solid particles, we note that
a sphere has been shown to migrate in a constant shear flow of a viscoelastic fluid54 due to the
nonlinear relation between the fluid stress and the strain rate. Under oscillating shear,54 the spherical
particle follows a wagging trajectory, very similar to that we observe here. The physical picture
is also analogous to that of a microswimmer exploiting nonlinearity to achieve a net locomotion
despite a reciprocal motion, an interesting case in the low-Reynolds-number swimming dynamics.55

FIG. 2. The trajectories of (a) (x/a,hlat/a) of the center of mass and (b)
(
x/a, ĥlat/a

)
of the surface centroid on the

shear plane of the capsules (Ca,ω/γ̇max)= (0.15,1) (solid), (Ca,ω/γ̇max)= (0.3,1) (dashed), and (Ca,ω/γ̇max)= (0.3,2)
(dotted-dashed). The capsules are released with an initial offset hini/a = 2.
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(a) (b)

FIG. 3. (a) Lateral migration hlat/a, of the center of mass, and (b) ĥlat/a, of the surface centroid of the same capsules
in Figure 2. The dotted curve indicates the imposed periodic shear γ̇ = γ̇max cos(ωt), arbitrarily scaled for visualization
purposes. The shaded region indicates the time when the instantaneous lateral migration hlat and the shear γ̇ reach the local
minimum and maximum, respectively.

In the Stokes regime, but in a viscoelastic or non-Newtonian fluid, a reciprocal swimming pattern
can lead to a net displacement,56–58 although the same strategy would not work in a Newtonian
fluid.55,59

We further notice that for the same oscillation frequency, ω/γ̇max = 1, the motion of the two
capsules with Ca = 0.15 and Ca = 0.3 is similar despite the different deformabilities. Conversely,
the trajectory of the same capsule, Ca = 0.3, varies significantly when the frequency of the imposed
shear increases from ω/γ̇max = 1 to ω/γ̇max = 2. The streamwise domain spanned by the capsule
reduces to about half when doubling ω/γ̇max, as expected since we keep the same maximum shear.
The capsule lateral migration also diminishes considerably in this case, as shown in Figure 3(b).

B. Velocity of the capsule

In this section, we analyze the migration and slip velocity of the capsule. The lateral migra-
tion velocity Ulat is computed as Ulat = dhcw/dt and the slip velocity Uslip = γ̇hcw −Ux where
hcw = hini + hlat is the distance between the capsule and the wall and Ux the streamwise velocity
of the center of the capsule. The temporal evolution of Ulat/aγ̇max and Uslip/aγ̇max is depicted in
Figures 4(a) and 4(b) for three capsules with the same initial offset hini/a = 2 and frequency of
the imposed shear, ω/γ̇max = 5/3. After an initial transient, the two velocities vary periodically
in time. The transient is also observed in the case of steady shear,41 before the capsule reaches
a quasi-steady state; only then its deformation and velocity do not vary with the instantaneous
capsule-wall distance hcw. In the case of periodic shear investigated here, the capsule motion

(a) (b)

FIG. 4. (a) Lateral migration velocityUlat/aγ̇max and (b) slip velocityUslip/aγ̇max, as a function of the dimensional time t/T
for capsules with Ca= 0.0375 (solid curve), Ca= 0.15 (dashed), and Ca= 0.6 (dotted-dashed), released with an initial offset
hini/a = 2, the oscillation frequency of the imposed shear ω/γ̇max= 5/3. The time-averaged migration and slip velocities
are denoted by horizontal lines with circles (Ca= 0.0375), squares (Ca= 0.15), and diamonds (Ca= 0.6). The dotted curve
indicates the applied oscillating shear γ̇max cos(ωt), arbitrarily scaled for visualization purposes.
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reaches a quasi-periodic regime. Unless otherwise specified, we only examine its dynamics at this
stage, when its net migration hlat is negligible compared to the initial offset hini and hini ≈ hcw. In the
following, hini will therefore be used to denote the capsule-wall distance.

As clear from Figure 4(b), the slip velocity and the background shear flow have different
signs. This indicates that the capsule moves faster than the local background flow, an effect more
pronounced when t/T approximately assumes integer values and the capsule returns about the
initial location (x = 0). This is different to what is observed in a steady shear flow where the
capsule always lags behind the surrounding fluid.41,42 In fact, as t/T ≈ 1,2,3, . . . (shaded regions in
Figure 3(b)), the capsule-wall distance hcw = hini + hlat is at a local minimum and the background
shear γ̇ reaches its maximum value. At this time, the background velocity γ̇hcw, the product of
the two, decreases because the phase difference is around π. This phase difference does not exist
in steady shear when there are no delays and the local background flow depends only on the
capsule-wall distance hcw.

The time-averaged value of the migration velocity Ūlat/aγ̇max and of the slip velocity Uslip/aγ̇max
of the three capsules is indicated in Figure 4 by horizontal lines. For all cases, the mean migration
velocity is positive: the capsule undergoes a net migration away from the wall. However, the mean
slip velocity is almost zero, namely, the capsule has no net motion in the streamwise direction.
The capsule with the intermediate capillary number Ca = 0.15 has a higher migration velocity than
its floppy (Ca = 0.0375) and stiff (Ca = 0.6) counterparts. To further examine this dependence, the
migration velocity Ūlat/aγ̇max is therefore displayed versus the capillary number Ca in Figure 5
for three different initial offsets. The mean velocity varies non-monotonically with Ca, the optimal
capillary number Caopt being around 0.1. This non-monotonic dependence of the migration velocity
is in contrast to what is observed in steady shear, where the lift velocity increases monotonically
with Ca.37,41,60

In steady flows, the particle lateral migration velocity is a linear function of the normal stress
differences N1 − N2 as shown among others in Refs. 60 and 37. It is, thus, natural to investigate
whether this relation holds in an oscillating shear as well. The normal stresses N1 and N2 are defined
as

N1 = σxx − σy y, (5)
N2 = σy y − σzz,

where σ denotes the extra stress due to the presence of the capsule in the volume V ,

σi j = −
1
V


S

ρe
i x jdS. (6)

FIG. 5. Lateral migration velocity Ulat/aγ̇max as a function of the dimensional time t/T and the capillary number Ca, at
fixed oscillation frequency ω/γ̇max= 5/3. Data are reported for three initial offsets, hini/a = 1.5, hini/a = 2, and hini/a = 3
indicated by the triangles, circles, and squares, respectively.
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FIG. 6. Top panel: lateral migration velocity, Ulat/aγ̇max, (solid lines) and normal stress difference ∆N (dashed lines)
versus the nondimensional time t/T , for three capillary numbers Ca= 0.075 (a), 0.12 (b), and 0.6 (c). Bottom panel:
deformation index D̂ versus t/T for the same capsule. The initial offset is hini/a = 2 and the frequency of the imposed shear
ω/γ̇max= 5/3. The local maxima of the velocity, stress, and deformation are marked by the circles, squares, and hexagons,
respectively; the shaded region indicates the period when they co-appear.

We consider the nondimensional stress difference (N1 − N2) /µφvγ̇max, with φv = 1/V the volume
fraction; in the dilute limit, the normal stress difference ∆N = (N1 − N2) /µφvγ̇max represents the
capsule-induced stress normalized by the viscous stress.

The temporal evolution of the migration velocity Ulat/aγ̇max and the normal stress difference
∆N is depicted in the top panel of Figure 6 for capsules with Ca = 0.075, Ca = 0.12, and Ca = 0.6.
After the transient period, both quantities vary periodically and reach their local maxima with small
phase delays, which indicates a considerable correlation between these two quantities. The period is
around T/2, indicating that Ulat and ∆N change twice as faster as the oscillating shear.

We next examine the local maxima of Ulat/aγ̇max (marked by circles in the figure) and of ∆N
(indicated by squares), always neglecting the peaks in the transient period. For the stiff capsule
Ca = 0.075 (cf. Figure 6(a)), we identify five instants when Ulat/aγ̇max and ∆N both attain local
maxima. At times t1, t3, and t5, the peaks of the two quantities have a similar magnitude with respect
to their own scales, while at times t2 and t4, their relative magnitude is significantly different. In
other words, the ratio between the magnitude of the two local maxima varies with time, someth-
ing which becomes more evident for the floppy capsule Ca = 0.6. In contrast, the two quantities
Ulat/aγ̇max and ∆N have roughly the same magnitude every time they reach a local maxima for the
capsule with Ca = 0.12, the one displaying the largest lateral migration velocity (see Figure 6(b)):
the ratio of the peak values remains almost constant in time. This implies that the correlation
between the two quantities is stronger when Ca ≈ 0.1 and decreases for larger and smaller values
of the capillary number (Ca = 0.075 and 0.6 in the figure). This high correlation suggests that the
normal stress difference contributes to a more pronounced lateral migration.

To gain further insight, we show the time-averaged migration velocity Ūlat/aγ̇max together with
the time-averaged normal stress difference ¯∆N versus the capillary number Ca in Figure 7; the data
reported pertain to three different values of the initial distance from the wall. Interestingly, these two
quantities follow closely the same trend: a sharp increase with Ca for stiff capsules, a maximum at
Ca ≈ 0.1, and then slower decrease for softer and softer membranes.

The parameter study is continued by examining the dependence of the lateral migration veloc-
ity on the frequency of oscillation of the imposed shear, ω/γ̇max. Figure 8 displays the time-averaged
migration velocity, Ūlat/aγ̇max, versus ω/γ̇max for the capsule with Ca = 0.3 and the three offsets
hini/a = 1.5, 2, and 3. As ω/γ̇max < 2, Ūlat/aγ̇max decreases sharply with ω/γ̇max, almost linearly;
for ω/γ̇max > 2, the migration velocity decreases more slowly, approaching asymptotically zero for
large ω/γ̇max. The cases with ω/γ̇max = 0 correspond to a capsule in steady shear flow. Conversely,
as ω/γ̇max → ∞, the flow oscillations are much faster than the relaxation time of the capsule and the
capsule therefore does not have sufficient time to adjust to the flow before it changes direction: the
deformation and the consequent lateral migration are hence negligible.
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FIG. 7. Time-averaged value of the lateral migration velocity Ūlat/aγ̇max and of the normal stress differences ¯∆N versus
the capillary number Ca. Ūlat/aγ̇max and ¯∆N are indicated by the solid (respectively, dashed) curve with circles (respec-
tively, diamonds), measured by the left (respectively, right) scale. The frequency of the shear is ω/γ̇max= 5/3 and the results
are shown for (a) hini/a = 1.5, (b) hini/a = 2, and (c) hini/a = 3.

The variations of the time-averaged migration velocity Ūlat/aγ̇max with the oscillation fre-
quency are displayed in Figure 9 versus the capillary number Ca for capsules with an initial offset
hini/a = 2. The non-monotonic variation of Ūlat/aγ̇max with Ca holds for all cases, but the capillary
number Caopt of maximum lateral velocity changes with the frequency ω/γ̇max. The inset of the
same figure shows that Caopt varies almost linearly with the inverse of the shear frequency γ̇max/ω.
In fact, as the migration velocity, normal stress difference, and capsule deformation vary at a fre-
quency of roughly 2ω/γ̇max (see Figure 6), 2ω/γ̇max can be considered as the effective frequency of
the flow oscillation determining the capsule behavior. Accordingly, the ratio of the relaxation time
of the capsule over the effective time scale of the flow is 2Caω/γ̇max.

The inset indeed shows that 2Caoptω/γ̇max ≈ 0.5. In other words, lateral migration becomes the
strongest as the effective time scale of the flow is of the order of the relaxation time of the elastic
membrane.

It is worth noting that this scaling has similarities with those observed in many other situations
where the flow dynamics is significantly influenced by the nonlinearity solely arising from the
elasticity of the fluid or structure. A rotating helical slender body, a typical model micro-swimmer
propelling like a cork-screw, attains the most efficient propulsion when the relaxation time of the
polymeric fluid it is immersed in is of the order of the typical flow time.61,62 Similarly, an elastic
filament63,64 or flapper65 actuated in a viscous fluid for propulsion or pumping reaches maximum
efficiency as the so-called sperm number;66 the ratio of the time scale of the elastic structure over
that of the flow is of order one. We further note that the relation between the optimal capillary

FIG. 8. Time-averaged migration velocity Ūlat/aγ̇max, as a function of the frequency of the oscillating shear ω/γ̇max. The
capillary number Ca of the capsule is 0.3 and three initial positions of the capsules are chosen, hini/a = 3 denoted by squares,
hini/a = 2 by circles, and hini/a = 1.5 by triangles.
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FIG. 9. The time-averaged lateral migration velocity Ūlat/aγ̇max versus the capillary number Ca, for three shear frequencies,
ω/γ̇max= 0.5 (triangles), ω/γ̇max= 5/3 (circles), and ω/γ̇max= 3 (squares), the initial offset hini/a = 2. Caopt indicates the
capillary number of the capsule with the maximum migration velocity and the inset shows its dependence on γ̇max/ω.

number and the frequency of the applied shear could be potentially used to aid the design of
flow-assisted devices to sort deformable cells.67–69 Specific cells may be extracted from a dilute
suspension in an oscillating Couette device if the frequency of the applied shear is tuned to match
the capillary number of the targeted cells; these cells would, in fact, migrate with the highest veloc-
ity. The frequency of the applied shear would have to depend on the deformability of the targeted
cells; therefore, the same device can be used to sort cells with different deformabilities by varying
the frequency of operation.

Furthermore, the relation 2Caoptω/γ̇max ≈ 0.5 can also be implied theoretically in the limit of
high-frequency oscillation, i.e., ω/γ̇max ≫ 1, when the capsule undergoes small deformation. We
can assume that the capsule reaches the peak deformation and migration velocity at the same capil-
lary number Caopt. In an unbounded oscillating shear, the leading order of peak deformation is43

D̂peak =
1

2ω/γ̇max
and that of the equilibrium value D in the steady case is3,70 D = 25

12 Ca. Hence, the
capsule reaches the peak deformation and migration as 2Caoptω/γ̇max =

12
25 ≈ 0.5.

Finally, we report in Figure 10 the time-averaged migration velocity Ūlat/aγ̇max and the normal
stress difference versus the capillary number Ca for two different oscillation frequencies, ω/γ̇max =

0.5 and ω/γ̇max = 3. As shown in Figure 7, we can clearly identify a positive correlation between
these two quantities.

FIG. 10. The time-averaged value of the migration velocity Ūlat/aγ̇max and that of the normal stress differences ¯∆N versus
the capillary number Ca. The initial offset is hini/a = 2: (a) ω/γ̇max= 0.5 and (b) ω/γ̇max= 3.
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C. Deformation of the capsule

A capsule typically evolves into a prolate when subject to an unbounded shear flow. Hence,
its deformation is usually quantified by the so-called Taylor parameter D = (Lmax − Lmin)/(Lmax +

Lmin),44 where Lmax and Lmin are the length of the major and minor axes of the elliptical profile in
the shear plane. In our case, the profile of the capsule on the shear plane is not an ellipse, since
the symmetry is broken by the presence of the wall as also observed by Nix et al.42 We thus intro-
duce the deformation index, D̂ = (L′max − L′min)/(L′max + L′min), where L′max is the maximum distance
measured from the capsule surface to its center of mass and L′min is the minimum distance. The
deformation index D̂ quantifies how far away the capsule is from its stress-free shape, a sphere in
the current case.

The time evolution of the deformation index D̂ is illustrated in Figure 11 for three values of
the capillary number, Ca = 0.03, 0.15, and 0.6, same initial offset, hini/a = 2, and shear frequency
ω/γ̇max = 5/3. The index D̂ displays wake-like variations in time. An initial overshoot is observed
for the soft capsules, Ca = 0.3 and 0.6, similar to that observed in the wall-bounded steady shear
flow.41 After one or two periods, the amplitude of the oscillations becomes constant. The initial tran-
sient is more evident for the relatively soft capsules, Ca = 0.15 and 0.6; indeed, a higher capillary
number implies a longer relaxation time; hence, the capsule needs more time to adapt to the un-
steady flow. We also note in the figure that the frequency of the periodically varying deformation in-
dex D̂ is twice that of the background shear. The stiffest capsule, Ca = 0.03, displays the maximum
deformation roughly after the local extrema of the shear and the minimum deformation as the flow
reverses its direction. The stiff capsule therefore feels and responds to the variations of the flow fast
enough to change its shape accordingly; following so closely the flow, its maximum deformation
appears very shortly after the instant of maximum shear. The opposite applies to softer capsules.

The temporal evolution of the capsule deformation was also reported in the bottom panel of
Figure 6. The shaded regions clearly indicate that the local maxima of the migration velocity,
normal stress difference, and deformation index appear roughly at a same moment; moreover, the
three quantities vary with twice the frequency of the background shear. Such a coincidence is not
surprising; in fact, for a droplet and a capsule in steady shear, theoretical71 and numerical41 works
have identified the relation between its migration velocity and deformation as Ulat ∼ D̂(a/hini)2.
Our analysis further confirmed that even in the presence of flow oscillation, the deformation and
migration velocity, which are time-dependent in this case, are correlated.

To better understand the capsule deformation, we examine the peak deformation D̂peak, the
maximum value of D̂ after the initial transient overshoot. Figure 12 depicts D̂peak as a function of

FIG. 11. Temporal evolution of the deformation index D̂ for capsules with initial offset hini/a = 2 and frequency of the
shear ω/γ̇max= 5/3. Results for Ca= 0.03, Ca= 0.15, and Ca= 0.6 are indicated by the solid, dotted-dashed, and dashed
lines, respectively. The dotted curve denotes the oscillating background shear γ̇max cos(ωt), arbitrarily scaled for a better
visualization. The profiles of the capsules reaching the peak deformation are displayed on the shear plane.
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FIG. 12. The temporal peak of deformation D̂peak versus the capillary number Ca for an initial offset hini/a = 1.5, 2, and 3.
The shear frequency is ω/γ̇max= 5/3.

the capillary number Ca for the same three initial heights considered above. D̂peak increases almost
linearly with the capillary number Ca for Ca < 0.1. This resembles the linear relation between the
Taylor parameter D and the capsule capillary number in an unbounded steady shear flow. Further
increasing the capillary number, D̂peak increases more slowly and reaches an asymptotic value close
to 0.3 as Ca > 0.6. This is in contrast to what observed in an unbounded steady shear where the
deformation D always increases with Ca although slowly at large Ca.

In oscillating flows, the deformation not only depends on Ca but also on the frequency of the
oscillations, ω/γ̇max. The time needed to reach the maximum deformation increases with Ca; for
large values of Ca, the capsule fails to reach the maximum possible deformation that would occur in
a steady shear before the flow changes direction if the oscillations occur fast enough. Considering
T/2, the time during which the shear has constant direction, the deformation of the capsules is
hence limited by T instead of by its deformability for large values of the shear oscillation frequency.
The relation between the deformation and ω/γ̇max can also explain the non-monotonic dependence
of the migration velocity with Ca. The lateral migration velocity, Ulat, of a capsule with λ = 1 in
wall-bounded shear is related to Sy y

mem, the y y component of the stresslet Smem induced by the elastic
force on the membrane by41,42

Ulat

aγ̇
= − 9

64π

(
a

hcw

)2 Sy y
mem

Gsa2

1
Ca

, (7)

FIG. 13. (a) The peak deformation D̂peak as a function of the shear frequency ω/γ̇max, for hini/a = 1.5, 2, and 3 and capillary
number Ca= 0.3. (b) D̂peak versus (a/hini)3 for ω/γ̇max= 1, 5/3, 2, and 10/3.
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FIG. 14. Phase delay φ of the capsule deformation with respect to the applied shear versus the capillary number Ca; the
frequency of shear is ω/γ̇max= 5/3. Results are shown for an initial offset hini/a = 1.5 (triangles), 2 (circles), and 3 (squares).

where Sy y
mem =


S −ρ

e
y (x)

(
xy − xcen

y

)
dS (x) and S

y y
mem

Gsa2 depends only on the capsule deformation. This

increases faster at low Ca and more slowly as Ca > 0.2 (see Figure 12) and so does S
y y
mem

Gsa2 ; 1
Ca ,

conversely, decreases so that the product of the two decreases when Ca is above a certain value. In
other words, the lateral migration of high-Ca capsules is hampered by the limiting deformation they
attain.

We further examine the dependence of D̂peak on the frequency of the shear ω/γ̇max and on
the initial height hini/a in Figure 13, where the membrane deformability is kept at Ca = 0.3. The
maximum deformation D̂peak decreases monotonically with ω/γ̇max as shown in Figure 13(a). D̂peak

increases as hini/a decreases, i.e., larger confinement effects, and this is more evident for smaller
values of ω/γ̇max; for large ω/γ̇max, the deformation barely varies with the initial height for the
same mechanism explained above. We show in Figure 13(b) that the maximum deformation D̂peak

is proportional to (a/hini)3. Note that in a wall-bounded steady shear flow, the same power law
has been identified for the deformation of a droplet by Shapira and Haber72 theoretically and for a
capsule by Singh et al.41 using numerical simulations.

To quantify the delay between the capsule deformation and the shear oscillations, we define
the time difference (tmaxD − tmaxS) scaled by the characteristic flow time as the phase lag φ =
(tmaxD − tmaxS) /T . The phase delay φ is negligible for the stiff capsule, whereas it is φ ≈ 1/4 for the
floppy capsule with Ca = 0.6; the latter deforms the most when the flow changes direction (see the
time histories in Figure 11). Note again that, regardless of the difference in the phase delay between
capsules of different capillary numbers, the deformation oscillates at a frequency around 2ω/γ̇max.

Finally, we examine in Figure 14 the dependence of the phase delay φ on the capillary number
Ca. The phase delay φ does not vary significantly with the initial offset hini/a of the capsules. φ
increases monotonically with Ca, an effect more pronounced when Ca is below 0.2. The delay φ
reaches an asymptotic value of approximately 0.25 as Ca continues to increase. Note that the phase
delay φ assumes a value between 0 (for purely viscous fluid) and 0.5 (for a linearly elastic solid).
The asymptotic value of ≈0.25 clearly indicates that viscoelastic effect is an important feature in the
flow of deformable cells.

IV. CONCLUSIONS

Using an accelerated boundary integral method for the flow coupled with a global spectral
method for the membrane, we study the near-wall dynamics of an initially spherical capsule
with neo-Hookean membrane in an oscillating shear flow. We focus on the lateral migration and
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deformation of the capsule, and their dependence on the capillary number, the frequency of the
background shear, and the initial wall-capsule distance.

The shape of capsule is asymmetric due to the presence of one wall and hence its center of
mass and surface centroid are not equivalent, as discussed in Ref. 42. The time history of the lateral
migration of the two centroids is clearly different, their time-averaged migrations being however
similar. It is, thus, important to specify the definition of the centroids of asymmetric deformable
particles when quantifying their migrations.

The capsule reaches a quasi-periodic steady state after an initial transient period. During this
state, the capsule follows a wiggling trajectory, moving away from and towards the wall period-
ically, with a net lateral migration away from the wall. For the capsule-wall distances and shear
frequencies investigated here, the mean migration velocity varies non-monotonically with the capil-
lary number Ca, reaching the maximum migration at an optimal capillary number denoted Caopt.

The optimal capillary number Caopt is sensitive to the frequency of the shear and is shown
to scale linearly with the inverse of ω/γ̇max. Interestingly, it does not vary significantly with the
capsule-wall distance. The maximum migration is observed when the effective oscillation period is
of the order of the relaxation time of the elastic membrane.

The capsule lateral migration velocity decreases monotonically with the frequency of the
imposed shear; at relatively high oscillation rates, the capsule fails to adapt to the flow before it
changes direction so that its lateral migration and surface deformation become negligible.

The relation between the lateral migration velocity and the normal stress difference induced
in the flow is explored. The maxima of these two quantities are closely correlated, with a weak
time delay function of the capillary number. The relative magnitude of the correlations can vary
significantly. As Ca ≈ Caopt, when the capsule has the highest migration velocity, the correlation
is the highest. The dependency of these two quantities on the capillary number Ca is investigated
for different capsule-wall distances and oscillation frequencies of the imposed shear; in all cases,
the two curves agree well with each and the peak values occur as Ca ≈ Caopt. This confirms the
correlation previously observed in steady wall-bounded shear flows.37 It is worth pointing that
such a relationship has also been discovered for a vesicle in two-dimensional unbounded Couette
flow;73 the vesicle migrates towards the center at a velocity linearly scaling with the normal stress
difference.

The deformation of the capsule exhibits a periodic variation approximately in phase with that
of the migration velocity and of the normal stress difference, also at twice the frequency of the
imposed shear. The maximum deformation increases linearly with Ca when Ca < 0.1 and more
slowly as Ca > 0.2. It reaches an asymptotic value when Ca is above a critical threshold Ca ≈ 0.6;
in this regime, the deformation is limited by the time over which constant shear is applied and not
by the membrane deformability. The peak deformation is found to scale with the capsule-wall dis-
tance (hini/a)1/3, as observed for capsules and droplets in near-wall steady shear.41 We also discuss
the phase delay between the capsule deformation and the background shear, another viscoelastic
feature of the capsule dynamics.

The non-monotonic dependence of the capsule migration velocity on its deformability could be
potentially used to sort cells. Oscillating a suspension in a Couette device, cells with the capillary
number exhibiting the largest lateral migration velocity may be extracted and isolated. By tuning
the oscillation frequency, specific cells may therefore be targeted. The role of the oscillations on the
rheological behavior of a suspension is a challenging extension of the present work.
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