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We study the inertial settling of suspensions of flexible and rigid fibers using an
immersed boundary method. The fibers considered are inextensible and slender, with an
aspect ratio of 20. For a single Galileo number of Ga = 160, we examine a range of
dimensionless bending rigidities 0.1 < γ < 20 and fiber concentrations 0.5 < nL3 < 25,
with n being the fiber number density and L the fiber length, that spans dilute and semidilute
regimes. The settling fibers form streamers, regions where the fibers are packed and
settle faster than the average settling velocity of the suspension, for nL3 > 10. In the
low-concentration regions outside the streamers, the fibers either go upward or have low
settling velocities. Flexible fibers exhibit higher packing inside the streamers and smaller
streamers compared to the streamers formed by the rigid fibers. Due to this higher packing,
the flexible fibers settle faster compared to the rigid fibers. The formation of the streamers
counterbalances the hindering of the settling velocity at higher concentrations. At higher
nL3, however, the maximum local concentration of fibers relative to a uniform distribution
diminishes for both flexible and rigid fibers as the mobility of the fibers becomes limited
due to the presence of other fibers in their vicinity. Due to this limited mobility, the
deformation of the fibers and their settling orientation become insensitive to nL3 for
nL3 > 7. In both the dilute and semidilute regimes, flexible fibers are more aligned with
the direction perpendicular to gravity compared to rigid fibers.

DOI: 10.1103/PhysRevFluids.5.024301

I. INTRODUCTION

Sedimentation of fiber suspensions is present in many industrial processes and biological flows.
In paper making, sedimentation of flexible fibers and their flocculation in the pulp suspension
significantly influences the final structure of the paper [1]. Settling of flexible slender bodies is
also important in the treatment of the pulp and paper mill wastewater [2], deposition of airborne
particles with arbitrary flexible shapes in industrial clean rooms [3], and dispersion process of
carbon nanotubes used as reinforcing fibers [4]. In biological flows, near the sea floor, settling is an
important mechanism of transportation of microorganisms and organic material which commonly
have slender flexible body shapes [5].

The settling behavior of flexible fiber suspensions is determined by an intriguing interaction
between viscous, gravitational, elastic, and long-range hydrodynamic forces that depend on the
fiber structure, aspect ratio, flexibility, density, and volume fraction of the suspension. These effects
have been explored for fibers settling in viscous flows in several computational and experimental
studies in the past. The settling speed of a single rigid fiber in a Stokes flow was theoretically derived
by Batchelor [6] and updated by Mackaplow and Shaqfeh [7] using a slender body approximation.
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These studies showed that unlike spheres in a Stokes flow, an isolated fiber can have a motion
perpendicular to the gravity direction while maintaining its initial orientation while settling. The
effects of fiber flexibility on the settling of an isolated fiber in Stokes flows have been studied
theoretically [8,9], numerically [8,10–15], and experimentally [13] (see Ref. [16] for a recent review
and the references contained therein). For weakly flexible fibers, the slender body theory of Xu
and Nadim [9] showed that an isolated fiber settling in a viscous fluid experiences a torque that
makes it reorient itself to the direction perpendicular to the gravity. In numerical simulations of
settling of semiflexible fibers by Llopis et al. [12], the reorienting torque increased with increasing
filament flexibility, implying that more flexible fibers adjust to the direction perpendicular to the
gravity faster. Further studies [11,13] have established three regimes of fiber settling in Stokes flows
depending on fiber flexibility. At low fiber flexibility, the fiber is weakly deformed and settles at
velocities close to the settling velocity of a rigid fiber with an orientation perpendicular to the
gravity direction. At high fiber flexibility, large fiber deformations occur, fiber height and end-to-end
distance saturate to constants, and the settling velocity becomes close to that of a rigid fiber of half
the original length settling vertically in a viscous flow. Recently, Marchetti et al. [13] proposed a
model for the settling velocity of a single fiber at intermediate fiber flexibility. At very high fiber
flexibility, fibers settling aligned with the gravity direction in a viscous fluid can become unstable
to buckling [8], and fibers settling aligned with the direction perpendicular to the gravity can adopt
shapes with more than one minimum, e.g., W shapes, although as pointed out by Marchetti et al.
[13] W shapes are not stable. The instability of flexible fibers to buckling has also been addressed
in shear flows [17,18], cellular flows [19,20], and extensional flows [21].

The hydrodynamic interaction of fibers in suspensions adds another complexity to the settling
behavior of fibers. For suspensions of rigid fibers in a Stokes flow, Herzhaft and Guazzelli [22]
identified two regimes depending on the fiber concentration, measured by n(L/2)3, with n being
the fiber number density and L the fiber length. For dilute regimes with n(L/2)3 < 1, the settling
velocity of the suspension was enhanced due to the formation of the streamers, regions of fiber
clustering, and alignment of the fiber clusters with the gravity direction. In this regime, the average
settling velocity of the suspension reached maximum values higher than the Stokes velocity of an
isolated fiber. These results were similarly elucidated in the numerical simulations of Butler and
Shaqfeh [23], Mackaplow and Shaqfeh [7], Saintillan et al. [24], and Tornberg and Shelley [17] and
laboratory observations of Metzger et al. [25] and Salmela et al. [26]. For denser concentrations
of the fibers, i.e., n(L/2)3 > 1, while the fibers still tended to orient to the direction of gravity, the
effect of fiber streamers seemed to be weakened and the average settling velocity of the suspension
was hindered [22].

The collective settling behavior of flexible fibers has received much less attention in the literature.
For settling of two flexible fibers, Llopis et al. [12] showed numerically that the settling velocity
and the shape of the settling fibers highly depend on the initial configuration and flexibility of the
fibers. In their study, the hydrodynamic interaction of two fibers could cause more bending, rotation,
translation, or collision of the two fibers. For a suspension of weakly flexible fibers in a Stokes
flow, Manikantan et al. [27,28] showed analytically and numerically that fiber flexibility can both
enhance clustering of the settling fibers by contributing to the anisotropy of the flow field and hinder
clustering by reorienting the flexible fibers. While the hydrodynamic interaction of flexible fibers
has been less explored in the case of settling fibers, suspensions of flexible fibers in shear flows
have been examined in a few studies [17,29–31]. For example, for a suspension of flexible fibers
in a shear flow, Tornberg and Shelley [17] showed that the fibers go through a periodic cycle of
buckling and straightening. Numerical simulations of flexible fibers in turbulent channel flows have
been carried out by Kunhappan et al. [32] and Dotto and Marchioli [33]. Both these studies revealed
accumulations of flexible fibers near the walls. The interaction of flexible fibers with turbulence has
been shown to highly depend on fiber length and flexibility [34,35].

Despite the widespread application of settling of flexible fibers in inertial regimes (see, e.g.,
[36]), most sedimentation studies of flexible fibers have been focused on low-Reynolds-number
flows [16]. Our objective in the present study is to explore the settling and clustering of weakly and
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moderately flexible fibers in an inertial regime for a range of dilute and semidilute concentrations.
Similar to the studies by Herzhaft and Guazzelli [22], Mackaplow and Shaqfeh [7], and Salmela
et al. [26], we are interested in identifying a transitioning settling behavior as the fiber number
density increases from a dilute to a more concentrated regime. Our study, however, extends the
results of these previous investigations to flexible fibers and also to an inertial regime. It is known
that in inertial flows the drag force on flexible fibers is reduced due to large fiber deformations and
streamlining of the flow [37,38] and inertial effects can induce an additional reorienting torque on a
settling fiber [39]. However, the interaction of inertial effects and long-range hydrodynamic forces
in a suspension of fibers, which is the subject of this paper, is still not well understood. We will
use an immersed boundary method for the coupling between the fluid and fiber [18,40–42]. Other
conventional methods for simulations of flexible fibers have been bead-rod models [10,11,13,43]
and slender body theory [17,23,24,44,45], although the immersed boundary methods are more
powerful for simulations of a suspension of thin fibers and especially in inertial regimes. We explain
the numerical methods and their validation in Sec. II. We examine the formation of the streamers
in suspensions of rigid and flexible fibers in Sec. III, the suspension settling in Sec. IV, the fiber
deformation and orientation in Sec. V, with the conclusions stated in Sec. VI.

II. NUMERICAL METHODS

A. Fiber dynamics

We consider inextensible slender fibers. The dynamics of a thin flexible fiber can be described by
the Euler-Bernoulli beam equation under the constraint of inextensibility, which in a dimensionless
form is expressed as

∂2X
∂t2

= ∂

∂s

(
T

∂X
∂s

)
− γ

∂4X
∂s4

+ 1

r

g
g

− F + Fc, (1)

∂X
∂s

· ∂X
∂s

= 1, (2)

where X is the fiber position, s the curvilinear coordinate along the fibers, T the dimensionless
tension, γ the dimensionless bending rigidity, F the dimensionless fluid-solid interaction force per
unit length, Fc the dimensionless repulsive force used to model the interactions between adjacent
fibers, and g the gravitational acceleration vector with the magnitude of g. The parameter r quantifies
the density ratio between the fluid and the fibers and is defined as r = ρl/(A f ρ0), where ρl is the
linear density difference between the fluid and the fibers, ρ0 is the density of the base fluid, and A f

is the cross-sectional area of the fibers.
Equations (1) and (2) have been nondimensionalized using the following characteristic scales:

L, the initial length of fibers for the length scale; L/Us for the timescale, where Us = √
rgL

is a characteristic velocity scale; ρlU 2
s for tension; and ρlU 2

s /L for the gravitational, fluid-solid
interaction, and repulsive forces. Therefore, the dimensionless bending rigidity γ = EI/(ρlL3gr)
measures the ratio of a convective timescale to an elastic timescale, with E being the Young’s
modulus and I the second moment of area. This definition implies that flexibility increases with
decreasing γ . At the free ends of the fibers, we impose zero torque, zero force, and zero tension
boundary conditions, i.e.,

∂2X
∂s2

= 0,
∂3X
∂s3

= 0, T = 0. (3)

B. Flow field equations

We consider an incompressible suspending fluid, governed by the Navier-Stokes equations. In
an inertial Cartesian frame of reference, the nondimensional momentum and mass conservation
equations for an incompressible flow are

∂u
∂t

+ ∇ · (u ⊗ u) = −∇p + 1

Ga
∇2u + f , (4)
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∇ · u = 0, (5)

where u = (u, v,w) is the velocity field, p the pressure, f a volume force (used to account for
the suspended fibers), and Ga =

√
rgL3/ν the Galileo number, with ν being the fluid kinematic

viscosity.
We solve Eqs. (1) and (2) numerically using the two-step method proposed by Huang et al.

[46] and with a finite-difference discretization. We solve a Poisson equation for the tension using
a predicted position X∗ = 2X n − X n−1, where X n and X n−1 are the solutions at previous times.
To find the new position of the fibers at time tn+1, the updated value of the tension T is used in
Eq. (1). For the fluid, a second-order finite-difference method on a fixed staggered grid is used. The
equations are advanced in time by a semi-implicit fractional step method, where the second-order
Adams-Bashforth method is used for the convective terms, a Helmholtz equation is built with the
diffusive and temporal terms, and all other terms are treated explicitly [47].

Fluid and solid motions are coupled using an immersed boundary method [48]. In this approach,
there are two sets of grid points: a fixed Eulerian grid x for the fluid and a moving Lagrangian grid
X for the fibers. The volume force f arising from the action of the filaments on the fluid is obtained
by the convolution of the singular forces estimated on the Lagrangian nodes onto the Eulerian
mesh; these are computed using the fluid velocity interpolated at the location of the Lagrangian
points. This interpolation/spreading is usually performed by means of regularized δ functions, in
our case the one proposed by Roma et al. [49]. The fluid and solid equations are linked together by
a hydrodynamic force

F = U ib − U
�t

, (6)

where U ib is the interpolated velocity on the Lagrangian points, U is the velocity of the Lagrangian
points, and �t is the time step. The interpolation and spreading between the two grids are performed
using the smooth δ function introduced by Roma et al. [49],

U ib =
∫

V
uδ(X − x)dV, (7)

f = ρ

∫
L f

Fδ(X − x)ds, (8)

where the factor ρ = ρl (ρ0L2) arises from choosing different scales for Eulerian and Lagrangian
forces.

To consider short-range interactions between fibers, we use the lubrication model proposed by
Lindström and Uesaka [50]. The model is based on the lubrication force between two infinitely long
cylinders in situations where the two cylinders are parallel or nonparallel. For the nonparallel case,
Yamane et al. [51] derived a first-order approximation of the lubrication force

F l
1 = −12

Ga sin α

ḣ
h
, (9)

where h denotes the shortest distance between the cylinders, ḣ is the velocity along the shortest
distance, and α is the angle between the axis of the two cylinders. To use this approximation in the
Euler-Bernoulli equations, the force is converted into a force per unit length, i.e., it is divided by �s,
the Lagrangian grid spacing. Equation (9) cannot be used to model the lubrication between parallel
cylinders since F l

1 → ∞ as α → 0. In this case, a first-order approximation of the force per unit
length was derived by Kromkamp et al. [52],

F l
2 = −4

π Gar2
p

(
A0 + A1

h

a

)(
h

a

)−3/2

ḣ,

A0 = 3π
√

2/8, A1 = 207π
√

2/160, (10)
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TABLE I. Physical parameters defining the simulations performed. A total of 15 simulations were
performed in which the Galileo number Ga, the fiber aspect ratio rp, and the relative density ratio r were
fixed while the bending rigidity γ and the fiber number density nL3 varied.

Ga rp γ r nL3

160 20 20, 0.5, 0.1 0.1 0.5, 3, 7, 10, 15, 25

where a is the radius of the cylinders (a = d/2). Based on Eqs. (9) and (10), the following
approximation of the lubrication force for two finite cylinders can be derived [50]:

F l = min
(
F l

1/�s, F l
2

)
. (11)

In our simulations, when the shortest distance between two Lagrangian point becomes lower
than d/4, we impose the lubrication correction F lc = F l − F l

0, with F l
0 the lubrication force at a

distance of d/4. Finally, the total lubrication force acting on the ith element is obtained as

F lc
i =

nl∑
j �=i

F lc
i j , (12)

where nl is the number of Lagrangian points closer than the activation distance d/4 to the ith point.
To avoid contact and overlap between fibers, a repulsive force is also implemented. This has the

form of a Morse potential [53], with a general form

φ = De[e−2β(r f −re ) − 2e−β(r f −re )], (13)

where De is the interaction strength, β a geometrical scaling factor, r f the distance between two
elements on two different fibers, and re the zero cutoff force distance. The repulsive force between
the elements i and j is the derivative of the potential function φ,

Fc
i j = dφ

dr
d i j, (14)

where d i j is the unit vector in the direction joining the contact points. Finally, the total repulsive
force on the ith element is obtained as

Fc
i =

nc∑
j �=i

Fc
i j, (15)

where nc is the number of Lagrangian points closer than the cutoff distance re to the ith point. As
we consider moderate values of flexibility, we neglect the interaction of fibers with themselves. We
also neglect contact frictional forces for all the cases in this study.

C. Parameters and validation

The physical and numerical parameters of our simulations are summarized in Tables I and II,
respectively. The Galileo number is chosen to be large enough to represent fibers with finite inertia.
The bending rigidities of γ = 20, 0.5, and 0.1 correspond to rigid, weakly flexible, and moderately

TABLE II. Numerical parameters in the simulations performed.

Domain size Grid size Number of Lagrangian
Lx × Ly × Lz Nx × Ny × Nz points per fiber Time step

2π × 2π × 4π 128 × 128 × 256 21 0.0005
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FIG. 1. (a) Averaged normalized settling velocity of a single rigid fiber at Ga = 1 for different initial angles
of the fiber with the gravity direction and comparisons to the analytical solution of Batchelor [6] given in
Eq. (16). (b) Maximum height of a settling flexible fiber at different fiber flexibilities, normalized by half the
fiber length, at Ga = 40, and comparisons to the models of Marchetti et al. [13].

flexible fibers, respectively. To cover both dilute and semidilute regimes (see, e.g., the definitions
of Herzhaft and Guazzelli [22]), we vary the number density nL3 from 0.5, representing the dilute
regime n(L/2)3 < 1 (see [22]), to 25, representing semidilute regimes 1 < n(L/2)3 < L/d = rp

(see [22]). The domain size in the settling direction is chosen to be twice as long as those in
the horizontal directions. Periodic boundary conditions are applied in all three directions. We also
repeated some of our simulations in a domain twice as big as the one detailed in Table II and did not
find any significant change in the average settling velocity or the number of the streamers formed
per width of the box by the settling fibers. Potential effects of the box size on the structure of the
streamers have been discussed by Metzger et al. [25] and Saintillan et al. [24].

The results of our code have been validated previously for the rotations of a rigid fiber in a shear
flow and oscillations of a single hanging flexible fiber under gravity without flow [40]. Here we
validate our numerical approach for the settling of a single rigid and flexible fiber in a Stokes flow.
For rigid fibers, we compare our numerical simulations of the settling of a single fiber with different
initial angles against the solution of Batchelor [6] and Mackaplow and Shaqfeh [7] using a slender
body approximation,

wvis = Ga

16r2
p

[
(ln 2rp + 0.193)

g
g

+ (ln 2rp − 1.807)

(
p · g

g

)
p
]
, (16)

where wvis is the analytical solution for the settling velocity normalized by Us and p is a unit
vector in the fiber direction (indicated by the fiber end-to-end direction here). For this validation,
we simulated the settling of a rigid fiber at Ga = 1 and r = 0.14. Therefore, for our fiber aspect
ratio of rp = 20, wvis should range between 6.1 × 10−4 for a horizontal rigid fiber to 9 × 10−4 for
a vertical rigid fiber. The averaged settling velocity in the statistically steady state versus different
angles of the fiber with the gravity direction θ are depicted in Fig. 1(a). Our numerical results
follow the decreasing trend of the analytical solution of wvis with increasing θ closely, with the
largest difference being less than 5%.

For flexible fibers, we compare our results for the maximum height of a single settling fiber
normalized by L/2, δ, at different fiber flexibilities to the slender body and bead-spring model
of Marchetti et al. [13]. For these simulations we have chosen Ga = 40 (estimated from their
experimental data), rp = 30, and r = 0.1. The comparisons are presented in Fig. 1(b). Our results
are close to both the slender body and the bead-spring model of Marchetti et al. [13]. Similar to their
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FIG. 2. Snapshots of (a) settling velocities of all fibers in a thin slice in the domain, (b) local concentrations
of all fibers in that thin slice, and (c) the corresponding fluid velocity for nL3 = 25 and γ = 0.1. Positive
velocities are in the direction of gravity and negative velocities are in the opposite direction of gravity.

study, our simulations of a single settling flexible fiber reveal that at low fiber flexibility the fiber
deformation can be approximated by the slender body theory for weakly flexible fibers, where the
fiber height increases linearly with the fiber flexibility. At high fiber flexibility the fibers are almost
fully folded and the normalized fiber height approaches 1.

III. STREAMERS

A. Structure of the streamers

Before discussing the settling properties and deformations of the fibers, we examine the
formation of streamers in the settling suspension. Streamers are regions of high packing of fibers
that are correlated to high local settling velocities [25,54]. The formation of streamers also creates
regions of low concentrations of fibers outside the streamers where fibers can move upward in the
opposite direction of gravity. Figure 2 shows the snapshots of a slice of the streamers for flexible
fibers at the highest number density nL3 = 25. A stream of fibers is settling with high velocity in the
middle (positive velocities are in the direction of gravity and negative velocities are in the opposite
direction of gravity). This region correlates to high velocities in the fluid phase as well. The rest
of the fibers either settle at significantly lower velocities or move upward. In the fluid as well, the
regions outside the streamers are associated with low or negative velocities. The three-dimensional
structure of the streamers is presented in Fig. 3 for rigid and flexible fibers at nL3 = 10 and 25. The
lowest fiber density at which the streamers clearly form is nL3 = 10. In this figure the streamers
are identified as the fibers with settling velocities w > 0.3 and the fibers in the backflow region are
distinguished by w < −0.15. We recall here that w is expressed in units of Us = √

rgL, a measure
of the convective settling velocity of a fiber with length L and density difference ratio r. Similar
to the numerical simulations of Gustavsson and Tornberg [54], in our simulations the structures
of the streamers are persistent in time until the fibers on the edges are eroded and dispersed. The
streamers did not break down to smaller-scale streamers as observed in some laboratory experiments
for rigid fibers [25]. The streamers in Fig. 3 appear as oblique columns of fibers with their vertical
connectivity being occasionally lost in some locations. Inside the streamers, clusters of fibers or
flocs [54] are created that form the core of the streamers.
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FIG. 3. Snapshots of the streamers and backflow regions for (a) γ = 20 and nL3 = 10, (b) γ = 20 and
nL3 = 25, (c) γ = 0.1 and nL3 = 10, and (d) γ = 0.1 and nL3 = 25. In the top row the fibers are colored by
their settling velocity and in the bottom row they are colored by their local fiber concentration C. Only the
fibers with w > 0.3 or w < −0.15 are shown.

To relate the formation of the streamers to the flocs, it is of interest to quantify the local packing
of the fibers. For any numerical point j on a fiber we define a local concentration Cj ,

Cj = L2
x

12Np

Np∑
i=1,i �= j

1

d2
i j

, (17)

where Np is the total number of numerical Lagrangian fiber points in a sphere of radius Lx/2
positioned such that the numerical point j is in its center and di j is the distance between the
Lagrangian point j and the Lagrangian points i in the sphere of radius Lx/2. The definition of Cj has
been normalized to give 1 if the Np Lagrangian points were uniformly distributed in the numerical
domain. The local concentrations at numerical points Cj are averaged over the 21 numerical points
on each fiber to give the local concentration C for each fiber. To evaluate the spatial variations of
fiber packing, we also define a three-dimensional version of a radial distribution function (RDF)

g(R) =
(

NR

VR

)/(
N

V

)
, (18)

where NR is the number of pairs of Lagrangian points in a spherical element with radius R and
volume VR, N is the total number of Lagrangian point pairs in a sphere with radius Lx/2 if all the
Lagrangian points were distributed uniformly, and V is the volume of the sphere with radius Lx/2.
Two-dimensional radial distribution functions have commonly been used to quantify the preferential
concentration of point particles in turbulent flows [55,56]. Here we extend the definition of RDFs
in these studies to three dimensions and also filter out the bins that correspond to integer multiples
of L/21 to remove the bias towards the distances between the Lagrangian points on the same fiber
from our RDFs.
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FIG. 4. Radial distribution functions for different fiber concentrations and (a) nL3 = 10 and (b) nL3 = 25.
In each panel red shows flexible fibers with γ = 0.1 and blue rigid fibers with γ = 20. The black dashed lines
show the fits to the RDFs provided by Eq. (19) (note that the fits are sometimes very close to the curves and
hardly distinguishable). The parameters n and R1 are defined in Eq. (19).

The local concentration C of the streamers and upward moving fibers are computed for the
snapshots in Figs. 2 and 3. In all the cases, the streamers occur in regions of relatively high
concentration of fibers and upward moving fibers are associated with low local fiber concentrations.
The streamers are formed around cores of highly clumped fibers, the flocs, and the wake regions of
these cores. The cores are significantly smaller in the case of flexible fibers where fiber deformations
create more packing. To quantify the spatial structure of the streamers, in Fig. 4 we present the RDFs
of the four cases discussed in Fig. 3. To each RDF we fit a function of the form

g(R) ∼ A tanh

(
R

R0

)
exp

(−R

R1

)n

+ 1, (19)

where A is a measure of the peak value, R0 identifies the location of the peak in the RDF (set by the
mesh size), R1 gives a measure of the length scale of the flocs in the core, and n measures the rate
of decay of the core of the streamer. This function provides a good fit to the RDFs. The peaks in the
RDFs are higher for flexible fibers and also for lower nL3. So, as can also be seen qualitatively in
Fig. 3, flexible fibers and lower number density fiber suspensions have higher maximum packings
in the streamers. Higher packings in the case of flexible fibers are due to their deformation and in
the case of a lower number density suspension due to their higher mobility. The decay rates n and
the floc length scales R1 are similar in all the cases except for the rigid fibers at nL3 = 25. This
indicates that the streamers reach a self-similar structure for all the cases except when the mobility
of rigid fibers is significantly limited at nL3 = 25. In this case, the fiber floc length scale is smaller
and the decay rate of the core of the streamers is lower, both indicating a weaker formation of the
streamers due to limited fiber mobility.

B. Velocity-concentration correlations

The correlations between the settling velocity w and the local concentration of fibers C for
individual fibers is shown in Fig. 5. These data are collected from all fibers at four instants in the
statistically stable state in each case. The w-C plane is divided into four quadrants by the averages of
the settling velocity and local fiber concentration. The first quadrant with high fiber settling velocity
and high local concentrations contains the streamers and the third quadrant with negative velocities
and low local fiber concentrations mainly consists of fibers in the backflow regions. The other two
quadrants represent the fibers that are in the boundaries between these two regions. For each case
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FIG. 5. Scatter plots of the fiber settling velocity versus the local fiber concentration C for (a) γ = 20 and
nL3 = 10, (b) γ = 0.1 and nL3 = 10, (c) γ = 20 and nL3 = 25, and (d) γ = 0.1 and nL3 = 25. The red dashed
lines are the averages of w and C over all fibers. The black dashed lines show the minimum and maximum of
the RDF for each case.

we also identify a lower and an upper bound for C, where the lower bound Cmin = 1 corresponds to
a uniform distribution of fibers and the upper bound Cmax is the maximum of the RDF for that case.

While the highest settling velocities in Fig. 5 do not always correspond to the highest local
concentrations, from Fig. 3 it can be conjectured that they always occur near a region of highly
packed fibers and are caused by the drag of these highly concentrated fibers. Flexible fibers,
compared to rigid fibers, achieve higher settling velocities in the first quadrants due to higher
packings in the streamers and also their ability to deform and streamline the flow [37,38]. The
upward moving fibers in the third quadrants, however, show little sensitivity to the fiber flexibility.
By increasing nL3 from 10 to 25, the local concentrations of fibers in the streamers and the upper
bounds on C decrease as the mobility of fibers becomes limited. The maximum settling velocity
of the streamers is however less influenced by nL3 since the strong hydrodynamic and fiber-fiber
interactions compensate for the limited mobility and maximum packing at higher nL3. The upward
moving fibers benefit from these interactions and attain higher velocities at higher nL3. Rigid fibers
at nL3 = 25 exhibit a considerably narrower range of concentrations as they are highly immobile
and their streamers are the most weakly formed.

To build a more direct correlation between the settling velocity and local concentration, we
average the settling velocities of individual fibers in Fig. 5 over bins of C to give bin-averaged
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FIG. 6. Dependence of w on C from the bin-averaged data in Fig. 5: (a) raw data and (b) C and w

normalized.

w versus C, as presented in Fig. 6. The size of the bins in each case is 0.04. This bin size
is the smallest value that gives a smooth bin-averaged w function and further decreasing of
the bin size does not significantly change the shape of the averaged function. The bin-averaged
settling velocities for both flexible and rigid fibers show a monotonically increasing trend with
increasing concentrations. For all the cases, a zero crossing occurs close to C = Cmin = 1 [see
Fig. 6(a)]. By normalizing the settling velocity by its maximum and introducing a normalized local
concentration C∗ = (C − Cmin)/(Cmax − Cmin), all curves collapse and the zero crossings occur at
C∗ = 0 [see Fig. 6(b)]. This leads us to the conclusion that the settling velocity of individual fibers in
semidilute suspensions is highly dependent on the clumping of the fibers. In regions where the local
concentration is lower than the uniform concentration, the fibers move on average in the opposite
direction of gravity. In regions where the fibers are clumped together, the fibers’ velocity depends on
C∗, which measures how much the concentration is higher than the uniform concentration compared
to the statistical maximum range of concentrations in the suspension. As C∗ increases, the clump of
fibers gets heavier and it settles faster. The settling velocities, however, saturate for C∗ > 1, where
the fluid that can flow through the network of fibers experiences low permeability. Using Darcy’s
law for permeability, the settling velocity of fibers in the suspension can be modeled as

w = Gak∗(C)C∗, (20)

where k∗ is a dimensionless permeability as a function of the local concentration C. This model
states that the fibers settle in the direction of gravity for C∗ > 0, where the local density is higher
than the average density of the suspension. The settling velocity of the fibers increases almost
linearly with increasing C∗ as the clumps get heavier and the local density of the suspension
increases. However, as the fibers are more packed, the permeability drops and the resistance against
the fluid going through the fiber increases. Here we choose a permeability model similar to the
functional form introduced by Hewitt et al. [57], which is more suitable for low volume fractions
(note that our volume fractions are less than 0.05),

k∗(C) = A
C

ln

(NCmin

C

)
exp

(
− C

Cmax

)
. (21)

The parameters A and N in this model are constants that measure the scaling of permeability and
the ratio between maximum and uniform fiber packing, respectively. These parameters are found
from fits to the numerical data. Figure 6(b) plots the modeled settling velocity as a function of C∗
from Eqs. (20) and (21) with A = 0.01 and N = 10. The model closely follows the increasing trend
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FIG. 7. (a) Averaged settling velocity of all fibers in the statistically steady state versus different fiber
number density for different values of bending rigidity γ , (b) PDFs of settling velocity for rigid fibers (γ = 20)
at different fiber number density, and (c) PDFs of settling velocity for the most flexible fibers (γ = 0.1) at
different fiber number density.

of w from C∗ = −0.25 to C∗ = 1 and the saturation of w for C∗ > 1 (or C > Cmax). The agreement
between the model and the numerical results confirms our earlier conjecture that the clumped fibers
settle faster due to the higher local density of the suspension, until a local concentration of Cmax,
measured by the maxima of the RDFs, is reached. At this concentration the reduction in permeability
balances the increase in local density. The determined parameter A = 0.01 is of the same order of
magnitude as 1/Ga = 0.0063, which indicates that Ga can be combined with the constant A in
the permeability relation to get a scaling constant closer to unity. The obtained value of N = 10
suggests that the maximum packing of fibers is close to 10 times the uniform fiber concentration in
each case. According to the definition of Herzhaft and Guazzelli [22], our fiber suspensions become
concentrated for nL3 ∼ 160, which is 6–11 times higher than the nL3 of the cases shown in Fig. 6.
These predictions for the values corresponding to a concentrated suspension are close to the fitted
ratio N = 10.

IV. SETTLING AND DRIFT VELOCITY

The mean settling velocity for different number density and bending rigidities is shown in
Fig. 7(a). For each bending rigidity γ , the mean settling velocity decreases with increasing fiber
number density due to the hindering effect by the adjacent fibers. The mean settling velocity
increases with increasing fiber flexibility. At a very low fiber number density of nL3 = 0.5, however,
the mean settling velocity does not depend on fiber flexibilities. In this case, while fiber deformations
and streamlining of the flow in flexible fibers are expected to reduce the fiber drag force [37,38]
(based on studies for fibers with fixed orientations), the higher reorientation of flexible fibers with
the horizontal direction (as will be seen in Sec. V) increases the drag force. At higher nL3, fiber
flexibility enhances fiber packing and contributes to higher settling velocities. In addition, since
the fiber orientations for rigid and flexible fibers become closer at higher nL3, the effect of drag
reduction for more flexible fibers is more pronounced in enhancing the settling velocity for nL3 > 3.
The formation of the streamers for nL3 > 10 plays an important role in settling of the fibers. The
streamers create dense clumps of fibers that settle rapidly and counterbalance the effects of hindering
so that the mean settling velocities reach a plateau for nL3 > 15. As discussed in the preceding
section, the streamers create higher packings in flexible fibers. Therefore, the difference between
the mean settling velocity of flexible and rigid fibers is more pronounced at higher nL3.

The probability density functions (PDFs) of the settling velocities for rigid and flexible fibers are
shown in Figs. 7(b) and 7(c). The deviation from the mean settling velocity increases by increasing
the fiber number density due to the fiber-fiber interactions and fiber packing. The settling velocities
also have slightly broader PDFs for flexible fibers compared to rigid fibers. In a dilute regime nL3 =
0.5, the deformations of individual fibers and their reorientations due to the interactions with the
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FIG. 8. Comparison of the mean settling velocity normalized by the settling velocity of an isolated vertical
fiber in a Stokes flow from the present study (plotted on the right axis) to the experimental measurements of
Herzhaft and Guazzelli [22] in a Stokes flow (plotted on the left axis).

flow create variations in the fiber settling velocity. In the denser regimes, the interactions of fibers
with their neighboring fibers in fiber-packed regions contribute to larger variations of the settling
velocities from the mean.

For the settling of rigid fibers in a Stokes flow, Herzhaft and Guazzelli [22] identified a dilute and
a semidilute regime in their experiments. In the dilute regime, the clumping of the fibers results in
more alignment with the direction of gravity and fibers settling even faster than the Stokes velocity
of an isolated fiber. In the semidilute regime, their experiments revealed hindered settling velocities
as the clumping effects became less significant. In Fig. 8 we compare our settling velocities for the
rigid and most flexible fibers against the results of Herzhaft and Guazzelli [22] for fiber aspects
ratios of rp = 11 and rp = 32. Our fiber aspect ratio of 20 falls between these two values. The
settling velocities of our inertial fibers are two orders of magnitude higher than the Stokes velocity
of an isolated rigid fiber with the same aspect ratio settling vertically.

In the dilute regime, i.e., nL3 < 10, our settling velocities are hindered when increasing nL3 from
0.5 to 10. In the semidilute regime nL3 > 10, where the streamers start to form, the hindering of
fiber velocity slows down for our inertial fibers. This is the opposite of the experimental observations
of Herzhaft and Guazzelli [22], where the fibers’ velocity was significantly hindered in their
semidilute regime (they identified nL3 > 8 as semidilute). This comparison suggests that, contrary
to the viscous settling of fibers, in inertial settling of fibers, the streamers form at semidilute fiber
concentrations and significant hindering of settling velocities occurs in dilute regimes. It is however
possible that the structure of the streamers starts to weaken at denser fiber concentrations (as we
observed for rigid fibers at nL3 = 25) and the settling of fibers is significantly hindered again.
Moreover, as we observed for local fiber clumps, the permeability of the fiber suspension decreases
for very high fiber number densities. This reduced permeability is also likely to lower the mean
settling velocity of the fibers for nL3 > 25. Performing these high fiber concentrations however
requires a significant amount of computational time and is beyond the scope of the present study.

The mean amplitude of the root mean square (rms) of the horizontal velocity components
(perpendicular to the gravity direction) of the fibers is presented in Fig. 9 for different bending
rigidities and number densities. The amplitude of the rms of the horizontal velocity increases
monotonically with nL3, but does not show a significant dependence on fiber flexibility. When
the horizontal velocities are normalized with respect to the average settling velocity, as shown in
Fig. 9(b), we note that the horizontal velocities relative to settling velocities are lower for more
flexible fibers. At lower concentrations, the horizontal velocities are due to the chaotic nature of
settling of fibers in inertial regimes and also fiber-fiber interactions. At higher concentrations, we
attribute the horizontal velocities to the formation of streamers and their meandering structure as
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FIG. 9. Averaged horizontal velocity amplitude (rms) of fibers in the statistically steady state versus
different fiber number densities for different values of bending rigidity γ . The average horizontal velocities
are scaled by (a) the characteristic convective velocity Us and (b) the settling velocity in each case.

they settle. As fibers drift more horizontally relative to their settling velocity at lower flexibility
[8] and the stramer’s meandering effects are stronger for rigid fibers due to their lower packing
[see Fig. 3(b)], the rigid fibers show higher mean horizontal velocities compared to their averaged
settling velocity, while their absolute horizontal velocities are the same as those of the flexible fibers.
For higher nL3, where the streamers are formed, the values of horizontal velocities are comparable
to the average settling velocities. However, the increasing trend of the horizontal velocities with nL3

exhibits a smaller slope for nL3 > 10, indicating that the fibers’ horizontal mobility is limited at
higher fiber number densities.

The PDFs of the horizontal velocity in Fig. 10 show that the variations in the horizontal velocity
increase with increasing number density. The maximum horizontal velocities reached by the fibers
continue to increase with nL3 even at nL3 = 25. This indicates that even though the fiber mobility
is limited at this high fiber number density, the interactions between the fibers can still enhance
their local horizontal motion. The PDF of the horizontal velocity is slightly broader for rigid
fibers compared to flexible fibers at nL3 = 0.5. This indicates that the rigid fibers can reach higher
horizontal velocities as they do not experience the reorienting torque as in the case of flexible fibers.
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FIG. 10. PDFs of the horizontal velocity amplitude (rms) for (a) rigid (γ = 20) and (b) flexible (γ = 0.1)
fibers.
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FIG. 11. (a) Averaged orientation of all fibers in the statistically steady state versus different fiber number
density for different values of bending rigidity γ . Also shown are the PDFs of the angle between the fibers and
the gravity direction for (b) rigid (γ = 20) and (c) flexible (γ = 0.1) fibers.

In denser regimes, where fiber packing becomes more important, the PDFs are no longer sensitive
to the fiber flexibility.

V. ORIENTATION AND BENDING

Figure 11 shows the means and PDFs of the orientation of the fibers with respect to the gravity
direction and Fig. 12 delineates the means and PDFs of the fiber end-to-end distance normalized
by the fiber length L, a measure of fiber deformation for flexible fibers. For the flexible fibers,
the orientation is defined as the angle a line connecting the two ends of the fibers makes with the
gravity direction. Figures 11 and 12 show that for nL3 > 7, as the suspensions transition from dilute
to semidilute regimes and fiber mobility becomes limited, the fiber orientations and deformations
become insensitive to the fiber number density.

At a very low concentration of nL3 = 0.5, both flexible and rigid fibers are on average more
oriented toward the horizontal plane and perpendicular to the gravity direction, which is the stable
state of flexible fibers in a Stokes flow [9,12]. As nL3 increases, the fibers become more inclined to
the gravity direction due to the shear rate generated by the fiber-fiber interactions and the streamers.
The PDFs of the orientations show larger variations in the fiber angle in semidilute compared
to dilute suspensions due to the stronger fiber-fiber interactions. The PDFs of fiber orientations,
however, are not sensitive to the fiber concentration in semidilute regimes as the fiber mobility is
limited. In both dilute and semidilute regimes, flexible fibers are on average more aligned with the
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FIG. 12. (a) Mean end-to-end distance scaled by the fiber length L and (b) PDFs of the end-to-end distance
scaled by L for flexible fibers with γ = 0.1.
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direction perpendicular to the gravity (horizontal direction) compared to the rigid fibers. In dilute
regimes, flexible fibers experience re-orienting torque that aligns them with the horizontal plane
direction, similar to the findings in a Stokes flow [12]. In semidilute regimes, while the fibers are
more aligned with the gravity direction due to the hydrodynamic interactions with other fibers, they
are still slightly more horizontal compared to their rigid fiber counterparts.

In Fig. 12, by increasing the fiber concentration beyond nL3 = 0.5, the deformation of weakly
flexible fibers is enhanced, but the deformation of moderately flexible fibers diminishes. For
γ = 0.5, i.e., weakly flexible fibers with small fiber deformations, the mean end-to-end distance
decreases slightly when the suspension transitions from a dilute to a semidilute regime. In this
case the fiber-fiber interactions induce more fiber bending. For γ = 0.1, i.e., moderately flexible
fibers with larger fiber deformations, however, the fiber-fiber interactions at higher nL3 in the
semidilute range create more isotropic stresses on the fiber and straighten the fibers that are bent
under gravitational forces. For nL3 > 7, the limited fiber mobility and higher fiber packing in the
streamers hamper this effect and the mean end-to-end distance remains constant. For γ = 0.1, the
PDFs of the fiber deformations show little sensitivity to the fiber number density for nL3 > 10.
Due to the limited fiber mobility, the number of fully straight fibers, i.e., d = 1, has significantly
increased from nL3 = 0.5 to nL3 = 10.

VI. CONCLUSION

In the present study we have examined the settling of a suspension of flexible and rigid fibers
in dilute and semidilute regimes using an immersed boundary method for the coupling between
the fluid and solid phase. We have considered an inertial regime with Ga = 160 and a single fiber
aspect ratio of r = 20. This paper extends the previous research on the settling of fiber suspensions
to flexible fibers and also to inertial regimes.

We have found that for nL3 > 10 the formation of the streamers and the packing of the fibers
inside the streamers play an important role in determining the settling behavior of the fiber
suspension. By examining the structure of the streamers and defining a local fiber concentration
parameter, we have shown that the streamers are formed in the regions of highly packed fibers and
their wakes. By increasing the fiber number density, both flexible and rigid fibers exhibit lower
packing in the streamers as their mobility becomes limited. As shown by their radial distribution
function, flexible fibers maintain a self-similar structure at higher nL3. Rigid fibers, on the other
hand, show lower packings in the streamers compared to the flexible fibers and their streamers’
structure is weakened at higher nL3.

We have examined the correlations between the settling velocity of an individual fiber in
the suspension and the local concentration of that fiber. The fastest settling fibers are generally
correlated to high local concentrations. The fastest upward moving fibers are found mostly where
the local concentration is lower than that of a uniform distribution. By bin averaging the settling
velocity of individual fibers in successive local concentration intervals, we obtained a monotonically
increasing bin-averaged velocity as a function of the local concentration. We showed that the
relationship between the bin-averaged velocity and the local concentration collapses for all data
sets if proper normalizations are applied. We thus proposed a model for the normalized settling
velocity of the fibers versus the normalized local concentration. In summary, the model states that
on average fibers move upward if their local concentration is less than the uniform distribution.
For local concentrations higher than the uniform distribution, the fibers settle on average and their
settling velocity increases as the fibers clump more. For local concentrations higher than a maximum
statistical concentration in the suspension, found as the maximum of the RDFs, the settling velocity
saturates as the reduced permeability in the clump creates a significant resistance against the fluid.

The average settling velocity of the suspension increases by increasing the fiber flexibility, except
for the nL3 = 0.5 case. We attribute this to the ability of the flexible fibers to streamline the flow
and also to create higher packings in the streamers. While the average settling speed of both rigid
and flexible fiber suspensions was hindered in the dilute regime (0.5 < nL3 < 10), the hindering
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effects were counterbalanced by the formation of the streamers in the semidilute regime (nL3 > 10).
This finding is contrary to the findings of Herzhaft and Guazzelli [22] in a Stokes flow, where
the streamers structure started to break down in the semidilute regime, leading to the significant
hindering of the suspension velocity. The rms of the horizontal velocities of the fibers increase
monotonically (although with a smaller slope for nL3 > 10) with increasing fiber concentration for
both rigid and flexible fibers. In addition, flexible fibers have lower ratios of horizontal to settling
velocities compared to flexible fibers, which we attribute to the reorienting torque and higher fiber
packings in the case of flexible fibers.

We measured the limited mobility of the fibers at higher nL3 by examining the fiber rotation
and deformation. The means and PDFs of these parameters exhibit a small dependence on the
fiber number density for nL3 > 7 and nL3 > 10, respectively. These indicate that the fiber mobility
becomes limited when the suspensions transition from a dilute to a semidilute regime. The fibers are
on average more inclined toward the horizontal direction in dilute regimes. In semidilute regimes,
the fibers orient themselves slightly more toward the vertical direction as the fiber-fiber interaction
are more important and streamers are formed. In both regimes, flexible fibers are inclined more to the
horizontal direction compared to the rigid fibers. Through the transition from dilute to semidilute,
the weakly flexible fibers were deformed more. Moderately flexible fibers, however, were less
deformed in semidilute regimes compared to dilute regimes.

For future work, adding frictional forces to the fibers, a more comprehensive investigation of
the transition from viscous to inertial regimes, and studying strongly flexible fibers are research
directions that can be explored. In addition, it is of great interest to understand how the structure of
the streamers evolves in concentrated regimes.
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