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The secondary instability of nonlinear streaks and transition to turbulence in viscoelastic
Couette flow are studied using direct numerical simulations. Viscoelasticity is modeled us-
ing the FENE-P constitutive equations. Both the polymer concentration β and Weissenberg
number Wi are varied in order to assess their effects on transition at moderate Reynolds
number. The base streaks are obtained from nonlinear simulations of the Couette flow
response to a streamwise vortex. We select the initial amplitude of the vortex which yields
a desired maximum amplitude of the nonlinear streaks during their temporal evolution. The
development of streaks in both Newtonian and non-Newtonian flows is primarily due to the
action of streamwise vorticity onto the mean shear. In the viscoelastic case, it is also affected
by the polymer torque, which opposes the vorticity and becomes more pronounced at large
Weissenberg number. Streaks with the same maximum streamwise velocity perturbation
can therefore have different total kinetic energy at higher Weissenberg number. At every
streak amplitude of interest, harmonic forcing is introduced along the transverse direction
to trigger the secondary instability and breakdown to turbulence. We demonstrate that the
critical amplitude of the forcing, Ad , increases at large Weissenberg number. The degree of
stabilization due to elasticity depends on the initial streak intensity, As,in. For weak streaks
the critical amplitude for secondary instability is more sensitive to Wi than for strong ones.
This is explained by the existence of two different mechanisms that can trigger transition
to turbulence. The perturbation to weak streaks is initially stabilized by the polymer torque
which acts to oppose the amplification of wall-normal vorticity and, as a result, delays
breakdown to turbulence. The secondary instability of strong streaks, on the other hand, is
more immune to this stabilizing influence of the polymer.

DOI: 10.1103/PhysRevFluids.2.043304

I. INTRODUCTION

In transitional wall-bounded shear flows, streaks are often a precursor to breakdown to turbulence
[1]. These streaks are narrow regions of excess or defect streamwise velocity elongated in the
streamwise direction. They are generated by streamwise vortices via the so-called lift-up effect, or
vorticity tilting [2–4]. Tilting in this context refers to the generation of wall-normal vorticity due to
the perturbation strain rate which tilts the vorticity of the mean flow, i.e., the mean spanwise vorticity,
into the wall-normal direction. The large energy amplifications associated with streak growth, of the
order of the square of the Reynolds number, are explained by the strongly non-normal nature of the
linearized Navier-Stokes operator for shear flows.

Among the different studies of streak instability in Newtonian fluids, Cossu et al. [5] considered
Couette flow and sought amplitude threshold for the streak breakdown. They concluded that the
critical amplitude of the perturbations (sinuous in their case) increases when the streak amplitude
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decreases. For strong streaks, breakdown is triggered by a secondary modal instability [6–8] while
for small amplitude streaks transition is triggered by a two-step process in which the vortex tilting
mechanism plays a role starting from the transient streamwise vortices induced by the sinuous
forcing [9]. The streaks are initially distorted by the sinuous perturbation, but after a short period
they reach a maximum in their energy and return to a nearly stable state. However, they ultimately
reach a higher amplitude and break down to turbulence. This process was previously described by
Waleffe [10] for a generic shear flow.

In contrast to the wealth of studies focusing on Newtonian streaks and their secondary instability,
there are relatively fewer efforts dedicated to the influence of fluid elasticity on (i) the growth
of the streaks and (ii) their secondary instability. Whether elasticity is stabilizing or destabilizing
to shear flows depends on the particular flow configuration and parameters. For example, it can
promote or suppress absolute instability in spatially developing mixing layers [11] and jets [12]. The
linear analysis by Jovanović and Kumar [13] showed that polymer stretching in elasticity-dominated
flows can lead to streaks that are phenomenologically similar to those generated by lift-up in
inertial Newtonian flows [13,14]. Whatever their origin, when streaks are present they can introduce
streamline curvature that can be host for new elastic instabilities [15]. In direct numerical simulations
(DNSs) of bypass transition in polymeric channel flow, Agarwal, Brandt, and Zaki [16] found that
the polymers weaken the primary streaks and prolong the transition process.

Page and Zaki [17] analyzed the linear evolution of streaks in polymeric Couette flow. They
identified three classes of streaks: (i) the quasi-Newtonian class, which includes streaks whose
evolution collapses onto the Newtonian behavior when relaxation is either very fast or slow;
(ii) the elastic class, in which the streaks can reach very large amplitude even in the absence of
inertia [18,19]; and (iii) a class of streaks that undergo cycles of reenergization within an envelope of
decay, and which take place when the solvent diffusion and relaxation time scales are commensurate.

The secondary instability of streaks in viscoelastic flow has not been examined, and the present
work aims to address this gap. We analyze the canonical configuration of viscoelastic Couette flow
distorted by a primary streak and examine its secondary instability. We first analyze the nonlinear
evolution of the primary streaks generated by introducing a streamwise vortex. Afterwards, we assess
the secondary instability of the streaks by focusing on the transition to turbulence triggered by a
sinuous disturbance.

The paper is organized as follows. In Sec. II we introduce the governing equations, the numerical
method, and the simulation setup. The amplification of the primary streaks is studied in Sec. III,
followed by the transition to turbulence due to the streak instability in Sec. IV. Finally, conclusions
are drawn in Sec. V.

II. GOVERNING EQUATIONS AND SIMULATIONS SETUP

A. Governing equations

The incompressible dimensionless Navier-Stokes equations for viscoelastic flow take the form

∂u

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+ β

Re

∂2ui

∂x2
j

+ 1 − β

Re

∂τij

xj

, (1)

∂ui

∂xi

= 0, (2)

where Re is the Reynolds number, β is the ratio of the solvent to the total viscosity and (1 − β)
is effectively a measure of the polymer concentration, and τij is the polymer stress. This stress
accounts for the interaction between the solvent and the polymer and depends on the conformation
of the polymer chains, cij . The relationship between the polymer stress and the conformation for a
FENE-P fluid is

τij = 1

Wi

(
cij

ψ
− δij

a

)
, (3)
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where the Weissenberg number Wi is the ratio of the polymer relaxation and the flow time scales,
ψ ≡ 1 − ckk

L2 is the Peterlin function, a ≡ 1 − 3
L2 , and L is the maximal extensibility of the polymers

[20]. Finally, the conformation tensor satisfies the evolution equation,

∂cij

∂t
+ uk

∂cij

∂xk

= ckj

∂ui

∂xk

+ cik

∂uj

∂xk

− τij , (4)

which includes advection by the velocity field, stretching due to the strain exerted on the polymer
chains, and relaxation due to the elastic nature of the polymer.

Zhou and Akhavan [21] compared results for the preaveraged models with those for the FENE
chain. They found the FENE-P closure to be in qualitative agreement. Furthermore, Stone et al.
[22] found the FENE-P model to qualitatively capture the features of passive-bead spring chains in
a complex turbulent flow field modeled using Brownian dynamics. For these reasons the model
has been used extensively to simulate viscoelastic shear flows [23–25]. However, appropriate
computational methods must be adopted to ensure stable and accurate simulations.

B. Numerical method

The hyperbolic nature of the conformation tensor evolution equation creates severe gradients
in the conformation field, which can lead to numerical instabilities. Several numerical methods
have been proposed to ensure stability and accuracy. For example, upwind schemes along with
artificial diffusivity increase the stability of the numerical solution of hyperbolic equations [26]. In
simulations of polymeric fluids with a maximum extensibility constraint, numerical errors can lead
to predictions of polymer extensions that exceed their bounds. An implicit method to evaluate the
conformation tensor equation, however, can resolve this problem [27].

The numerical method used in this work for the solution of the governing equations follows the
approach by Min et al. [28,29]. We adopt a control-volume formulation for the spatial discretization,
which has been widely tested for accurate simulations of transitional and turbulent flows [8,30].
The equations are advanced in time using a fractional-step algorithm where an implicit scheme (i.e.,
Crank-Nicolson) is adopted for the diffusion and the polymer stress terms, while the advection term
is treated explicitly. A third-order upstream central scheme is used to compute the spatial derivatives
of the conformation tensor in the longitudinal direction. A local artificial diffusivity is added at
locations where the conformation tensor loses its positive definiteness to ensure numerical stability

[28]. The additional term is κ�2
k

∂c2
ij

∂2xk
, where �k is the local grid spacing in the k direction [31]. The

value of the coefficient κ should be sufficiently small. For the simulations presented here the choice
κ = 10−3 guarantees that the artificial diffusivity is inactive during the disturbance linear evolution
and is restricted to less than 10% of the grid nodes during transition [31].

C. Simulation setup

We study dimensionless Couette flow (see Fig. 1). The height of the domain is Ly = 2 and
the velocities at the walls are U (±1) = ±Uw = ±1. The base velocity profile is U(y,0,0) with
corresponding conformation tensor Cxx = 1

ψ(Ckk) (1 + 2Wi2

a2ψ(Ckk)2 ), Cxy = Cyx = Wi
aψ2(Ckk) , and Cyy =

Czz = 1
ψ(Ckk) . Note that the other components are zero (see the Appendix for further details). The

reference scales are the half-height of the domain Lref = Ly

2 , the total viscosity of the fluid μref =
μS + μP , and the velocity at the upper wall, Uref = Uw. Based on these scales, the Reynolds number
is Re ≡ UwLy

2ν
= 400. Only one case with a different Re is analyzed. We vary both the Weissenberg

number Wi and the polymer concentration β while the maximal extensibility of the polymers, L, is
held constant: L = 100. Another important parameter is the extensibility, or the maximum value of
the Trouton ratio [32]. In the present work, its influence is represented by changes in β since L is
constant.
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FIG. 1. Schematic of the computational setup.

Initial and boundary conditions

We report two classes of simulations: the first focuses on the evolution of the primary streaks
(Sec. III) and the second examines the transition to turbulence (Sec. IV).

For the study of streak amplification, the initial condition is a Couette profile plus a streamwise
vortex selected from the eigenspectrum of the Orr-Sommerfeld (OS) equations (see Ref. [17]) so
that the initial condition reads

ui ≡ [y,0,0] + K[0, v0(y,z),w0(y,z)︸ ︷︷ ︸
O−S mode

], (5)

where v0(y,z) and w0(y,z) are the vertical and spanwise velocities,

v0(y,z) = cos(kzz)Re[v̂(y)] − sin(kzz)Im[v̂(y)], (6)

w0(y,z) = cos(kzz)Re[ŵ(y)] − sin(kzz)Im[ŵ(y)], (7)

and K controls the vortex amplitude. Note that the quantities â(y) represent the linear OS eigenmodes
computed using the linear solver described by Zhang et al. [33]. The initial polymer conformation
tensor is also defined by the sum of the base state and the OS eigensolution:

cxx,0(y,z) = Cxx + K cos(kzz)Re[ĉxx(y)] − K sin(kzz)Im[ĉxx(y)], (8)

cyy,0(y,z) = Cyy + K cos(kzz)Re[ĉyy(y)] − K sin(kzz)Im[ĉyy(y)], (9)

cxy,0(y,z) = Cxy + K cos(kzz)Re[ĉxy(y)] − K sin(kzz)Im[ĉxy(y)], (10)

czz,0(y,z) = Czz, and cxz(y,z) = cyz(y,z) = 0. (11)

For the second part of the study, the focus is placed on the secondary instability of the streak and
breakdown to turbulence. Following the work by Cossu et al. [5], a sinuous secondary disturbance
is introduced in the spanwise velocity when the primary streaks reach the highest amplitude. The
secondary disturbance is

wd (x,y) = (1 − y2) sin(αdx), (12)

where αd = 0.7. This value corresponds to the most unstable streamwise wavelength of the streak
secondary instability in both Newtonian and viscoelastic Couette flow. The initial velocity of this
second set of simulations is therefore

(ui,vi,wi) = (us,vs,ws) + Ad [0,0,wd (x,y)], (13)
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FIG. 2. (a) End view showing streamlines of the initial streamwise vortex. (b) Top view of the linear streak
response, shown by contours of the streamwise velocity perturbation −0.0071 � u′ � 0.0071.

where Ad is the amplitude of the secondary instability, and us , vs , and ws are the flow velocities
from the first set of computations at the peak streak amplitude (see Sec. IV for more details).

Periodic boundary conditions are enforced in the streamwise and spanwise directions, while
no-slip conditions are prescribed on the upper and lower walls.

D. Computational domain

Two different domain sizes were adopted for the nonlinear evolution of the primary streaks and
the transition simulations, respectively. The grid was also adapted to the flow parameters since highly
viscoelastic flows, i.e., high Wi or low β, can create sharp gradients in the polymer stress. As a
result, these configurations required finer grids.

The numerical domain for simulating the primary streaks was Lx = π , Ly = 2, and Lz = 2.5π .
The width Lz was chosen to accommodate the spanwise wave number of the initial streamwise
vortices, kz = 1.6. In this manner we have two periods of the mode along the z direction. The
number of grid points in each direction depends on the flow under consideration. For Newtonian or
low-viscoelastic cases we use Nx = 8, Ny = 64, and Nz = 64. However, as the Weissenberg number
increases or β decreases we increase the number of grid points in the y and z directions up to four
times, i.e., Ny = 256 and Nz = 256, while it is not necessary to increase the number of points along
the x direction when dealing with streamwise independent disturbances.

As the sinuous secondary disturbance is introduced we set Lx to contain two streamwise
wavelengths of the sinuous mode, i.e., Lx = 40

7 π . The domain size and the number of grid points
were unchanged in the other two directions. Along the x direction we choose Nx = 96 for Newtonian
and low-viscoelastic configurations. This value was increased up to fourfold in order to capture the
dynamics at higher Wi.

III. EVOLUTION OF THE PRIMARY STREAKS

In this section we discuss the streak amplification in response to a streamwise vortex. As
noted in Sec. II C, the vortex is an eigenmode of the viscoelastic Orr-Sommerfeld equation and
is superimposed onto the Couette profile. The spanwise wave number of this mode is kz = 1.6
and it corresponds to the optimal disturbance in a Newtonian Couette flow [3]. Streamlines of the
initial vortex are shown in a cross-stream plane in Fig. 2(a). Due to the lift-up effect, the pair of
counter-rotating streamwise vortices creates low- and high-speed streaks in the flow.

A. Linear evolution

For low amplitudes of the initial disturbance, its evolution will follow the linear behavior studied
in Ref. [17]. Those authors defined three different regimes for the streamwise vortex mode in an
Oldroyd-B fluid: quasi-Newtonian, elastic, and reenergization regimes. The range of parameters
analyzed in the present work places it in the quasi-Newtonian regime.
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FIG. 3. Nonlinear evolution of the primary streak (a) As and (b) rms streamwise velocity urms for
different Wi.

In Fig. 2(b) the linear evolution of the streak amplitude, i.e., the response to the streamwise vortex,
is illustrated in the z-t plane for a Newtonian fluid. The streaks initially grow and eventually decay
after reaching a maximum amplitude at time t ≈ 55. The amplitude of the streak response is defined
as As = [ 1

2
(umax−umin)

Uref
] × 100, where umax and umin are the instantaneous maximum and minimum

of the streamwise velocity perturbation over the entire domain, u(x,y,z) = utot(x,y,z) − y. The
maximum in the streak amplitude also corresponds to a maximum in their total kinetic energy. A
similar behavior is observed in viscoelastic flows. We have validated that our numerical simulations
are in agreement with the linear response reported in Ref. [17].

B. Nonlinear evolution

Upon further increase of the initial amplitude of the streamwise vortex, K , the growth of the
streaks is no longer linear. At nonlinear amplitudes, the streaks distort the base-flow profile, which
in turn alters their growth rate. In addition, the generation of higher harmonics alters the shape of
the disturbance field.

First, we define the root mean square (rms) of a generic observable φrms =
√

φ2 , where
φ2 = ∫ Lz

2

− Lz
2

∫ Ly

2

− Ly

2

∫ Lx
2

− Lx
2

φ2(x,y,z) dx dy dz. The evolution of the amplitude As and the rms stream-

wise velocity urms =
√

u2 is reported in Fig. 3 for different Weissenberg numbers and constant
concentration, β = 0.6. In the figure, the Newtonian flow is indicated by the lightest color and
increasing Weissenberg numbers are shown by darker lines; the darkest line corresponds to Wi = 15.
As demonstrated by Fig. 3(a), the initial vortex amplitude K has been adjusted in order to have an
equal maximum streak amplitude, As = 48.13, for all the viscoelastic conditions to be considered
later. However, the maximum of urms is not equal among all configurations; it decreases with
increasing elasticity. The difference can be attributed to the change in the streak shape with elasticity.

The mechanism causing the primary streak growth is vorticity tilting [3,4,34], which depends on
the strain rate ∂v

∂z
of the initial vortex. A measure of the strength of this process can be obtained from

the streamwise vorticity. In addition, Page and Zaki [35] demonstrated that, in viscoelastic flows, a
torque is exerted by the polymers onto the fluid χ = ∇∇∇ ∧ (∇∇∇ · τττ ) which has a resistive influence.

In Fig. 4 we illustrate the instantaneous streamwise vorticity (gray scale) and polymer torque
(red and blue scales) at t = 50 for Wi = 10 and β = 0.6. The positive streamwise vorticity (white)
is opposed by negative values of the torque (blue), while the negative vorticity (red) is opposed by a
positive torque (blue), in agreement with previous results [35]. Figure 5 shows the time evolution of
the rms streamwise vorticity ωx,rms and polymer torque χx,rms for different values of Wi at β = 0.6.
The streamwise vorticity decreases in time for all cases, at a faster rate when increasing the flow
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FIG. 4. Streamwise vorticity (gray scale) and polymer torque (red and blue lines) for Wi = 10, β = 0.6 at
t = 50.

elasticity. While the streamwise torque also decays in time, its strength is appreciably increased with
elasticity. This means that the polymers are weakening the streamwise vortices similarly to what was
observed in the near-wall region in exact coherent structures of viscoelastic shear flows [36,37].

Figures 4 and 5 together can explain the reduction of the energy of the streak with increasing
polymer relaxation time, Wi. Streak amplification is resisted by the streamwise polymer torque and
this effect becomes more pronounced at higher Wi.

IV. TRANSITION TO TURBULENCE

In this section we analyze the effect of viscoelasticity on the secondary instability of streaks,
which precedes breakdown to turbulence.

A. Secondary sinuous disturbance

As noted in Sec. II C, a secondary sinuous disturbance is introduced in the spanwise momentum
equation as a Dirac delta function in time when the streak reaches its maximum amplitude [see
Eq. (12)], similar to Ref. [5]. The wavelength αd of this sinuous disturbance has to be carefully
chosen. To this end, we have first conducted numerical simulations in longer domains (up to
Lx = 20π ) with a random disturbance of amplitude Ad = 4 to find the most unstable streamwise

FIG. 5. Temporal evolution of the (a) rms streamwise vorticity ωx,rms and (b) rms streamwise polymer
torque χx,rms for different values of Wi for β = 0.6. Line colors retain the same designation as in Fig. 3.
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FIG. 6. The temporal evolution of the streamwise velocity disturbance, urms, for different Wi. Dashed
curves show the evolution of the primary streaks created by the streamwise independent initial condition. Solid
lines mark the disturbance evolution after the introduction of a sinuous forcing with amplitude Ad = 12. The
amplitude of the streaks is As,in = 22.58 when the sinuous forcing is introduced. Note that for Wi = 15 the
streaks do not break down to turbulence.

wavelength. The wave number of the emerging instability was found to be approximately αx = 0.7.
Additional tests were performed to check the dependence of this value on (i) the length of the domain
Lx , (ii) the amplitude of the disturbance, Ad , and (iii) the viscoelasticity parameters (Wi and β),
without significant variations. The wavelength of the sinuous forcing was therefore set to αd = 0.7.

The temporal evolution of the streamwise velocity disturbance, urms, for different Wi is depicted
in Fig. 6 for the two types of simulations performed here. The evolution of the primary streaks created
by the streamwise independent initial condition is indicated by dashed lines, and the disturbance
evolution after the introduction of the sinuous forcing is marked by a continuous line. The sinuous
forcing reinforces the disturbance, which continues to grow instead of decaying as was the case in
Sec. III B. Transition to turbulence depends on the amplitude of the forcing, Ad : for lower amplitudes
the streaks eventually decay after reaching a maximum energy.

B. Neutral curves

The transition scenario just discussed is bound to depend on As,in, the amplitude of the primary
streaks at the time when the sinuous forcing is introduced, and Ad , the amplitude of this sinuous
disturbance. Here we evaluate the critical amplitude Ad,c for which the streaks break down and
initiate the turbulent regime. The results are illustrated in Figs. 7(a) and 7(c) for different values
of Weissenberg number and concentration. In Fig. 7(a) the polymer concentration is set to β = 0.6
and the curves are plotted for different Wi. The data reveal that the streaks breakdown is favored
for Wi = 5. This is more clearly seen in Fig. 7(b), where we rescale the neutral curves displayed
in Fig. 7(a) with the Newtonian values. Indeed, the disturbance amplitude necessary to trigger
the transition for Wi = 5 is reduced by 20% relative to the Newtonian case. This destabilization
coincides with the regime where the exact coherent state is favored in viscoelastic Couette flow
(Wi < 7) and where larger drag has been reported [36]. As Wi increases, however, the polymers
have a stabilizing effect.

Interestingly at Wi = 15 we find a different behavior for low- and high-amplitude streaks.
The presence of the polymer additives has always a stabilizing effect and transition occurs for
higher disturbance amplitudes. However, the stabilization is significant for lower amplitude streaks,
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FIG. 7. (a) Neutral curves in the (As,in,Ad ) plane for different values of Wi. The polymer concentration
is β = 0.6. Inset of (a):Ad,c vs Wi for As,in = 22.58. (b) Neutral curves normalized by the Newtonian case.
(c) Neutral curves in the (As,in,Ad ) plane for different values of β. The Weissenberg number is Wi = 5. (d)
Neutral curves normalized by the Newtonian case.

As,in < 0.35, with up to 100% increase of the threshold amplitude, and vanishes at higher values of
As,in. We also highlight the nonmonotonic dependence of the transition thresholds on the Weissenberg
number; see the inset in Fig. 7(a), where the critical disturbance amplitude Ad,c is displayed versus
Wi for As,in = 22.58.

In Fig. 7(c) we trace the neutral curves with varying β while keeping the Weissenberg number
constant (Wi = 5). The influence of viscoelasticity is always destabilizing. In Fig. 7(d) the neutral
curves from Fig. 7(c) are normalized using the Newtonian values. For β = 0.5 the sinuous forcing
strength is reduced up to 20–30% depending on the initial streak amplitude. In general we observe
that the degree of destabilization is stronger for large As,in.

C. Streak breakdown mechanisms

The significantly different behavior observed at small and large As,in is evident when comparing
Figs. 6 and 8. These two figures report the temporal evolution of urms for two different streak
amplitudes: As,in = 22.58 and As,in = 48.13. For the latter case, the disturbance starts growing
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FIG. 8. The temporal evolution of the streamwise velocity disturbance, urms, for different Wi. Dashed
curves show the evolution of the primary streaks created by the streamwise independent initial condition. Solid
lines mark the disturbance evolution after the introduction of a sinuous forcing with amplitude Ad = 2.4. The
amplitude of the streaks is As,in = 48.13 when the sinuous forcing is introduced.

after the introduction of the sinuous forcing and the breakdown to turbulence follows directly if the
disturbance is of sufficient amplitude. In contrast, for lower amplitude streaks, As,in = 22.58 (Fig. 6),
a distinct two-stage process is observed, similar to that described in previous studies [5,6,10]. In
Fig. 9 we report the rms of the streamwise and wall-normal components of the vorticity [Fig. 9(a)] and
the rms of the three components of velocity [Fig. 9(b)]. The perturbation due to the instantaneously
imposed sinuous forcing [associated with the rms spanwise velocity; see Fig. 9(b)] initially decays,
yet causes the growth of streamwise vortices (associated with streamwise vorticity and wall-normal
velocity) that in turn induce the growth and breakdown of streaks. In other words, the streamwise
periodic vorticity induced by the tilting of the initial wall-normal vorticity disturbance generates

FIG. 9. The temporal evolution of (a) the streamwise and wall-normal rms vorticity and (b) the streamwise,
wall-normal, and spanwise rms velocity for Wi = 0 and As,in = 22.58. Dashed curves show the evolution of
the primary streaks created by the streamwise independent initial condition. Solid lines mark the disturbance
evolution after the introduction of a sinuous forcing with amplitude Ad = 12. The amplitude of the streaks is
As,in = 22.58 when the sinuous forcing is introduced.
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FIG. 10. Instantaneous contours of the streamwise velocity disturbance u in the x-z plane for the Newtonian
case. The initial streak amplitude is As,in = 48.13 while the sinuous disturbance amplitude is Ad = 2.4. The
contours are evaluated at (a) t ′ = 0, (b) t ′ = 20, (c) t ′ = 60, and (d) t ′ = 105.

streaks of finite length, alternating in a periodic fashion in the streamwise direction. The streaks
induced by these vortices also have a finite length and their breakdown to turbulence is associated
with the interaction between a downstream low-speed region and an upstream high-speed region
that generates strongly inflectional wall-normal profiles [8,30,38,39].

These two different mechanisms are visualized in Figs. 10 and 11, where we display contours
of u in the wall-parallel x-z plane for the Newtonian case at different times t ′ = t − td , where

FIG. 11. Instantaneous contours of the streamwise velocity disturbance u in the x-z plane for the Newtonian
case. The initial streak amplitude is equal to As,in = 22.58 while the sinuous disturbance amplitude is Ad = 12.
The contours are evaluated at (a) t ′ = 0, (b) t ′ = 20, (c) t ′ = 60, and (d) t ′ = 120.
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td is the time at which the instantaneous sinuous forcing is applied. For As,in = 48.13 the
primary streaks monotonously deform under the effect of the forcing while growing in amplitude
[Figs. 10(b) and 10(c)] and eventually break down to turbulence [Fig. 10(d)]. For small initial
amplitudes, the streaks first bend [Fig. 11(b)] but eventually return to be almost straight [Fig. 11(c)].
Finally, the streaks are deformed again [Fig. 11(d)] and eventually break down to turbulence
under the effect of the growth of the new streamwise vortices created by the forcing. It is
important to highlight that the two mechanisms do not qualitatively vary when viscoelasticity is
introduced.

D. Effect of the viscoelasticity

The previous section illustrated the two mechanisms that regulate the transition to turbulence for
low- and high-amplitude streaks. Here we aim to explain the different degrees of stabilization that
are observed at large Wi for low- (Sec. IV D 1) and high-amplitude (Sec. IV D 2) streaks.

1. Small initial primary streak amplitudes

To understand the effect of polymers, we consider the perturbation energy budget. The transport
equation for the Reynolds stress in a viscoelastic flow is given by

∂u′
iu

′
j

∂t
= −Uk

∂u′
iu

′
j

∂xk︸ ︷︷ ︸
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,

(14)

where Aij is advection by the mean flow, Qij is the transport by the velocity fluctuations, Rij is
the pressure redistribution, Pij is the production against the mean shear, Dij is viscous diffusion, εij

is dissipation, and Wij is the polymer work. The evolution equation for the perturbation energy is
obtained by setting i = j in Eq. (14). First, by examining the terms in the energy budget we note
that the influence of viscoelasticity is most pronounced in the energy production Pij , the viscous
dissipation εij , and the polymer work Wij . These are therefore the focus of the following analysis.

We first examine the u′u′ energy budget since the streaks are associated with the streamwise
velocity. In particular in Fig. 12 the energy production Pxx [Fig. 12(a)], viscous dissipation εxx

[Fig. 12(b)], polymer work Wxx [Fig. 12(c)], and their sum [Fig. 12(d)] are plotted for different
Wi. The maximum of the production is enhanced by the polymers, while the dissipation is damped.
Most interestingly, the polymer work has a damping effect (i.e., the polymers extract energy from
the flow) whose magnitude decreases when increasing Weissenberg number. The peak of the sum of
the three components is, however, increasing with Wi, which indicates that the polymeric solution
enhances the streak energy growth. Viscoelasticity thus has a destabilizing influence. While this
trend is in agreement with the observations at low Wi, it cannot explain the behavior at large Wi.
A similar approach explains the destabilization due to an increase in the polymer concentration
observed [Figs. 7(c) and 7(d)] as a result of enhanced production.

The second, and important, growth of the streaks observed when the sinuous forcing is introduced
at small As.in is due to the tilting of the wall-normal vorticity as explained in Sec. IV C. We therefore
examine the effect of viscoelasticity on the evolution of the wall-normal vorticity in order to explain
the stabilization shown for large Wi in Fig. 7. The contours of the wall-normal vorticity (gray scale)
at t ′ = 85 for Wi = 10, β = 0.6, As,in = 22.58, and Ad = 12 in the x-z and z-y planes are illustrated
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FIG. 12. Temporal evolution of the (a) energy production Pxx , (b) dissipation εxx , (c) polymer work Wxx ,
and (d) their sum for As,in = 22.58 and Ad = 12.

in Figs. 13(a) and 13(b), respectively. Also plotted is the wall-normal polymer torque (see Sec. III B)
in red and blue.

Cossu et al. [5] showed how the second maximum in urms, which was observed after introducing
the sinuous forcing (see Fig. 6), is strictly related to a growth of the wall-normal vorticity. Figure 13

FIG. 13. Wall-normal vorticity (gray scale) and polymer torque (red and blue lines) for Wi = 10, β = 0.6,
As,in = 22.58, and Ad = 12 at t ′ = 85 in the (a) x-z and (b) z-y planes.
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FIG. 14. Temporal evolution of the wall-normal component of the (a) rms vorticity and (b) rms polymer
torque for As = 22.58, Ad = 12, and β = 0.6 at different Wi.

shows that the polymer torque has a resistive effect on the streaks by opposing the wall-normal
vorticity, consistent with the results by Page and Zaki [35]. To quantify this effect, we report
the rms of the wall-normal vorticity ωy,rms and wall-normal polymer torque χy,rms in Fig. 14 at
several Weissenberg numbers. The figure shows that the wall-normal vorticity initially increases
with Weissenberg number, while it is damped as the viscoelastic effects start to be significant. On
the other hand, the wall-normal polymer torque varies significantly with Wi. In particular, the peak
value for Wi = 15 is more than ten times larger than that for Wi = 5. This substantial increase in
the polymer torque is the main cause for the stabilization observed for weak initial streaks when
increasing the Weissenberg number to Wi = 15.

2. Large initial primary streak amplitudes

For strong initial vortex amplitudes, the primary streaks are sufficiently energetic and unstable
that they break down to turbulence directly when subjected to the weak sinuous forcing. This differs
from the previous observations for low As,in where the transition to turbulence is due to a two-stage
mechanism and the energy of the primary streaks is not crucial to explain the breakdown. We
report in Fig. 15 the most relevant terms in the kinetic energy balance for a large-amplitude streak,
As,in = 48.13 and Ad = 2.4, similar to Fig. 12 for a streak of lower amplitude. The initial energy
production [Fig. 15(a)] is damped by the polymers. This is consistent with the observation in Sec. III B
that the peak in the average streak energy decreases when increasing Wi. The initial destabilization
noticed in Fig. 7(a) at low Wi is due to the lower dissipation in viscoelastic flows relative to the
corresponding Newtonian case, as shown in Fig. 15(b). The polymer work [cf. Fig. 15(c)] is negative
but small during the initial stage. It is therefore not influential in the streak breakdown at high As,in.
As in Fig. 15(d), the sum of the three components Pxx + εxx + Wxx is a better indicator of whether
transition to turbulence takes place.

The decrease in dissipation for the viscoelastic cases is related to the choice of the reference
viscosity μref used to calculate the Reynolds number [33]. We have chosen the total viscosity of
the fluid as the reference value. If only the solvent viscosity is used, viscous dissipation would not
decrease. This point is demonstrated in Fig. 16(a), where we have rescaled the viscous dissipation
from Fig. 15(b) using the solvent viscosity, i.e., dividing the viscous dissipation by β. The initial
viscous dissipation, once rescaled, is not significantly affected by the polymers. The Reynolds
number based on the solvent viscosity for the viscoelastic cases in Fig. 15 is equal to Res = Re

β
=

666.67. In Fig. 16(b) we compare the viscous dissipation of a Newtonian case with Re = Res =
666.67 to the viscoelastic configurations in Fig. 15(b). The solvent Reynolds number Res is constant
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FIG. 15. Temporal evolution of the (a) energy production Pxx , (b) dissipation εxx , (c) polymer work Wxx ,
and (d) their sum for As,in = 48.13 and Ad = 2.4.

for all four cases (Res = 666.67). We note that the initial dissipation is inappreciably changed.
These results point out how the destabilization at large initial streak amplitudes can be significantly
affected by changes in the solvent viscosity. This differs from what is observed at small As,in, where
the destabilization is created mainly by an increase in the energy production (see Sec. IV D 1).

We have previously seen how the polymer torque has a resistive effect on vorticity. In particular
it plays a fundamental role in (i) lowering the energy of the primary streaks (Sec. III B) and (ii)
hindering transition for small As,in (Sec. IV D 1). For large As,in, the streak breakdown is accompanied
by an increase of the streamwise vorticity [5]. The rms streamwise vorticity and polymer torque
are illustrated in Fig. 17 for several values of the Weissenberg number, and large streak amplitude
As = 48.13, sinuous forcing Ad = 2.4, and β = 0.6. The figure shows that the maximum of the
streamwise vorticity increases with elasticity, while the polymer torque initially decreases with
elasticity at short times. Note also that the polymer torque grows rapidly at large Wi. In summary,
the polymer torque is lower than in the case of weak streaks [see Fig. 14(b)]. This explains why the
streak breakdown is only slightly retarded in highly viscoelastic flows at large As,in, in contrast to
small As,in.
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FIG. 16. (a) Viscous dissipation from Fig. 15(b) rescaled by the solvent viscosity instead of the total
viscosity. (b) Comparison between the viscous dissipation of (i) the Newtonian case at Re = Res = 666.67 and
(ii) the viscoelastic configurations from Fig. 15(b) where Re = 400. The solvent Reynolds number is constant
in all four cases: Res = 666.67.

V. CONCLUSIONS

In this work we have examined the secondary instability of streaks and transition to turbulence
in viscoelastic Couette flow. The polymeric solution was modeled using a FENE-P fluid, and
the flow evolution evaluated using direct numerical simulations. The base streaks belong to the
quasi-Newtonian regime according to the classification by Page and Zaki [17].

We have first studied the impact of elasticity on the nonlinear evolution of the streaks. The results
show that the streaks reach a lower average energy with increasing elasticity. This is due to a resistive
polymer torque that opposes the streamwise vorticity and, as a result, opposes the lift-up mechanism.

A streamwise-sinuous disturbance was introduced at the time when the streaks reached their
maximum energy. The ensuant secondary instability was promoted (i) at low Wi and (ii) with
increasing polymer concentration. However, at high Wi a change of trend is observed: transition to
turbulence is delayed, and the degree of stabilization depends on the initial streak amplitude As,in.

FIG. 17. Temporal evolution of the streamwise component of the (a) rms vorticity and (b) rms polymer
torque for As = 48.13, Ad = 2.4, and β = 0.6 at different Wi.
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If the streaks are weak we observe a sharp retardation of breakdown, and when they are strong,
transition is only slightly delayed. The difference is due to a change in the transition mechanism at
small and large As,in. At small amplitudes transition takes place via a two-stage process, while at
large amplitude the streaks directly break down when perturbed by the weak sinusoidal forcing. In
both cases the stabilization at Wi = 15 is due to a resistive polymer torque that opposes the growth
of streaks. The cause of destabilization at low elasticity, on the other hand, depends on the streak
amplitude:

(i) For small As.in and weak elasticity, transition is promoted due to an enhanced production.
The pronounced perturbation growth leads to stronger, more unstable streaks that break down to
turbulence.

(ii) For large As.in and weak elasticity, the solvent viscosity is effectively reduced, thus promoting
streak instability and transition.

Similar arguments explain the destabilization caused by an increase in the polymer concentration.
Our findings can also have bearing on understanding drag reduction in wall-bounded polymeric

turbulence [40]. The stabilizing influence of the polymer torque on streaks and its ability to delay
breakdown to turbulence is consistent with earlier studies of the more complex, fully turbulent
flows. There, the polymer torque was shown to limit the growth of vortical structures and inhibits
the formation of hairpin packets and bursting events [41,42]. Xi and Graham [32] attributed the
drag reduction in a minimal channel flow to the existence of time intervals of hibernating turbulence
during which the streaks remain stable for relatively long times. The frequency and duration of these
hibernating states increased at higher Weissenberg number. Analysis of the polymer torque and its
role in initiating and sustaining these hibernating states can improve the current understanding of
turbulent drag reduction.

It is interesting to consider a flow configuration where streaks appear with various sizes and
amplitudes. For example, when a laminar boundary layer is exposed to broadband free-stream noise,
Klebanoff streaks with different amplitudes and orientations amplify and their secondary instability
[8,30,39] signals the onset of bypass transition to turbulence. The present analysis shows that the
influence of elasticity, be it stabilizing or destabilizing, depends on the flow parameters. In addition,
it is important to note that we focused on streaks that belong to the quasi-Newtonian class according
to the classification by Page and Zaki [17]. Two other classes have been identified, namely, “elastic”
and “reenergizing” streaks. In the former, streaks can reach very large amplitudes despite the weak
inertia [18,19]. A similar DNS analysis in this regime could shed light on elastic turbulence [43,44].
The reenergization regime, on the other hand, occurs when the diffusion and relaxation time scales
are commensurate and is characterized by a cyclical amplification of the base streaks within an
envelope of growth and decay. Preliminary direct numerical simulations confirmed that this regime
is observed in the full nonlinear problem. A complete study of these streaks and their secondary
instability should be the subject of future work.
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APPENDIX: ANALYTICAL EXPRESSION FOR THE BASE-STATE
CONFORMATION TENSOR

In this section, we summarize the solution to Eq. (4) for the conformation tensor given a
generic, parallel velocity profile U (y). Using this base-flow ansatz, the conformation tensor can be
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written as

cxx = cyy

[
1 + 2U ′(y)2Wi2

(
1 − 3

L2

)
c2
yy

]
, (A1a)

cxy = cyx = U ′(y)Wi

(
1 − 3

L2

)
c2
yy, (A1b)

cyy = czz = 1 − cxx+2cyy

L2

1 − 3
L2

, (A1c)

where U ′(y) = dU
dy

. If L → ∞, the conformation tensor tends to the conformation tensor pertaining

to an Oldroyd-B fluid: cxx = 1 + 2U ′(y)2Wi2, cxy = cyx = U ′(y)Wi, and cyy = 1. The base
solution for the components of the conformation tensor can be obtained by inverting the above
system, which yields

Cxx = 1

ψ(Ckk)

[
1 + 2U ′2(y)Wi2

a2ψ(Ckk)2

]
, (A2)

Cxy = U ′(y)Wi

aψ(Ckk)2
, (A3)

Cyy = Czz = 1

ψ(Ckk)
, (A4)

where f (Ckk(j )) = 2
3 cosh(φ

3 ) + 1
3 , φ = acosh( 27

2 �2 + 1), and � = √
2U ′(y)Wi

aL
. Dallas et al. [24]

derived a similar expression but with a different choice of the Peterlin function. For the Couette
flow studied in the present work U ′(y) = 1 and, therefore,

Cxx = 1

ψ(Ckk)

[
1 + 2Wi2

a2ψ(Ckk)2

]
, (A5)

Cxy = Wi

aψ2(Ckk)
, (A6)

Cyy = Czz = 1

ψ(Ckk)
. (A7)
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