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We study the dynamics of a flexible fiber freely moving in a three-dimensional fully developed turbulent
field and present a phenomenological theory to describe the interaction between the fiber elasticity and the
turbulent flow. This theory leads to the identification of two distinct regimes of flapping, which we validate
against direct numerical simulations fully resolving the fiber dynamics. The main result of our analysis
is the identification of a flapping regime where the fiber, despite its elasticity, is slaved to the turbulent
fluctuations. In this regime the fiber can be used to measure two-point statistical observables of turbulence,
including scaling exponents of velocity structure functions, the sign of the energy cascade and the energy
flux of turbulence, as well as the characteristic times of the eddies within the inertial range of scales. Our
results are expected to have a deep impact on the experimental turbulence research as a new way, accurate
and efficient, to measure two-point, and more generally multipoint, statistics of turbulence.
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Understanding how elastic structures interact with a
turbulent flow is a problem attracting a great deal of attention
in different fields of science and technology, ranging from
biological applications [1–4] to energy harvesting [3–6].
The study in Ref. [7] enabled a huge step forward in

understanding the coupling between laminar flows and
structure elasticity. This breakthrough was possible thanks
to the combined choice of a simple flow configuration (a
soap film used as a laminar two-dimensional flow tunnel
[8–11]) and a simple elastic structure (a flexible fiber of
given rigidity and inertia). Even in this apparently simple
configuration the coupling between fluid and structure
gives rise to a nontrivial and rich phenomenology. Once
this has been described and the underlying mechanisms
understood, new open questions arise about the dynamics
of a fiber freely moving in a three-dimensional turbulent
environment (see Fig. 1): how does a flexible fiber interact
with a turbulent flow? Under which conditions will flap-
ping motion appear? How many states of flapping are
possible? Can we control the amplitude or frequency of the
resulting flapping states? Can the fiber be used to reveal the
two-point statistics of turbulence?
Answering these questions is the main objective of the

present Letter. Our findings will therefore also indicate how
to exploit the motion of a flexible fiber in turbulence to
obtain a proxy of two-point (and multipoint as a further
generalization suggested at the end of the present Letter)
statistics of turbulence. A deep and complete understanding
of turbulence, currently still missing, depends on the
possibility of having accurate measurements of multipoint
statistics (i.e., measurements of simultaneous velocity
correlation functions between different spatial points).

These types of measurements are crucial for establishing
a connection between scaling laws and spatial structures,
e.g., vortex filaments [12,13]. Lagrangian particle tracking
techniques helped us to successfully characterize
Lagrangian statistics of turbulence [14] but a general
mapping between Lagrangian and Eulerian statistics of
turbulence still remains elusive. The main problem when
using tracers to access Eulerian statistics of turbulence is
that particles tend to separate from each other by virtue of
the well-known Richardson law, which prevents obtaining

FIG. 1. Visualization of a flexible fiber (green line) immersed in
a homogeneous isotropic turbulent flow. The instantaneous
vorticity field is represented by means of Q isosurfaces, while
the three back planes show the contours of the enstrophy field.
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converged statistics for a given fixed separation between
the particles. Our aim here is to propose a new strategy
where the concept of particle tracking is replaced by the
new concept of fiber tracking. The idea is to exploit a fiber
in a way never tried before, thus overcoming the problem
related to single particle dispersion: the end-to-end distance
of a fiber cannot indeed become larger than the fiber length
at rest, making it a good candidate to measure statistics on a
given scale, i.e., its end-to-end distance. A polydisperse,
dilute, solution of fibers of different lengths should be
considered to access all scales involved in a turbulent field.
Such a line of research is still in its infancy. A charac-

terization of the dynamics of an elastic fiber in turbulence
has been recently provided in Refs. [15,16] even if limited to
the so-called overdamped regime [17]. The idea to use small
elastic objects (i.e., deformable particles) to measure a
single-point velocity gradient was recently proposed in
Ref. [18], even if no access to inertial-range multipoint
measurement was considered. Our aim is to fill the gap with
the final aim of proposing a new strategy to perform inertial-
range measurements of turbulence two-point statistics by the
Lagrangian tracking of an elastic fiber.
We tackle the problem at hand exploiting, in synergy, the

phenomenological theory we propose here, and numerical
simulations fully resolving the fiber dynamics in three-
dimensional homogeneous isotropic stationary turbulence
(see Fig. 1).
First, we present the model coupling the fiber dynamics

and the flow. The fluid flow uðx; tÞ is governed by the mass
and momentum conservation equations, written including a
fluid-structure interaction force f [19–21],

∂tuþ u · ∂u ¼ −∂p=ρ0 þ ν∂2uþ f;

∂ · u ¼ 0; ð1Þ

while the fiber position Xðs; tÞ is governed by the
Euler-Bernoulli beam equation and by the inextensibility
constraint [22]

ρ1Ẍ ¼ ∂s(T∂sðXÞ) − γ∂4
sðXÞ þ F;

∂sðXÞ · ∂sðXÞ ¼ 0: ð2Þ

In the previous set of equations, s is the curvilinear
abscissa, ρ0 and ν are the fluid density and kinematic
viscosity, ρ1 the difference between the linear density of the
fiber and fluid, γ the fiber bending rigidity (for a homo-
geneous fiber, it is the product of the elastic modulus
and the second moment of area), and T is the tension
needed to enforce the fiber inextensibility. The fluid and the
fiber are coupled at their interface by the no-slip condition
_X ¼ U(Xðs; tÞ; t), with U(Xðs; tÞ; t) ¼ R

uðx; tÞδ(x −
Xðs; tÞ)dx the Lagrangian fiber velocity and fðx; tÞ ¼R
s Fðs; tÞδ(x −Xðs; tÞ)ds, where fðx; tÞ is the Eulerian
fluid-structure interaction force density and Fðs; tÞ the

Lagrangian force density. Free-end conditions are used
at s ¼ 0 and s ¼ c, c being the rest length of the fiber. An
additional volume force is considered on the right hand side
of the Navier-Stokes equations in (1) (not shown for the
sake of brevity) to generate a fully developed turbulent state
with isotropic, homogeneous, and stationary statistics.
Before investigating numerically the fully coupled prob-

lem, let us start the analysis by focusing on the fiber
equation in a given turbulent environment obeying the well-
known Kolmogorov theory [23]. Such an intrinsically
passive way of thinking at the fiber dynamics has an
analog in polymer physics [24,25] where it was successful,
e.g., to predict the statistics of polymer elongations in a
turbulent flow [26]. To describe the fluid-structure inter-
action, let us assume a viscous coupling of the form
F ¼ −μð _X − uÞ, with μ being the dynamic viscosity of
the flow [27]. Note that here we do not consider an
anisotropic expression for the drag, as done, e.g., in
Ref. [28] for passive fibers in small Reynolds number
flows. We choose to not complicate the description given
the intrinsically isotropic nature of the underlying turbu-
lence flow which causes no preferential alignment. Indeed,
this simple isotropic description is able to properly describe
the fiber dynamics, as shown below. On this basis, two
characteristic timescales can be immediately identified
from the fiber equation: the viscous timescale τμ¼2ρ1=μ
(obtained by balancing fiber inertia with viscous damping)
and the fiber elastic time τγ ¼ αðρ1c4=γÞ1=2 (obtained by
balancing fiber inertia with bending rigidity) [29]. Different
regimes are expected depending on the value of the
damping ratio ζ ¼ τμ=τγ ¼ ðαc2μÞ=ð2ρ1=21 γ1=2Þ. For 0 <
ζ < 1 (underdamped regime) the elasticity is expected to
strongly affect the fiber dynamics, while for ζ > 1 (over-
damped regime) elastic effects are strongly inhibited.
Let us focus on the former, dynamically richer, regime

and start to analyze two opposite situations. For large
elasticity, only large strains may appreciably deform the
fiber, and when these events occur the fiber rapidly reacts,
trying to restore the straight position; the relaxation process
is expected to be dominated by rapid oscillations of the
characteristic elastic time τγ . In the opposite limit, small
fiber elasticity, the fiber does not resist deformation and is
thus slaved to the turbulent fluctuations. We thus argue the
existence of a critical value γcrit of the fiber bending rigidity
separating these two distinct behaviors and claim that
γcrit can be extracted from a resonance condition between
the fiber elastic time τγ and the eddy turnover time τðrÞ ¼
r2=3ϵ−1=3 evaluated at the fiber scale c, ϵ being the
turbulence dissipation rate of kinetic energy. The condition
τðcÞ ∼ τγ immediately gives

α

�
c4ρ1
γ

�
1=2

∼ c2=3ϵ−1=3 → γcrit ∼ c8=3ϵ2=3ρ1α2: ð3Þ
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The remainder of the present Letter is devoted to proving
our conjectures exploiting accurate direct numerical simu-
lations coupled to an efficient IBM strategy to resolve the
fully coupled fiber-flow dynamics. Details on the numerical
strategy are given in Refs. [19,30,32].
To start, let us provide a justification for the term

“resonance” we have associated to condition (3). In
Fig. 2 we report the fiber elastic energy as a function of
γ=γcrit for different values of the fiber length in the under-
damped regime (0 < ζ < 1). The peaks at γ=γcrit ∼ 1
provide a first clue that γcrit plays a dynamical role.
To identify the role of γcrit we have analyzed a long time

series (corresponding to ∼20 large-eddy turnover times), of
the motion of 30 different fibers, corresponding to different
combinations of three different densities ρ1, three lengths c
and 9 bending rigidities γ, all the cases belonging to the
underdamped regime. The leading oscillation frequency f,
extracted from the Fourier transform of the time history of
the end-to-end distance and divided by fturb ¼ 1=τðcÞ, is
reported in Fig. 3 as a function of γ=γcrit. The outcome
confirms our expectations and the good data collapse brings
to the following three main conclusions: (i) γcrit separates
two distinct regimes in the underdamped case with a sharp
transition; (ii) for γ < γcrit, the most energetic mode of
oscillation of the fiber is at the turbulence frequency
1=τðcÞ; (iii) for γ > γcrit, the most energetic mode of
oscillation is associated to the first fiber normal mode
and has the frequency 1=τγ. The interested reader is referred
to the Supplemental Material [33] for more information on
the fiber dynamics.
The fact that for γ=γcrit < 1 the fiber is locked to the

frequency of the turbulent eddies with the same size of the
fiber suggests that the fiber is able to reveal the turbulence
velocity fluctuations. In plain words, we consider our fiber
as a physical proxy of the celebrated turbulent eddies. This
being the case, a massive fiber, which can be easily tracked

in a turbulent flow, may reveal the features of eddies of
different scales. To demonstrate that our conjecture is true,
we compute the longitudinal structure functions SpðrÞ,
p ¼ 2, 3, defined in terms of the fiber velocities at the fiber
end points projected along the end-to-end fiber vector for
γ ¼ γcrit=2. We compute SpðrÞ from three different fibers,
with different rest lengths belonging to the inertial range
of scales. As far as the separation r is concerned, instead of
the fiber rest length, we use the time-averaged value of the
fiber end-to-end distance, as this is a quantity more
representative of the dynamical fiber length. All regimes
analyzed fall in the underdamped case and each fiber has
been tracked for 40 large-eddy turnover times. The results
are presented in Fig. 4, where the second and third-order
velocity structure functions obtained by the fiber motion
are compared to those obtained following the standard
Eulerian procedure, with averages both in space and in time
given the homogeneity and stationarity of the turbulence
statistics (black bullets). These convincingly show the
celebrated Kolmogorov 4

5
th law for the third-order structure

function. The markers indicate the structure functions
obtained from the fibers, and the error bars have been
determined from the convergence profile of both structure
functions (ordinates) and end-to-end fiber distances
(abscissa). The agreement between the Eulerian measure-
ments and those obtained from the fibers is within error
bars. Note that the value of ϵ used here has been determined
independently from its definition, and there are thus no
free parameters.
A further confirmation comes from Fig. 5 where we have

reported the probability density function (PDF) of longi-
tudinal velocity increments for a separation corresponding
to one of the three fibers reported in Fig. 4. Open circles
depict the PDF obtained in the Eulerian frame (about
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FIG. 2. The fiber elastic energy made dimensionless with
1=2ρ0

R
u2dx for three different fiber lengths. L denotes the

size of the computational domain. The peaks at γ ∼ γcrit
are the fingerprint of a resonance between the fiber elastic
timescale and the eddy turnover time evaluated at the fiber
length scale.
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FIG. 3. The fiber oscillation frequencies (normalized by the
turbulence frequency at the fiber length scale) as a function of the
fiber bending rigidity [normalized by the critical value given in
(3)]. Diamonds, c=L ¼ 0.20 and ρ1=ðρ0L2Þ ¼ 0.042; bullets,
c=L ¼ 0.12 and ρ1=ðρ0L2Þ ¼ 0.042; triangles, c=L ¼ 0.16 and
ρ1=ðρ0L2Þ ¼ 0.042; stars, c=L ¼ 0.16 and ρ1=ðρ0L2Þ ¼ 0.125;
squares, c=L ¼ 0.16 and ρ1=ðρ0L2Þ ¼ 0.014.
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6 × 106 samples considered), while bullets indicate the
PDF from the longitudinal velocity differences evaluated
from the fiber velocities at the fiber end points (about
5 × 104 samples). The small discrepancy among the two
PDFs can be associated to the lack of statistics in the
Lagrangian description (which is about a factor 100 smaller
than that of the Eulerian frame). However, the agreement
increases by increasing the number of statistical samples
of the fiber-based measurements as shown in the inset of
Fig. 5 where the L2 norm of the difference between the two
PDFs is shown as a function of the number N of statistical
samples. The error approximately decreases as 1=N.
Similar agreement has been observed (not shown) for
the other two fiber lengths considered in Fig. 4. We can
thus conclude that choosing γ < γcrit allows one to measure
the eddy turnover time of turbulence at the fiber length
scale, and to quantitatively access the statistical properties
of the two-point statistics of turbulence.
There remain to discuss the overdamped regime (ζ > 1),

when the fiber equation becomes first order in time: once
deformed, the fiber reacts exponentially with the typical
timescale μc4=γ and no elastic oscillations occur. For
μc4=γ ≪ τðcÞ, the relaxation process is faster than the
eddy turnover time at the length scale of the fiber, while
the opposite occurs for μc4=γ ≫ τðcÞ. A critical value of
the fiber bending rigidity separating the two regimes can
thus be identified: γodcrit ∼ μc10=3ϵ1=3. For different reasons,
we argue that the fiber undergoes oscillations with fre-
quency ∼1=τðcÞ in both limits. For γ=γodcrit < 1 all points of
the fiber are indeed expected to movewith the fluid velocity
under the constraint of fiber inextensibility. For γ=γodcrit > 1,
as in the underdamped case, only large strains may deform
the fiber, and the fiber rapidly reacts back trying to restore
the straight position. The relaxation process takes place
without oscillations and we thus expect that, differently

from the underdamped regime, oscillations have frequency
∼1=τðcÞ. Our expectation has been verified numerically for
ρ1 ∼ 0, corresponding to γ=γodcrit ≫ 1 and the results (not
shown) fully confirm our guess. Note that Refs. [15,16]
provide a slightly different expression for γodcrit, i.e., γ

od
crit∼

c4ðρ0μϵÞ1=2. A possible reason for the discrepancy between
the two formulations is that the fibers considered in
those references are close to the integral scale of the flow
while they are well within the inertial range of scales in the
present case.
In conclusion, we have explored the dynamical proper-

ties of a single elastic fiber with length within the inertial
range of scales, free to evolve in a turbulent field. The main
result of our analysis has been the identification of a
dynamical regime where the fiber, in spite of its elasticity, is
slaved to turbulence, thus becoming a material realization
of the well-known concept of turbulent eddy. Our results
extend to inertial-range two-point statistics the idea of
using deformable particles for single particle measurements
of velocity gradient recently presented in Ref. [18]. Further
pioneering extensions to multipoint statistics in turbulence
seem to be realizable exploiting flexible membranes or
other spatially extended elastic objects.
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