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Shear thickening appears as an increase of the viscosity of a dense suspension with the shear rate,

sometimes sudden and violent at high volume fraction. Its origin for noncolloidal suspension with

non-negligible inertial effects is still debated. Here we consider a simple shear flow and demonstrate that

fluid inertia causes a strong microstructure anisotropy that results in the formation of a shadow region with

no relative flux of particles. We show that shear thickening at finite inertia can be explained as an increase

of the effective volume fraction when considering the dynamically excluded volume due to these shadow

regions.
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The field of complex fluids is diverse and rapidly devel-
oping with the potential for numerous relevant applica-
tions. Among complex fluids, on one hand, we have
colloidal suspensions where Brownian effects play an
important role while inertial effects are negligible; see,
e.g., Refs. [1–5]. On the other hand, we have suspensions
made out of larger particles (particle radius a > 10 �m),
where Brownian effects are negligible while inertia plays
an important role. To be specific we shall call this second
class of suspensions non-Brownian suspensions or inertial
suspensions. Their rheology is the topic of this Letter.

Understanding the rheological properties of non-
Brownian suspensions is not only a challenge from a
theoretical point of view [5–7] but also has a significant
impact in many industrial applications, e.g., oil processing,
cement, or coal slurries [8,9].

In one of the earliest works in this field, Einstein showed
that, for a dilute suspension of rigid particles in a
Newtonian fluid with negligible inertia, the relative
increase in effective viscosity is �ð5=2Þ�, where � is
the volume fraction occupied by the particles (see, e.g.,
Chap. 4.11 of Ref. [10]). For higher concentrations the
problem is still not well understood. Non-Brownian sus-
pensions may show shear thickening, i.e., an increase of
effective viscosity with the shear rate [11,12]. If the volume
fraction is high enough, yet below the geometrical maxi-
mum packing, �m ¼ 0:58–0:63, the increase of viscosity
with shear rate can be abrupt [13], the so-called discon-
tinuous shear thickening.

In this Letter, we report three-dimensional direct
numerical simulations of a plane-Couette flow of neutrally
buoyant rigid spheres in a fluid. The rheology is governed
by two parameters: the volume fraction � and the shear
rate _�. Following Ref. [11], we use a nondimensional form
of the shear rate given by the particles Reynolds number,
Re � � _�a2=�0, where �0, � are the fluid viscosity and
density and a is the particle radius. The effective viscosity

is thus a function of � and Re, � ¼ �0fð�;ReÞ. For the
configurations investigated here, the effective viscosity,
reported in Fig. 1, increases as the relative strength of the
inertial effects (measured by Re) increases; a phenomenon
we call inertial shear thickening.
The relative motion of a particle pair with finite inertia

in a shear flow has been studied in [14]. These authors
found that at finite Reynolds number the incoming particle
tends to leave the reference one with a positive shift in
the shear direction. Hence, we expect this asymmetry
to affect the suspension rheology at finite Re. Indeed,
we find that behind a particle there exists a region with
vanishing relative particle flux that we call the shadow
region. We obtain an estimate of the average volume of
the shadow region in the suspension by calculating the
pair-distribution function, Fig. 2, and the relative flux of
a pair of spheres, Fig. 3. We interpret the volume occupied
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FIG. 1 (color online). Normalized effective viscosity �=�0

versus � for four particle Reynolds numbers Re. Symbols:
(open circles) Re ¼ 0:1, (crosses) Re ¼ 1, (asterisk) Re ¼ 5,
and (open squares) Re ¼ 10; dash-dotted line, Eilers fit (1)
with �m ¼ 0:6 and B ¼ 1:7. Inset: �=�0 versus Re. Red solid
line � ¼ 0:11; long-dashed green line � ¼ 0:21; dashed green
line � ¼ 0:26; dotted magenta line � ¼ 0:315.
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by the shadow as an increase of the effective volume
fraction; this allows us to collapse the data for �=�0

pertaining to four different values of � into one single
function of the effective volume �e, Fig. 4. This function
is well approximated by the well-known Eilers fit [11],
an empirical formula describing the variation of the
viscosity of a suspension with the volume fraction for
vanishing inertia,

�

�0

¼
�
1þ B

�e

1��e=�m

�
2
; (1)

with B ¼ 1:25–1:5 and �m ¼ 0:58–0:63 the maximum
packing fraction [15–17]. A similar collapse has been
recently obtained in granular systems under different
conditions with experimental [18] and numerical [19]
data. We go beyond these studies, addressing the problem

from a microscopical point of view and showing that
this increase of the effective volume fraction is due to
the formation of anisotropic microstructures characterized
by an angle-dependent pair-distribution function and
mean relative particle flux. Note that the existence of such
microstructures cannot be inferred from isotropic, angle-
averaged, observables. Recent investigations [3–5,20] have
stressed the important role played by ‘‘hydroclusters’’ in
shear thickening in Brownian (colloidal) suspensions.
Here we elucidate the role of the particle clusters and
microstructure in shear thickening of non-Brownian sus-
pensions with finite inertia.
We numerically simulate a suspension of rigid spheres

suspended in a fluid phase described by the incompressible
Navier-Stokes equation. These are solved on a Cartesian
mesh in a rectangular box of size 16a� 16a� 10a along
the streamwise, wall-normal, and spanwise directions
(x, y, z), with 8 grid points per particle radius a. The fluid
is sheared in the x-y plane by imposing a constant stream-
wise velocity of opposite sign U0 ¼ _�H, (H ¼ 10a) at the
two horizontal walls (y ¼ �H=2). Periodic boundary
conditions are imposed on the other two directions.
A Lagrangian algorithm is used to solve for the linear
and angular momentum of the spheres. We impose no
slip boundary condition on the fluid at the particle surface
using the immersed boundary method. Lubrication and
collision models are employed to capture the interaction
between spheres when the distance between the surface of
neighboring particles becomes smaller than the mesh size.
The surface of each sphere is discretized by about 800
Lagrangian grid points. The code was fully validated
against several classic test cases; see Ref. [21] for more
details. Four different values of the volume fraction
� ¼ 0:11, � ¼ 0:21, � ¼ 0:26, and � ¼ 0:315, and four
particle Reynolds numbers in the range 0.1 to 10 are
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FIG. 2 (color online). Projection of the normalized angle-
dependent pair-distribution function gðr ’ 2a; r̂Þ on the wall-
parallel plane (with mean flow from right to left) x-z plane for
Re ¼ 0:1 (a) and Re ¼ 10 (b) for � ¼ 0:315.
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FIG. 3 (color online). Contour plot of particle pair relative flux
j q j , Eq. (2) in the shear plane x-y for � ¼ 0:315, Re ¼ 0:1
(a) and Re ¼ 10 (b). Local mean flow is from right to left in the
horizontal direction. The direction of q in the plane is shown by
arrows. The black contour corresponds to j q j¼ qth.
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FIG. 4 (color online). Effective viscosity versus effective
volume fraction �e: (red pluses) � ¼ 0:11; (green crosses)
� ¼ 0:21; (blue asterisk) � ¼ 0:26; and (magenta open squares)
� ¼ 0:315. Lines: Eilers fit (1): dash-dotted, best fit of present
data �m ¼ 0:6 and B ¼ 1:7; dotted, fitting parameters in
[15–17] �m ¼ 0:58 and B ¼ 1:5. Inset: Relative increment of
the volume fraction as a function of Re.
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simulated. Initially, the particles are placed at random
positions, with no overlap and velocity equal to the local
fluid velocity, the laminar Couette profile. Statistics are
collected from time Ttr ¼ 20 _��1 when all the simulations
have reached a statistically stationary state. Earlier studies
[22] have shown that Stokesian suspensions, although
athermal, have a chaotic behavior; hence, we expect the
statistically stationary state to be independent of the choice
of the initial position of the particles, or of the initial
velocity profile. We have checked this in a few representa-
tive cases.

In Fig. 1 we display the effective viscosity of the sus-
pension � measured as the ratio between the tangential
stress at the walls and the shear rate _�, as a function � and
as a function of Re in the inset from all simulations per-
formed. The effective viscosity increases with the shear rate
(shear thickens) at fixed volume fraction; also it increases
with the volume fraction � at fixed Re. Our results are
consistent with recent numerical data in Ref. [17].

Next we show that shear thickening can be interpreted
as an excluded volume effect. We first calculate the pair
distribution function gðr; r̂Þ that is the probability to find a
particle pair at given distance r and direction r̂ normalized
by the value for a random arrangement [4,5,23].

In Fig. 2 we display gðr; r̂Þ at contact, r ¼ 2a, in the
wall-parallel x-z plane (relative motion from right to left),
for two different values of Re at� ¼ 0:315 (similar behav-
ior is observed at lower concentrations). The contours
show that gðr; r̂Þ is not isotropic and the anistropy increases
as the inertial effects, measured by Re, become more
important. In particular, there exists a small region behind
the particle where there is a lower probability to find a
second particle. Increasing the Reynolds number, the
anisotropy increases. Though the anisotropy of gðr; r̂Þ at
contact has already been observed [17], its role for shear
thickening at finite Re was not identified. This anisotropy
causes shadow regions with vanishing probability to find
another particle in relative motion. This shadow acts as an
increase of the effective volume fraction: this is the geo-
metrical volume occupied by the particles plus the volume
of the shadows (the shadow is actually a property of a pair
of spheres).

We try to estimate the volume of the shadow region by
calculating the relative particle flux (relative momentum
increments), defined as

qðr; r̂Þ ¼ gðr; r̂Þh�viðr; r̂Þ; (2)

where h�i denotes ensemble averaging and �v is the relative
velocity of a pair of spheres. The relative particle flux in the
shear plane is plotted in Fig. 3. Clearly, the flux is largest in
the region close to the surface of the sphere (i.e., grazing
incidents) and at z > 3a (where the mean flow determines
the flux). Most importantly, there exists a region behind a
sphere where this flux reaches a minimum value, close to
zero, for Re � 1. We call this region the shadow region.

To estimate the volume occupied by the shadow region, we
select a threshold value qth ¼ 0:03 (black contour in Fig. 3)
and calculate the volume of the region where j q j� qth.
This volume, a function of the particle Reynolds number
and the volume fraction,V dðRe; �Þ, is the relative increase
of the suspension excluded volume ��=� ¼ V d=V g,

where V g ¼ 4�ð2aÞ3=3. The relative increment of the

volume fraction is displayed as a function of Re for the
four different values of� in the inset of Fig. 4. The increase
of the volume fraction is significant, of the order of 10% for
Re � 1. At fixed Re, the relative increase of the effective
volume fraction decreases marginally at larger � since
collisions among particles are more frequent and deflect
the particle trajectories reducing the size of the shadow
region. The values of the effective viscosity, �=�0, in the
range of� and Re considered can be collapsed to a univer-
sal curve using the effective volume fraction �eð�;ReÞ ¼
�þ��ðReÞ, see Fig. 4, wherewe also plot the Eilers fit (1)
[15–17], valid for suspensions of vanishing inertia. We
indeed find a good agreement between the Eilers fit and
our data given the crude nature of the estimate of the relative
increase of volume fraction [24].
We stress that the increase in effective volume fraction is

essentially due to the formation of anistropic microstruc-
tures, as already seen in Figs. 2 and 3. We present three
pieces of evidence to support this claim. (a) We plot
in Fig. 5(a) the pair-distribution function averaged over
the solid angle GðrÞ � ð1=4�ÞR gðr; r̂Þd�. Although

clustering at small distance is clearly present [GðrÞ>1
for small r], no significant change is observed with
Re. (b) We report the second-order structure function of
the longitudinal particle velocity difference, S2ðrÞ �
ð1=4�ÞRh�vkðrÞ2id�, as an inset in Fig. 5(a). �vkðrÞ ¼
½vP � vQ	 � r̂, where vP and vQ are the velocities of the Pth

and Qth particle separated by a distance r. Similar to GðrÞ,
S2ðrÞ does not show any significant change at small sepa-
ration r when increasing Re. (c) We display in Fig. 5(b) the
probability distribution function of the number of clusters
containing N spheres, PcðNÞ. Particles are considered to
belong to the same cluster if their gap distance is less than
2% of a. We find that PcðNÞ � N�2; i.e., there exists a
finite probability to find large aggregates, as observed for
shear-thickening colloidal suspensions [4,5]. However
PcðNÞ does not change as a function of Re. Hence, though
hydroclusters are present, we do not observe a direct
connection between formation or growth of clusters and
inertial shear thickening.
The wall-normal profile of the local mean volume frac-

tion’ðyÞ, Fig. 6(a), shows that particles tend to form layers
due to the confinement from the wall; see also the mean
particle velocity VðyÞ in Fig. 6(b). Again, layering does not
show a monotonic behavior with Re. Consistently with
[17], single-point particle velocity fluctuations decrease
with the inertia, as shown in the inset of Fig. 6(b). The
system appears more stable, with a more ordered structure
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and fewer particles jumping among the layers when
increasing Re.

The decrease of the fluctuation level and the increase of
the ordering is consistent with the idea of an increasing
effective volume fraction at high shear rates: the system
tends to freeze as there is less available space for the
particle motion. We conjecture that if the effective volume
fraction approaches the critical packing, the system would
jam. Hence, we may hypothesize that the discontinuous
shear thickening observed at high concentrations, higher
than those simulated here, yet below the geometrical maxi-
mum packing �m, can be interpreted as an increase of the
effective volume fraction above �m, �<�m � �eðReÞ.
This behavior might appear as heterogeneity in space with
part of the system jammed at large shear rates _� [12].
Nonetheless, it should be remarked that the anisotropic
shape of the shadow regions may also change the maxi-
mum packing fraction �m; see, e.g., [25]. We hope our
work will promote new research on the dynamics of the
microstructure in these regimes.

To conclude, we show in this Letter that inertial
shear thickening in non-Brownian suspensions can be

understood in terms of an increase of the effective volume
fraction of the suspension. The presence of inertia modifies
the relative particle motion (development of shadow
region) increasing the level of mutual interactions
(increased excluded volume). We show that this is the
main effect of inertia since the effective viscosity follows
a relation that holds for the case of zero inertia, Eq. (1),
when considering the effective volume fraction �e.
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FIG. 6 (color online). Wall-normal profile of (a) the average
local volume fraction and (b) the average particle velocity VðyÞ
for � ¼ 0:315. The inset shows K � v2

rms versus the wall
distance y=H. Symbols are as in Fig. 5.
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spheres versus r=a� 2. (b) Probability distribution function of
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