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We determine the initial condition on the laminar-turbulent boundary closest to the laminar state using

nonlinear optimization for plane Couette flow. Resorting to the general evolution criterion of nonequi-

librium systems we optimize the route to the statistically steady turbulent state, i.e., the state characterized

by the largest entropy production. This is the first time information from the fully turbulent state is

included in the optimization procedure. We demonstrate that the optimal initial condition is localized in

space for realistic flow domains.
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The transition from laminar to turbulent flow is still a
challenging problem despite the fact that our understand-
ing has increased significantly in recent years [1–3]. In
canonical shear flows (pipe, channel, and Couette flows)
transition is typically subcritical and initial perturbations
of finite amplitudes are necessary.

This Letter is about the computation and nature of the
smallest disturbances that most quickly trigger turbulence
in linearly stable shear flows. This is relevant both for our
understanding of the flow physics as well as designing
effective control strategies [4]. To do this, we optimize
the trajectory of the system with respect to the general
evolution criterion [5] of nonequilibrium thermodynamics.
The criterion has been used successfully in a wide range of
applications, shock waves [6], biology [7], climate re-
search [8,9], and nuclear fusion [10], although never,
thus far, in the search for optimal turbulence-triggering
disturbances.

Recent progress in the understanding of subcritical tran-
sition to turbulence in shear flows was made using the
nonlinear concept of edge state, originating from dynami-
cal systems’ theory. Edge state refers to the flow regime
reached asymptotically by phase-space trajectories visiting
neither the turbulent nor the laminar state. It is an unstable
flow state, yet embedded exact coherent states have been
identified numerically: steady states, traveling waves, and
periodic orbits (see [1–3] and references therein).

Here, we wish to determine the most dangerous pertur-
bation leading to the turbulent state. Two concepts are key
to our analysis: (i) optimal initial condition and (ii) the
target final state of the flow. Optimally growing perturba-
tions (in energy norm) have been considered extensively
within the linear framework [11]. This nonmodal approach
has been able to explain the physical mechanisms respon-
sible for energy growth in shear flows and, together with
weakly nonlinear models such as secondary instability
analysis, contributed to drawing a plausible picture of the
early stages of the transition process. However, the later
stages are inherently nonlinear and linear theory fails.

Nonlinear optimization in reduced-order subspaces has
been presented before [12–14], while only very recently
researchers considered fully nonlinear optimization, with-
out targeting the turbulent state [15,16]. In the former study
[15], the authors use the full Navier-Stokes equations to
show how nonlinearity can change the optimal which
emerges from a linear transient growth analysis in pipe
flow at subcritical condition. The optimal initial condition
obtained is three dimensional and shows signs of localiza-
tion. As reported in [15], a more extensive optimization
adopting larger flow domains would provide confirmation
and formidable extension of the results in that work. Here,
we take this step further and confirm the prediction that the
optimal is fully localized in extended flow domains.
Furthermore, we include the fully turbulent state into the
optimization procedure and manage to bridge the gap
between the optimization initial amplitude and the actual
transition threshold [15].
To take this step, it is crucial to select a metric for the

definition of the final flow state. Here we resort to thermo-
dynamics considerations to select the objective of our
optimization, unlike previous studies where the distur-
bance kinetic energy has been used. The theory is tested
on the simple case of plane Couette flow, a flow stable for
all values of the Reynolds Re ¼ Uh

� , where �U and h are

the velocity at each wall and the channel half-width, with �
the kinematic viscosity. Time is therefore reported in units
of h=U.
All shear flows by definition are not in equilibrium with

their environment since there is continuous energy ex-
change through the walls. However, the Navier-Stokes
equations can be viewed as a special case of the
Boltzmann equation for systems for which the local ther-
modynamic equilibrium assumption is valid [17].
Glansdorff and Prigogine [5] demonstrated that for time
invariant boundary conditions the system eventually
reaches a statistically steady state. When dissipation is
dominant (low Reynolds number) the system goes back
to the laminar state, while when inertia dominates
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(high values of Re) the turbulent state ensues. A fully
developed flow, from the standpoint of thermodynamics,
is a statistically steady state. A chaotic turbulent flow is
indeed characterized by steady values of time-averaged
quantities, such as fluctuations and dissipation. The ap-
proach of the fluid system to a statistically steady state is
central to the theory presented here [18].

The general evolution criterion implies that certain
quantities obtain extreme values once the statistically
steady state is reached. It has been recently demonstrated
[17] that this leads to Malkus heuristic principle [18]: a
viscous, turbulent, incompressible Couette flow in statisti-
cally steady state with assigned mean velocity maximizes
the total rate of viscous dissipation. To determine the
optimal initial condition leading to turbulent flow, we
employ Lagrangian optimization where the functional L
to maximize consist of an objective function and two
constraints (the Navier-Stokes equations and the energy
level of the initial disturbance), i.e.,

L ¼ J �
Z T

0
½ðu�;NSðuÞÞþ ðp�;r � uÞE�dt

� �ðkuð0Þ � Uk2E � �0Þ; E (1)

with the subscript E denoting the energy inner product, i.e.,
the integral over the whole domain. In the above, u�, p�,
and � are the Lagrange multipliers, i.e., the adjoint varia-
bles, NS the nonlinear Navier-Stokes equations, and �0 the
kinetic energy of the perturbation at t ¼ 0; u is the velocity
vector and U the Couette base flow. Since the system under
consideration is chaotic we will maximize the average
value of the functional, integrating over a sufficiently
long time interval. As introduced above, the objective
function is the time-averaged dissipation

J ¼ 1

T

Z T

0

1

Re
ðru: ruÞdt; (2)

with T the final observation time. Maximizing the time
integral of the entropy production implies that we also
obtain the fastest route to turbulence for any given value
of the initial energy �0. Variations of the Lagrangian
provide the gradient of the objective function with respect
to variation of the initial condition u0. The gradient
ruð0ÞL ¼ u�ð0Þ is obtained by forward time integration

of the Navier-Stokes equations and backward integration
of the adjoint system, the latter containing �1=ðTReÞr2u
a source term stemming from the definition of J .

This forcing term is stochastic when the flow has be-
come turbulent. It can change significantly for very small
variations of the initial conditions, as it occurs typically in
chaotic flows. As a consequence, the update of the initial
condition can be significant even in the proximity of an
optimal. Therefore to improve convergence we include a
relaxation term for each update of the initial guess

u ð0Þnþ1 ¼ ð1� �Þu�ð0Þn þ �uð0Þn: (3)

Close to convergence, the relaxation term gives an en-
semble average of the different initial conditions, since
the values of the objective function (i.e., the statistics of
the turbulent state) are basically constant. A fully con-
verged initial condition can be obtained more easily for
the smaller values of �0 considered, when the flow never
becomes turbulent and just above the minimum value �0T
of the initial energy for which a turbulence state can be
established. Larger initial amplitudes yield a very noisy
optimization. Indeed, we first optimize for large values of
the initial energy and gradually reduce the value of �0 to be
sure to target the final turbulent state. Typically we perform
between 50 and 100 iterations for each level of initial
energy.
In Fig. 1 the energy threshold necessary to reach a

turbulent state is displayed for each initial condition found
by the optimization procedure in the largest domain con-
sidered. Each of these initial conditions is defined by the
energy level �0 used in the Lagrangian L [see Eq. (1)].
The threshold level is determined by a classic bisection
procedure with an accuracy of five digits. The straight line
is a guide to the eye and indicates equal values of the
energy on the axis. For the largest �0 considered, one can
reduce the amplitude of the initial condition and still reach
the turbulent state. When decreasing the constraint on the
initial energy, we reach a value �0T below which the flow

10
−8

10
−7

10
−6

10
−5

10
−410

−7

10
−6

10
−5

10
−4

10
−8

10
−7

10
−6

10
−5

10
−4

2

7

12

x 10
−6

FIG. 1 (color online). (a) Energy threshold (�0th) to reach a
turbulent state and (b) viscous dissipation rate (objective func-
tion J ) versus the energy amplitude �0 used to determine the
shape of the optimal initial condition. The energy for transition is
computed by applying bisection to each optimal initial condition
to scale its amplitude. The square blue symbols pertain to initial
conditions determined with laminar flow at final time T ¼ 300.
Data for Couette flow at Re ¼ 1500, domain size 4�� 2� 2�
with resolution 128� 73� 64 grid points in the streamwise,
wall-normal, and spanwise direction, respectively.
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remains laminar for any t < T. This is indeed the nonlinear
optimal initial condition of smallest amplitude leading to a
statistically steady turbulent flow.

For values of the initial energy lower than �0T , where
turbulent flow is not reached during the optimization pro-
cedure, the initial condition must be scaled up by a factor
of about 4 or 5 to trigger transition, similarly to what was
obtained in [15]. Previous optimizations [15,16] in fact
considered highly distorted yet laminar flows (in the latter
work owing to the relatively short optimization interval).
The threshold for transition is then computed with a bisec-
tion procedure to find the laminar-turbulent boundary. The
initial condition of critical energy �0T obtained with the
present procedure is just above the boundary and its energy
is lower than that obtained from nonlinear optimization of
a laminar flow. In addition, having a turbulent state as final
target gives a lower threshold for transition with optimals
computed above �0T than below �0T . For �0 ! 0 we would
retrieve the linear optimals which cannot induce turbulence
alone. Therefore a fully nonlinear optimization, including
information from the fully turbulent state, is indeed indis-
pensable if the target is the complete transition process.
Note that we have also performed a series of simulations
using the time integral of the disturbance kinetic energy as
objective function. Although the results are qualitatively
the same, dissipation provides a lower threshold amplitude
for transition, about 5% smaller. More importantly, we
obtain better convergence with dissipation as objective
function; for the lowest Reynolds numbers considered we
could not obtain converged results when using the distur-
bance kinetic energy. Note also that previous studies used
the kinetic energy at final time rather then the time integral:
this can explain improved convergence with our approach.

We performed optimization for a combination of 4
different values of the Reynolds numbers, Re ¼
½500; 750; 1000; 1500�, three difference box sizes, ½2��
2� ��, ½4�� 2� ��, ½4�� 2� 2��, and final optimi-
zation time T 2 ½200; 400�. It turned out to be more diffi-
cult to obtain converged solutions for the lowest Reynolds
number considered. This is because the method relies on
the concept of statistically steady state which implies a
well-developed turbulent field. This is not the case at lower
values of the Reynolds number where turbulence has a
transient nature. Furthermore, sufficient time is needed to
reach a final turbulent flow. The optimal initial condition
obtained with different optimization times T is displayed in
Fig. 2. The variations are marginal for the cases considered
here for final times beyond T ¼ 300, as quantified by the
maximum of the velocity amplitude in the whole domain in
Fig. 2(e). The results are therefore independent of T, the
objective function has reached an asymptotic value, and we
have indeed optimized the route to the turbulent state.

For smaller domains and lower Reynolds number the
edge trajectories visit some steady solution before the final
breakdown to turbulence. This is not the case for the largest

domain and higher Re considered, where a chaotic behav-
ior is observed near the edge trajectory. Evidence for this is
provided in Fig. 3(a) where the evolution of the rms values
of the wall-normal velocity perturbation is displayed for
two cases.
The optimal trajectory to the turbulent state is visualized

in physical space in Fig. 4. The perturbation at t ¼ 0 is
strongest in the cross-stream velocity components and,
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FIG. 2 (color online). Optimal initial condition at the mini-
mum threshold level �0T for different values of the final opti-
mization time: (a) T ¼ 250, (b) T ¼ 300, (c) T ¼ 350,
(d) T ¼ 400. The plot displays the streamwise velocity compo-
nent in the wall-normal (x, y) plane at z ¼ �=2. The subplot
(e) shows the maximum of the velocity amplitude in the whole
domain versus the final optimization time T. The data pertain to
the largest box size considered, Re ¼ 1500.

0 50 100 150 200 250 300

10
−5

10
−2

Time

E

 

 
u

rms
2

v
rms
2

w
rms
2

0 100 200 300 400 500

10
−6

10
−4

E

FIG. 3 (color online). (a) The red solid line shows the edge
trajectory for minimum energy threshold �0T at Re ¼ 1500 and
domain size 4�� 2� 2�. The red dashed line indicates the
edge trajectory at Re ¼ 500 with domain size 2�� 2� �.
The energy of the wall-normal velocity perturbation is displayed.
(b) Evolution of the energy in time for the nonlinear optimal
discussed in Fig. 1 for �0 ¼ �0T .
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most interestingly, it appears localized in all three spatial
directions. Nonlinearity is active where the amplitude is
locally large and this is not always reflected by the total
energy, which is a global measure. The initial evolution of
the disturbance is reported in Figs. 4(b) and 4(c) while the
behavior of the integral energy is shown in Fig. 3(b). The
initial disturbance is inclined against the mean shear to
extract more energy from the base flow via the Orr-
mechanism At time t ¼ 10 the disturbance is upright and
still localized.

Transition is initiated by a pair of streamwise vortices
that generate a single bent streak [19], see Fig. 4(c). The
slow growth of the streak is associated to a decay of the
cross-stream velocity components [see Fig. 3(b)].
However, once the streak reaches a sufficient amplitude
at t � 70, secondary instability sets in as spanwise oscil-
lations induced by a staggered pattern of vorticity.
Rapid breakdown to turbulence is then observed to occur
at t � 130.

To determine the initial condition of minimum energy
leading to laminar-turbulent transition in plane Couette
flow we have resorted to thermodynamics considerations.
Using the general evolution criterion we have optimized
the route to the statistically steady state the system wants to
reach: this is the state of maximum entropy production and

coincides with the turbulent state for large enough values
of the Reynolds number and of the initial perturbation
energy. Nonlinear optimization is needed to determine
this optimal initial condition and the energy threshold
below which turbulence cannot ensue. For realistic domain
sizes the optimal initial condition is localized in the three
spatial directions. The transition path is characterized by
the occurrence of a single bent velocity streak whose
oscillations increase rapidly at breakdown. Although com-
putationally expensive, the approach proposed is not lim-
ited to simple flows, and the next step is to extend the
present results to flows that are inhomogeneous in the
streamwise direction.
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FIG. 4 (color online). Optimal initial condition at the threshold
level �0T , visualized through isosurfaces of positive and negative
streamwise velocity perturbation, shown with light (yellow) and
dark (blue) color. Contour lines show positive and negative
spanwise velocity at x ¼ 1:5�. The base flow is indicated by
the arrows along the sides in (a). Re ¼ 1500, domain size 4��
2� 2�. The isosurface level is 65% of the maximum value of
each component: (a) u2max¼2:89�10�5, (b) u2max¼2:89�10�5,
(c) u2max ¼ 2:09� 10�3, (d) u2max ¼ 2:07� 10�1.
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