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� We study rigid particle suspensions in a Couette flow with porous walls.
� The porous walls induce a decrease in the suspension effective viscosity.
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� We provide a closed set of equations for the suspension viscosity.
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a b s t r a c t

We study the effect of isotropic porous walls on a plane Couette flow laden with spherical and rigid par-
ticles. We perform a parametric study varying the volume fraction between 0 and 30%, the porosity
between 0:3 and 0:9 and the non-dimensional permeability between 0 and 7:9� 10�3 We find that the
porous walls induce a progressive decrease in the suspension effective viscosity as the wall permeability
increases. This behavior is explained by the weakening of the wall-blocking effect and by the appearance
of a slip velocity at the interface of the porous medium, which reduces the shear rate in the channel.
Therefore, particle rotation and the consequent velocity fluctuations in the two phases are dampened,
leading to reduced particle interactions and particle stresses. Based on our numerical evidence, we pro-
vide a closed set of equations for the suspension viscosity, which can be used to estimate the suspension
rheology in the presence of porous walls.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

One of the challenges faced in every aspect of a new technology
is how to reduce energy loss and inefficiencies by manufacturing
advanced and novel devices at low or no cost. When a suspension
transport properties are critical, as of interest here, these devices
include, but are not limited to, technologies such as extrusion
(shallow screw channels) and thin lubricating films. In such sys-
tems, proper boundary conditions play a major role in controlling
and driving the flow. In this study, we explore the flow of particle
suspensions over porous surfaces in a plane Couette flow in order
to evaluate the effect of these walls on the particle laden flow
behavior. This understanding may contribute to improving the effi-
ciency and operating lifetime of the abovementioned devices.

Particle-laden flows are encountered in various industrial appli-
cations, including blood flow, slurry transport, and pharmaceutical
industry applications. Slow flow of non-Brownian suspensions has
been analytically and experimentally examined in various geome-
tries, the simplest probably being the Couette flow between imper-
meable walls (Leighton and Acrivos, 1987; Phillips et al., 1992;
Acrivos et al., 1993; Nott and Brady, 1994; Morris and Boulay,
1999; Zarraga et al., 2000; Singh and Nott, 2003; Sierou and
Brady, 2002; Miller and Morris, 2006; Yurkovetsky and Morris,
2008; Deboeuf et al., 2009; Miller et al., 2009; Yeo and Maxey,
2010; Guazzelli and Morris, 2011; Lashgari et al., 2014). On the
other hand, Newtonian fluid flow past porous surfaces also has
many important applications such as flow over sediment beds
(Goharzadeh et al., 2005), over crop canopies and in forests
(Kruijt et al., 2000; Ghisalberti and Nepf, 2009), in the human body
(Guo et al., 2000) and over carbon nanotubes (Battiato et al., 2010).
In particular, flow over porous walls is gaining increasing interest
due to the possibility of passively controlling the flow and reducing
drag in both laminar (Mirbod et al., 2017) and turbulent flows
(Rosti et al., 2018a). However, the dynamics and rheological behav-
ior of particles flowing over porous surfaces are qualitatively dif-
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ferent from those observed over smooth surfaces due to modifica-
tions of the flow and of particle-induced fluid motions by the por-
ous surface, as we will also document here.

Einstein (1956) was the first to show that, the effective viscosity
of a dilute suspension (i.e., volume fractionU ! 0) of rigid particles
in a Newtonian fluid linearly increases with the particle volume
fraction U, when inertia is negligible. Later on, Batchelor (1977)
and Batchelor and Green (1972) extended Einstein’s study to
higher volume fractions and added a second-order term in U. In
general, there is no analytical relation able to predict the suspen-
sion viscosity at higher volume fractions, and empirical fits are
instead used. Here, we will adopt the so-called Eilers fit (Ferrini
et al., 1979; Zarraga et al., 2000; Singh and Nott, 2003; Kulkarni
and Morris, 2008). Deviations from the behaviour predicted by this
and similar expressions have been found due to inertia (Alghalibi
et al., 2018) and at very large volume fractions once friction forces
become dominant (Fall et al., 2008; Seto et al., 2013). Herein, we
quantitatively characterize the rheological behavior of particles
over porous walls across a sheared suspension at semi-dilute con-
centrations, UK30% and negligible inertia.

Recently, Rosti et al. (2019a) studied the rheology of a particle
suspension in channels with elastic walls and found a shear-
thinning behavior of the suspension. This was caused by the parti-
cle migration away from the wall towards the channel center due
to a lift force (Rallabandi et al., 2018) generated by the particle
induced wall deformation. In the present work, we focus on a dif-
ferent kind of wall-modification, rigid porous walls where the fluid
is allowed to penetrate through the porous walls.

In particular, we employ direct numerical simulations (DNSs) to
explore the particle motion and interactions over rigid porous sur-
faces for a plane Couette flow where both surfaces are covered
with porous media with known permeability and porosity. The
chosen set-up is the one typical of fundamental rheology studies,
but the results can be extended to more complex and realistic
geometries, such as channel and duct flows or Taylor-Couette
flows. Here, we quantify the variations in the suspension stresses
and slip velocity in a plane Couette flow due to the existence of
porous surfaces. We also study the combined effects of particle vol-
ume fraction and wall permeability on the effective viscosity of the
suspension. The present manuscript is organized as follows: in Sec-
tion 2 we first present the mathematical and numerical formula-
tions used to model the flow; then, in Section 3 we discuss the
results of the simulations in terms of fluid and particle statistics
and their variation with the particle volume fraction and with
the parameters characterizing the porous media; finally, we collect
the main findings in Section 4 and draw some final conclusions.
2. Methodology

We study the Couette flow of a Newtonian fluid laden with a
suspension of rigid particles bounded by two homogeneous and
Fig. 1. Sketch of the computational domain, the coordinate s
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isotropic porous walls. The fluid is incompressible and two flat, iso-
tropic and homogeneous porous layers are attached to the imper-
meable moving walls, as shown in Fig. 1. The streamwise, wall-
normal and spanwise coordinates are denoted by x; y and z
(x1; x2, and x3), and similarly u;v and w (u1;u2, and u3) are the cor-
responding velocity components. y ¼ 0 and y ¼ 2h denote the two
interfaces between the porous layers and the fluid region, while
y ¼ �hp and y ¼ 2hþ hp are the location of the bounding imperme-
able walls, being hp the porous layer thickness. Rigid spheres, with
the same mass density as the carrier fluid and radius R, are sus-
pended in the purely fluid region between the two porous slabs.

The flow is governed by the Navier–Stokes equations, with the
conservation of momentum and the incompressibility constraint
written as

q
@ui

@t
þ @uiuj

@xj

� �
¼ @sij

@xj
and

@ui

@xi
¼ 0: ð1Þ

In the above, q indicates the fluid density and sij the Cauchy stress
tensor. The fluid is assumed to be Newtonian with constitutive

equations sfij ¼ �pdij þ 2lDij, where p is the pressure, l is the fluid
dynamic viscosity, Dij is the strain rate tensor defined as
Dij ¼ @ui=@xj þ @uj=@xi

� �
=2 and d is the Kronecker delta. The particle

velocity and rotation are governed by the Newton–Euler equations,
which can be stated as

qpVp dU
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where qp; Ip and Vp are the density, moment of inertia and volume
of the particle: when the particle is a rigid sphere with radius Rp, we

have Vp ¼ 4=3ð ÞpRp3 and Ip ¼ 2=5ð ÞqpVpRp2. In the previous equa-
tions, sij is the fluid stress tensor in Eq. (1), ni is the unit normal vec-
tor pointing outwards from a particle and Fc

i and Tc
i are the particle–

particle and particle–wall interaction force and torque. These
include a lubrication correction and a soft collision model (Costa
et al., 2015). In particular, we use Brenner’s asymptotic solution
(Brenner, 1961) to correct the lubrication force when the distance
between solid objects is less than a certain threshold and cannot
be accurately resolved by the numerical mesh; surface roughness
is accounted for by saturating this force at very small distances;
finally, when spheres are in contact, both the normal and tangential
contact force components are obtained from the overlap and the
relative velocity. We use an immersed boundary method (IBM) to
describe the presence of the rigid particles by adding to the right-
hand side of the momentum equation a body force f i that forces
the fluid velocity on the particle surface to match the particle veloc-
ity (Breugem, 2012; Izbassarov et al., 2018).

We characterize the porous layer by the porosity e, the volume
of void regions divided by the total volume, and the permeability
ystems and the different scales involved in the problem.
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Kij, a tensor measuring the ease to flow through the medium.
When the porous medium is isotropic, the permeability can be
described by a single scalar quantity K. As already mentioned,
the flow through a porous medium is governed by the Navier–
Stokes equations with the no-slip boundary conditions imposed
on all the porous elements. However, due to the highly complex
solid matrix shape and the related resolution requirements, this
approach is impractical (except for very simplified cases (De Vita
et al., 2018)). To overcome these difficulties, it has been proposed
(Whitaker, 1969; Whitaker, 1986; Whitaker, 1996) to model only
the large-scale behavior of the flow in the porous medium, averag-
ing (over a small sphere of radius r and volume V) the Navier–
Stokes equations, as illustrated on the right in Fig. 1. This proce-
dure leads to the volume-averaged Navier–Stokes equations.
Rosti et al. (2015) describe a specific form of the VANS equations
obtained assuming an isotropic porous medium with negligible
fluid inertia and large scale separation (i.e., ‘ � r � L, with ‘ being
the smallest scale of the flow and the porous matrix and L � h the
scale of the porous layer). The volume-averaged Navier–Stokes
equations read

q
@ uih is
@t

¼ �e @ ph if
@xi

þ l @2 uih is
@xj@xj

� le
K u

�
i

D Es
;

@ uih is
@xi

¼ 0; ð3Þ

where u
�
i is the difference between the flow and the porous medium

velocity, which is set equal to the wall velocity. The previous equa-
tions are obtained by introducing two average operators: the super-
ficial volume average /h is ¼ 1=V

R
Vf
wdVf , and the intrinsic volume

average wh if ¼ 1=Vf
R
Vf
wdVf (here w is any fluid variable). Note that,

the two operators are linearly related by the condition

wh is ¼ Vf =V wh if ¼ e wh if . The superficial and intrinsic volume aver-
ages are commonly chosen for the velocity and pressure field,
respectively, as discussed in Refs. (Quintard and Whitaker, 1994;
Whitaker, 1996). Recently, Kang and Mirbod (2019) examined the
porosity effect on a flow using the VANS equations and a transport
equation for the kinetic energy.

Our numerical simulations are based on a 3D solver that adopts
an IBM for the particles in the purely fluid region 0 < y < 2h, while
the volume-averaged Navier–Stokes Eq. (3) are solved in the two
porous layers �hp < y < 0 and 2h < y < 2hþ hp. This implies that
the particle radius is much larger than the pore size. Formally,
the fluid flow equations are closed by imposing no-slip boundary
conditions on the rigid walls, on the rigid porous material surface
and on the moving particles. In the VANS, however, we only need
to impose no-slip at the limiting impermeable walls and proper
conditions on the velocity and stresses at the porous-fluid interface
located at y ¼ 0 and y ¼ 2h. In our formulation, pressure and veloc-
ity continuity are enforced at the interface, while the shear stress
may display a jump (Ochoa-Tapia and Whitaker, 1995), with a
magnitude controlled by a parameter s that measures the transfer
of stress at the porous/fluid interface (Minale, 2014; Minale, 2014)
and that depends on the porous material considered and by the
texture of the solid interface (Ochoa-Tapia and Whitaker, 1998).
In this work, we assume s ¼ 0, which guarantees the validity of
the interface condition (Minale, 2014; Minale, 2014), as experi-
mentally verified by Carotenuto et al. (2015). Using these assump-
tions, the momentum-transfer conditions (Ochoa-Tapia and
Whitaker, 1995) at the interfaces (y ¼ 0 and y ¼ 2h) can be simpli-
fied as

ui ¼ uih is; p ¼ ph if ; @u
@y

¼ 1
e
@ uh is
@y

;
@w
@y

¼ 1
e
@ wh is
@y

: ð4Þ

Note that for simplicity, we drop �h i in the notation.
Numerically, we advance the system of equations with an expli-

cit fractional-step method (Kim and Moin, 1985), based on the
3

third-order Runge–Kutta scheme. Spatial derivatives are approxi-
mated with the second-order central finite-difference scheme on
a staggered grid arrangement. The baseline code used in the pre-
sent work has been extensively validated in the past for laminar
and turbulent multiphase problems; the interested reader is
referred to Refs. (Lashgari et al., 2016; Rosti and Brandt, 2017;
Izbassarov et al., 2018; Rosti et al., 2019a; Zade et al., 2019; Rosti
and Brandt, 2020) for more details on the numerical scheme and
for the validation campaign.

2.1. Setup

We consider the Couette flow of a Newtonian fluid laden with
rigid spherical particles with radius R ¼ h=5. The two rigid walls
move with opposite velocity Uw such that the Reynolds number
of the simulation is fixed to Re ¼ q _cR2=l ¼ 0:1, where
_c ¼ 2Uw=2h is the reference shear rate; therefore, we can consider
inertial effects to be negligible. Two porous layers of thickness hp

and porosity e move with the wall velocity, and the purely fluid
region of the domain is bounded by these layers. The numerical
domain has size 16R� 10Rþ 2hp � 16R and periodic boundary
conditions are enforced in the streamwise x and spanwise z direc-
tions. We consider three values of the nondimensional permeabil-
ity r ¼

ffiffiffiffi
K

p
=h, covering the range r 2 0:79;7:9½ � � 10�3, all in the

small permeability limit due to the hypothesis of negligible inertia
inside the porous layers; the perfectly impermeable case, r ¼ 0, is
used as a reference. In most of our simulations, we fix the porous
layer thickness to hp ¼ h=2 and the porosity to e ¼ 0:6; however,
we also evaluate the effect of these parameters by simulating
selected cases with hp ¼ h=4 and hp ¼ h and e ¼ 0:3 and 0:9. Rigid
spherical particles are suspended in the purely fluid region of the
domain and their volume fraction U is varied in the range
U 2 0 : 0:3½ �, corresponding to Np particles suspended in the fluid
domain, in particular Np ¼ 183 at U ¼ 0:3. Note that the particle
volume fraction is computed taking only the purely fluid region
into account. The full set of simulations analyzed in this work is
reported in Table 1. These parameters are chosen to facilitate com-
parisons with previous studies in literature (Rosti et al., 2018b;
Rosti and Brandt, 2018; Alghalibi et al., 2018; Rosti et al., 2019b).
In all the simulations, the numerical domain is discretized on a
Cartesian uniform mesh with 32 grid points per sphere diameter
2R. Finally, note that the size of the domain in the periodic and
wall-normal directions is large enough to ensure the independence
of the macroscopic suspension properties from these parameters
(Fornari et al., 2016). For the present configurations, we have ver-
ified that an increase in the domain size by 50% in each direction,
results in a change in the mean effective viscosity (computed at the
statistically steady state dynamics) lower than 3%. Initially, parti-
cles are positioned randomly in the domain, and the fluid and par-
ticles are at rest. When the two walls start moving, the initial
transient occurs, and after approximately 60 _c�1, a statistically
steady condition is reached. We computed the mean quantities
by averaging over a time of 40 _c�1 after this initial transient.

3. Results

We start our analysis by showing in Fig. 2 (top) the profile of the
streamwise component of the mean velocity u in the absence of
particles, where the overbar indicates the average over the homo-
geneous directions, i.e. x and z, and over time. We observe that in
the purely fluid region y > 0, the velocity is linear but with a smal-
ler slope than the nominal one of the flow over impermeable walls
_c ¼ Uw=h. The change in the slope grows with the wall permeabil-
ity r, which is due to the weakening of the no-slip boundary con-
ditions at the fluid-porous interface y ¼ 0, where the difference



Table 1
Summary of the simulations performed at different particle volume fractions U, porosities e, permeabilities r and porous layer thicknesses hp , all at a fixed Reynolds number
Re ¼ 0:1, for which inertial effects are considered negligible.

hp ¼ h=2; e ¼ 0:6

U 0:00 0:06 0:12 0:24 0:30

r� 103 0 0 0 0 0

U 0:00 0:06 0:12 0:24 0:30

r� 103 0:79 0:79 0:79 0:79 0:79

U 0:00 0:06 0:12 0:24 0:30

r� 103 2:5 2:5 2:5 2:5 2:5

U 0:00 0:06 0:12 0:24 0:30

r� 103 7:9 7:9 7:9 7:9 7:9

hp ¼ h=2;r ¼ 7:0� 10�3

U 0:00 0:12
e 0:3 0:3
U 0:00 0:12
e 0:6 0:6
U 0:00 0:12
e 0:9 0:9

e ¼ 0:6;r ¼ 7:0� 10�3

U 0:00 0:12
hp=h 0:25 0:25
U 0:00 0:12

hp=h 0:5 0:5
U 0:00 0:12

hp=h 1 1
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between the wall velocity Uw and the mean flow assumes a non-
zero value, the so-called slip velocity Us ¼ Dus ¼ Uw � u y ¼ 0ð Þ.
Inside the porous layers y < 0, the velocity gradient rapidly
decreases, and the velocity eventually reaches the wall velocity
Uw. The small values of permeability, used here to satisfy the
hypothesis of negligible inertia inside the porous layers, induce a
slip velocity that is rather limited; however, the consequent
change in shear rate is not negligible (up to 7% the nominal value).
This is because the permeability has an impact across the whole
domain and a strong effect on the particle suspensions as we dis-
cuss next.

When particles are suspended in the fluid, the mean velocity
profile is modified by their presence, usually with a significant
increase of the wall shear stress. This is shown in Fig. 2 (bottom),
where the streamwise mean velocity profile u is reported for differ-
ent volume fractions U in the case of impermeable walls. We
observe that the deviation from the linear velocity profile grows
with the volume fraction U and results in a fluid velocity lower
than that obtained without the particles. Additionally, note that
the shear rate across the domain is not uniform in the presence
of particles. This displays the tendency of the particles to form
preferential layers.

The combined effect of the permeable walls and the presence of
the rigid particles is displayed in Fig. 3, where the top figure shows
the modifications of the mean velocity profile due to the wall per-
meability r at fixed volume fraction U ¼ 0:24, whereas the bottom
panel depicts the modifications in the case of r ¼ 0:70� 10�3 for
different values of the solid volume fraction U. From the results
reported in both figures, we can observe that the two effects com-
bine in a nontrivial way; in particular, we note that both the wall
permeability and the addition of particles enhance the magnitude
of the slip velocity: the former induces velocity deviations that
penetrate deeper in the porous layers, whereas the latter does
not, and thus, the increased slip velocity is accompanied by an
increased shear rate at the interface. Furthermore, it can be seen
that the wall permeability smoothens the velocity profile in the
bulk of the fluid in the presence of particles.
4

In the absence of particles, the flow is stationary, and the veloc-
ity fluctuations are zero, independent of the level of permeability
of the porous wall. On the other hand, when particles are sus-
pended in the flow, their motion induces velocity fluctuations,
and the flow becomes unsteady. The root-mean square of the fluid
streamwise and wall-normal velocity fluctuations u0 and v 0 are
reported in Fig. 4 for different levels of wall permeability r and
particle volume faction U. The results show that the streamwise
velocity fluctuations are larger than their wall-normal counter-
parts in all the cases studied here.

The wall permeability reduces the peak of both fluctuation
components but enhances the velocity fluctuations at the interface
due to a reduced wall-blocking effect, similar to what was
observed for the mean velocity profile and the rise of the slip veloc-
ity. However, velocity fluctuations can penetrate deeper in the por-
ous layers, almost reaching the bounding impermeable walls for
the largest permeability shown here. Also, similar to what was
observed for the mean velocity profile, the particle volume fraction
does not significantly influence the level of penetration of the
velocity fluctuations into the porous layers, but enhances the val-
ues at the interface and across the whole domain. Thus, in general,
while the presence of particles induces velocity fluctuations that
increase with their volume fraction, the wall permeability overall
reduces the level of fluctuations into the bulk of the domain by dis-
sipating them in the porous layer. Interestingly, the streamwise
velocity fluctuations are enhanced by the wall permeability in
the center of the channel, whereas the wall-normal component is
reduced. Considering that the particles are the origin of these fluc-
tuations, this result suggests that the particle dynamics are modi-
fied in the presence of permeable walls, as analysed below.

Fig. 5 reports the values of the slip velocity Us and of the wall-
normal velocity fluctuations v 0

s at the interface y ¼ 0
(v 0

s ¼ v 0 y ¼ 0ð Þ) for all the cases studied in the present work. The
figures confirm that both quantities increase with increasing per-
meability of the walls, i.e., r, and with particle volume fraction
U. In addition, while the slip velocity is not null in the absence of
particles, the velocity fluctuations are present only in the
particle-laden flows. Both quantities rapidly grow from 0 even



Fig. 2. Mean fluid streamwise velocity component u as a function of the wall-
normal distance y for (top) various wall permeabilities r without any particles, i.e.,
U ¼ 0, and for (bottom) various particle volume fractions U with impermeable
walls, i.e., r ¼ 0:0. In the top panel, the solid, dashed-dotted and dotted line styles
pertain to the cases with r ¼ 0:79� 10�3;2:5� 10�3 and 7:9� 10�3, respectively,
while in the bottom panel gray, cyan, green, gold and orange are used to indicate
U ¼ 0;0:06;0:12;0:24 and 0:3, respectively. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Mean fluid streamwise velocity component u as a function of the wall-
normal distance y for (top) various wall permeabilities r at a fixed particle volume
fraction U ¼ 0:24 and (bottom) various particle volume fractions U with
r ¼ 0:79� 10�3. The black, blue, green, brown and red colors are used to
distinguish U ¼ 0;0:06;0:12;0:24 and 0:3, while the solid, dashed-dotted and
dotted line styles are used to distinguish r ¼ 0:79� 10�3;2:5� 10�3 and
7:9� 10�3, respectively. In the top figure, the gold solid line represents the
reference solution over impermeable walls with particles at U ¼ 0:24. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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for small values of r and appear to almost saturate for the highest
values of r considered, especially for the lower volume fractions
investigated in this work. Interestingly, the ratio between the slip
velocity of the mean flow Us and the wall-normal velocity fluctua-
tions v 0

s at the interface is approximately independent of wall per-
meability r but strongly reduces with the particle volume fraction
U; in particular, the ratio Us=v 0

s goes to infinity for U ¼ 0 (since the
velocity fluctuations are null) and decreases for large volume frac-
tions; see Fig. 6. We can thus define a function F that depends only
on U such that Us ¼ v 0

sF Uð Þ; a fit to our data provides the form

F Uð Þ ¼ 1:37þ 1:12U�1, which is also reported in Fig. 6 and may
be useful for future modeling works.

The modifications of the flow that arise when particles are sus-
pended in a channel with permeable walls also affect the particles
dynamics. First, we examine the mean local particle concentration
/ across the channel. Fig. 7 reports the averaged results for various
particle volume fractions and wall permeabilities. We observe that
similar to what is typically observed for flows over rigid walls,
when the particle volume fraction is increased, the particle concen-
tration increases nonuniformly across the domain and particle lay-
ers form, preferentially located close to the interface and in the
5

center of the channel. On the other hand, when the wall permeabil-
ity is enhanced, the particle concentration becomes smoother and
the particle layering is attenuated as demonstrated by the reduc-
tion in the particle concentration close to the porous interface.
Overall, this indicates that the particle tendency to migrate
towards the wall at high concentration is partially counteracted
by the wall permeability.

Next, we consider the spanwise component of the mean particle
angular velocity xz, depicted in Fig. 8 as a function of the wall per-
meability r and normalized by the value obtained for rigid walls.
As observed in the figure, the angular velocity decreases with r,
with a maximum reduction of approximalety 10% for the most
permeable case considered here. The reduction of xz with r is
mainly due to the decrease in the mean shear rate across the chan-
nel caused by the wall permeability; see Figs. 2 and 3. A direct con-
sequence of the reduced particle rotation is a lower level of
fluctuations in the channel, as these are mainly generated by the
particles. In summary, the analysis of the different statistical data
reveal that the presence of permeable walls decreases the mean
shear across the channel, which affects the particle dynamics by



Fig. 4. (top) Streamwise and (bottom) wall-normal fluid velocity fluctuations u0 and v 0 as a function of the wall-normal distance y for (left) various wall permeabilities r at a
fixed particle volume fraction U ¼ 0:24 and (right) various particle volume fractions U at fixed permeability r ¼ 0:79� 10�3. In the figure gold solid lines represent the
reference solution over impermeable walls with particle volume fraction U ¼ 0:24. The black, blue, green, brown and red colors are used to distinguish U ¼ 0;0:06;0:12;0:24
and 0:3, while the solid, dashed-dotted and dotted line styles are used to distinguish r ¼ 0:79� 10�3;2:5� 10�3 and 7:9� 10�3, respectively. In the left figures, the gold solid
line represents the reference solution over impermeable walls with particles at U ¼ 0:24. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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reducing their rotation, in turn inducing a reduction of the velocity
fluctuations due to the lower level of interaction among the sus-
pended objects.

To gain further insight on the global suspension behavior, we
examine the shear stress balance and study how the total shear
stress is affected by the wall permeability and by the presence of
a solid phase; in particular, we focus our attention on the purely
fluid region of the domain, i.e., 0 < y < 2h. For a plane Couette flow,
the mean total shear stress s12 can be decomposed into the sum of
the viscous shear stress svisc12 ¼ ldu=dy, the Reynolds shear stress
sreyn12 ¼ �qu0v 0 and the particle contribution spart12 (found here by
subtracting the other two components from the total shear stress),
with their sum being a constant independent of the distance from
the wall and equal to the total shear stress, i.e.,
s12 ¼ svisc12 þ sreyn12 þ spart12 . The average value of all these different
terms is reported in Fig. 9. The viscous shear stress remains almost
constant for all the volume fractions and different wall permeabil-
ities considered here, while the Reynolds stress contribution is
very small, even not perceivable on the selected scale, due to the
low Reynolds number. The particle contribution grows with the
volume fraction U and decreases with the wall permeability r,
rapidly becoming the main contribution to the total shear stress
as the volume fraction grows.
6

The value of the shear stress can be used to compute the so-
called effective viscosity of the suspension (Ferrini et al., 1979;
Zarraga et al., 2000; Singh and Nott, 2003; Kulkarni and Morris,
2008; Mewis and Wagner, 2012; Morris, 2020), le, defined as
le ¼ s12= _c0, where _c0 is the reference shear rate, 2Uw=2h. The nor-
malized effective viscosity le=l as a function of the particle vol-
ume fraction U is reported in Fig. 10, together with the Eilers fit
(Eilers, 1941; Picano et al., 2013)

le=l ¼ 1þ 1:7
U

1�U=0:6ð Þ
� �2

;

and the formula by Zarraga et al. (2000)

le=l ¼ e�2:34U

1�U=0:6ð Þ3
;

which well describe the effective viscosity of a suspension of rigid
spherical particles in the reference case of impermeable walls. We
observe that le increases with U independent of the wall perme-
ability; however, the growth rate is reduced when r is increased.
The effect of the wall permeability becomes more pronounced as
the volume fraction increases, suggesting a complex dependency
of le on these two parameters. We relate the decrease in the effec-
tive viscosity le with the wall permeability r to a reduction of the



Fig. 5. (top) Interface slip velocity Us and (bottom) wall-normal fluctuations v 0
s as a

function of the wall permeability r for various particle volume fractions U. The
black, blue, green, brown and red colors are used to distinguish
U ¼ 0;0:06;0:12;0:24 and 0:3. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Ratio between the interface slip velocity Us and the wall-normal fluctuations
v 0
s averaged for different r as a function of the particle volume fraction U. The blue,

green, brown and red symbols are used to distinguish U ¼ 0;0:06;0:12;0:24 and
0:3. The black solid line is a fit to our data in the form Us=v 0

s ¼ 1:37þ 1:12U�1. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 7. Average particle concentration / as a function of the wall-normal distance y
for (top) various wall permeabilities r at a fixed particle volume fraction U ¼ 0:24
and (bottom) various particle volume fractions U at fixed permeability r ¼
0:79� 10�3. In the figure, the horizontal dotted lines represent the bulk particle
concentration U. The black, blue, green, brown and red colors are used to
distinguish U ¼ 0;0:06;0:12;0:24 and 0:3, while the solid, dashed-dotted and
dotted line styles are used to distinguish r ¼ 0:79� 10�3;2:5� 10�3 and
7:9� 10�3, respectively. In the top figure, the gold solid line represents the
reference solution over impermeable walls with particles at U ¼ 0:24. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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wall-blocking effect due to the weakening of the no-penetration
conditions; this results in a nonzero wall-normal velocity at the
interface, i.e., v 0

s, as reported in Fig. 5(bottom). This effect can be
modeled as an increase in the total volume available to the particles
and thus an effective reduction in the particle volume fraction U,
which we call the effective volume fraction Ue. In particular, we
compute Ue by increasing the total volume to include the part of
the porous layer where the wall-normal velocity fluctuations v 0

are greater than zero (more precisely where the fluctuations are lar-
ger than 0:05v 0

s). If we replot the effective viscosity now as a func-
tion of the effective volume fractionUe (see bottom panel of Fig. 10),
we obtain a good collapse of all the data onto the experimental fits
for rigid walls, which supports the idea that the reduction of le can
be explained in terms of an effective reduction of the suspension
solid volume fraction, U, due to the weakening of the wall effect.
3.1. Effect of the porosity e and the porous layer thickness hp

Finally, we evaluate the effect of the other two parameters
describing the porous media, i.e., the porosity e and the thickness



Fig. 8. Spanwise component of the particle angular velocity xz as a function of the
wall permeability r for the different volume fractions considered. The angular
velocity is normalized by the value obtained over rigid walls x0

z . The blue, green,
brown and red symbols are used to distinguish U ¼ 0:06;0:12;0:24 and 0:3. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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of the porous layer hp. To do so, we perform additional simulations
for the single phase case U ¼ 0 and for an intermediate volume
fraction U ¼ 0:12 both with the largest value of permeability con-
sidered in the present study r ¼ 7:9� 10�3; in particular, we vary
the porosity in the range e 2 0:3; 0:9½ � and the porous layer thick-
ness in the range hp=h 2 0:25;1½ �. The mean streamwise velocity
profiles pertaining to these additional cases are reported in
Fig. 11. We observe that for the two volume fractions considered,
the variations due to these parameters are small, indicating that
the variations in the permeability provide the major contribution,
consistent with what was previously observed by Rosti et al.
(2015). More precisely, we find no appreciable differences when
changing the porous layer thickness (Zhang and Prosperetti,
2009; Mirbod et al., 2009; Kang and Mirbod, 2019; Haffner and
Mirbod, 2020), while small variations are found when changing
the porosity. In particular, the two largest values of e (0:6 and
0:9) provide very close results, while the smallest value of e (0:3)
leads to a slight reduction in the mean shear rate by further
increasing the slip velocity (Rosti et al., 2015). The latter can be
explained by the shear stress interface condition in Eq. (4), which
prescribes an increase in the momentum jump for �! 0.
Fig. 9. Histograms showing the different components of the mean shear stress balance
r ¼ 2:5� 10�3 and (right) r ¼ 7:9� 10�3. The green, blue and gray colors are used to dist
stress sreyn12 , with the latter hardly visible at the Reynolds number considered here. (For in
the web version of this article.)
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4. Conclusions

We have studied the rheology of suspensions of rigid, spherical
particles in a Newtonian fluid in wall-bounded shear flow, i.e., Cou-
ette flow, at a sufficiently low Reynolds number so that inertial
effects are negligible. The part of the channel filled with particles
is bounded by two rigid, homogeneous and isotropic porous layers,
fixed on the moving walls and moving with the wall velocity. The
problem is solved numerically using an IBM to account for the rigid
suspension, while we model the presence of the porous layer by
the Volume-Averaged Navier–Stokes (VANS) equations; these
neglect the microscale geometry and dynamics within the porous
interstices and provide a macroscopic description of the medium.
The volume-averaged equations are obtained by assuming a strong
separation of scales between the microscopic characteristic size of
the pores and the macroscopic size of the porous medium (its
thickness) and of the rigid particles, whose size is therefore large
to prevent them from entering the porous medium.

We examine the rheology of the suspension by discussing how
the suspension effective viscosity le is affected by variations in the
particle volume fraction U and by the level of permeability of the
walls r. We observed that le is a nonlinear function of both param-
eters le ¼ le U;rð Þ. In particular, the suspension of rigid particles
has a lower viscosity in the presence of permeable walls than that
measured in the case of rigid walls; this is due to the permeability
of the walls, weakening the wall-blocking effect and allowing a
nonzero velocity at the interface, quantified here by the slip veloc-
ity Us, which grows with both U and r. The rise of the slip velocity
Us with the wall permeability r effectively reduces the mean shear
rate in the domain, thus causing a reduction of the particle rotation
(i.e., the particle spanwise angular velocity is reduced) and a
reduced interparticle interaction. The latter is the ultimate factor
responsible for the reduced effective viscosity of the suspension,
which we have shown to be due to a reduced particle-induced
stress in the total shear stress budget.

The presence of the particles induces velocity fluctuations in the
domain, which are also nonzero at the interface in the case of per-
meable walls. The velocity fluctuations can penetrate deeply
within the porous media, where they are ultimately dissipated.
We have shown that the penetration depth of the wall-normal
fluctuations can be used to compute a reduced effective volume
fraction Ue, which successfully collapses all the different rheologi-
cal curves le vs U for different wall permeabilities r onto a single
master curve, which is well approximated by the Eilers fit valid for
the viscosity of a suspension flowing over rigid and impermeable
walls. This suggests that the effect of the porous walls can be
as a function of the particle volume fraction U for (left) r ¼ 0:79� 10�3, (middle)
inguish the viscous stress sv isc12 , the particle contribution spart12 and the Reynolds shear
terpretation of the references to colour in this figure legend, the reader is referred to



Fig. 10. Effective viscosity le as a function of (top) the particle volume fraction U
and (bottom) the effective particle volume fraction Ue for various permeabilities r.
The black, blue, green, brown and red symbols are used to distinguish
U ¼ 0;0:06;0:12;0:24 and 0:3, respectively. The black and gray solid lines are the
Eilers fit (Eilers, 1941) and the formula by Zarraga et al. (2000). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 11. Mean fluid streamwise velocity component u as a function of the wall-
normal distance y for (top) various wall porosities e and (bottom) various
thicknesses of the porous layer hp . The wall permeability is fixed equal to
r ¼ 7:9� 10�3, and two particle volume fractions are considered: U ¼ 0 (black)
and 0:12 (green). In the figures, the dashed, solid and dashed-dotted lines are used
for e ¼ 0:3;0:6 and 0:9 and for hp ¼ 0:25h;0:5h and h, respectively. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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understood in terms of a reduced volume fraction due to the weak-
ening of the wall-blocking effect, ultimately confirming the
reduced level of particle–particle interaction. It should be noted
that for single particles near a wall the properties and structure
of the porous surface modify the lubrication interaction on a length
scale on the order of the geometric mean of the radius and surface
separation distance. This lubrication interaction might impact the
angular velocity of the particles. These are the object of our current
investigations.

Moreover, this study can be seen as a step forward towards
understanding the role of porous walls in the particle stress Rp

and the normal stress differences N1 and N2. Several studies exam-
ined the particle stress in various geometries with impermeable
walls (Gadala-Maria and Acrivos, 1980; Acrivos et al., 1993;
Zarraga et al., 2000; Morris and Boulay, 1999; Singh and Nott,
2003; Sierou and Brady, 2002; Yurkovetsky and Morris, 2008;
Deboeuf et al., 2009; Yeo and Maxey, 2010; Boyer et al., 2011). In
all of these studies, it was found that the particle pressure is small
at low volume fraction but grows with /, reaching magnitudes of
the same order as the shear stress.
9

Finally, we extended the use of an effective volume fraction to
porous media in order to predict the suspension rheology with
simple empirical fits, such as the Eilers formula, as previously done
in Refs. (Picano et al., 2013; Mueller et al., 2010; Rosti et al., 2018b;
Rosti et al., 2019a) for inertial effects, particle shape, deformability
and wall elasticity. This scaling confirms that viscous dissipation is
still the dominant mechanism at work in these flows.
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