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In this Letter we show by numerical simulation that streamwise streaks of sufficiently large
amplitude are able to stabilize Tollmien—Schlichting waves in zero pressure gradient boundary
layers at least up to Rel000. This stabilization is due to the spanwise averaged part of the
nonlinear basic flow distortion induced by the streaks and occurs for streak amplitudes lower than
the critical threshold beyond which secondary inflectional instability is observed. A new control
strategy is implemented using optimal perturbations in order to generate the strea0020©
American Institute of Physics[DOI: 10.1063/1.1493791

In boundary layer flows with low levels of background flows, a fringe region is employed to enforce inflow and
disturbances, transition is initiated by the exponential ampli-outflow boundary conditions in a periodic domain; in the
fication of the unstable Tollmien—SchlichtingS) waves case of “temporal” simulations a volume force is used to
followed by secondary instabilities and breakdown to turbukeep the basic flow parallel.
lence as soon as thg,,,s amplitude of the primary instability Basic flow.The basic flows we consider are zero pressure
is of the order of 1% of the free stream velocityn the  gradient boundary layers with steady, nonlinearly saturated,
presence of free stream turbulen&sST), narrow elongated spanwise periodic streaks of different amplitudes. We use
regions of alternated low and high streamwise velocity callecptimal perturbatiorisin order to generate the streaks with
“streamwise streaks” slowly oscillate in the boundary lager. minimum input energy. These optimal perturbations consist
For sufficiently large values of FST “bypass transition” is of vortices aligned in the streamwise direction which, owing
observed. For intermediate levels of FST it was howeveto the “lift-up” effect,® have the highest potentiality for spa-
surprisingly found that the spatial amplification rate of small tial transient growtt:'° As in Ref. 5, the optimal perturba-
amplitude TS waves waswer than in the quiet case. This tion computed by Andersscet al® is used as inflow condi-
effect was mainly attributédo the 2D mean distortion of the tion close to the leading edge and its downstream evolution
velocity profile observed in the presence of the ESihich s followed until nonlinear saturation for different initial am-
is produced by the nonlinear saturation of the strédkshis  plitudes. For the computation of the basic flows we use a box
Letter we investigate by direct numerical simulation whetherwith inlet at Re=468.5 and dimensions of 1123,
artificially induced streaks are able to completely stabilizex 206, ;X 12.836, o, in the streamwise, wall-normal and
TS waves. This could be an effective alternative way to conspanwise directions, respectively, where 585X 32 collo-
trol primary instabilities in boundary layers with low levels cation points are used. We denote &y, the boundary layer
of ambient noise. thickness at the inlet. The spanwise extension of the domain

Numerical method.The incompressible 3D Navier— corresponds to one wavelength of the optimally growing
Stokes equations are integrated using a pseudospectral costeeaks. Denoting by, y, andz the streamwise, wall-normal,
described in Lundbladkt al® The code uses Fourier expan- and spanwise coordinates, respectively, we use the following
sions in the streamwise and spanwise directions and Chebyefinition of the streak amplituoEéAS(x)=[ma>g,yz(U—UB)
shev polynomials in the wall-normal direction. The time —min, (U—-Ug)J/2U.., whereU., is the free stream velocity,
stepping scheme is a low storage third-order Runge—Kutt&Jz(x,y) is the Blasius solution, and(x,y,z) is the stream-
method for the nonlinear terms and a second-order Crankwise velocity of the streak. We list in Table | the five differ-
Nicolson method for the linear terms. Dealiasing is used irent cases considered. Caéeis nothing but the Blasius
the streamwise and spanwise directions. Two types of simusoundary layer without streaks. In Fig. 1 we display the evo-
lations are performed in the present study: in the case dfition of the amplitude of the streak®,C,D,E versus the
“spatial simulations,” i.e., simulations of non-parallel basic Reynolds number ReU.. 5, /v based on local boundary
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TABLE I. Streak amplitude for the computed basic flows. 1e-08
Case InletAg Maximum Ag Ag at Re=1047
le-09
A 0.0000 0.0000 0.0000
B 0.0618 0.1400 0.1396 )
C 0.0927 0.2018 0.2017 le-10 | D™
D 0.1235 0.2558 0.2558 N
E 0.1695 0.3199 0.3174
le-11 ¢
layer thicknesss, . It has recently been showthat optimal el
e_

streaks with amplitudeAs>0.26 are subject to secondary
inflectional instabilities. Streak is therefore secondarily un-
stable.
Spatial stability.In the same spirit as Boiket al,> we  FIG. 2. Spatial evolution of the amplitude of 2D perturbations in the Blasius
first test the spatial stability of the computed basic flows toboundary layer without streaksaseA) and with streaks of increasing am-
. . . . . . é)litude (casesB-D).
two-dimensional harmonic perturbations of dimensionles

— 2 ;

frequencyF =2=fv/U . The same computational param- gptained by extracting the streak velocity profiles at the
eters adopted in the evaluation of the basic flows are used igreamwise station corresponding to-RED47. As shown in

this type of simulation. The perturbation is induced by arjg 1 at that streamwise station the streak amplitude is very
two-dimensional time periodic volume force localized at thegjowly varying in the streamwise direction. For this type of
inlet position, extending up to Re480, of amplitude small simulations, the computational domain measures 1200
enough to ensure a linear evolution of the perturbations. The g 5, X5.745, in the streamwise, wall-normal and span-
computations were carried on for sufficiently large times toyise direction respectively, where 10287x 32 colloca-
achieve converged time periodic solutions in all the computjon points are used. In order to consider all the wavenum-
tational domain. In Fig. 2 we show the downsirea}rzn de,"zempbers and frequencies at once, we study the flow response to
ment of ﬂ;g amplitude, based on the nofffy(u’“+uv an impulse-like initial condition. This initial condition, al-
+w’9)dy]"9/2U.,, of two-dimensional waves at the fre- ready used in other studiés 3 is given by Up,vq, W)
quencyF =1.316 10 of the forcing. In the Blasius bound- = (U, 012, — b 1dy)  With ho=P X—y3;e_(;2+;2+;2)

ary layer(caseA) the perturbations decay until they reach h '—_O _ / 0 vev/ (()j__o 2V o. Wi '
branch | of the linear neutral stability curve situated at Re" grgg—(g X0)/Px, Y=Y Py, an Z_.(? Zo)/p; - We use

— 635 in the parallel flow approximation. After, they begin to an |n|t|all disturbance amplitude, sufficiently .small to en-
grow until branch Il is reached at ReL000. When the basic sure a I[\ear deve_lopment of th_e perturbations and length
flow contains a low amplitude stredkaseB) an unstable scales,=5 d, , p¥—2 5.* ’ andpz—.l..55* smal! enough to
domain still exists but the growth of the TS waves is attenu-repmdl_me a localized impulse within the limits of a goc_Jd
ated in a way simé}lar to that observed in the presence of freé?;%lll:;% ?1sm |;hgrfjrgrnfsts\(/joisdpz(rit;agl);ﬁiﬁf}aro;s:r:vasénz;ﬁéjl
stream turbulencé.CaseC presents a region of marginal ) : AR .

stability around Re 750, where the streak amplitude is metry of th(itsc_)lu_tuzag, th_?h'n'tt'al dlstulrbanTet_ls ce]p :ﬁred off-
about 0.17. In the case of largest amplitude stréaiseD), axis, arounczo= + - 1he temporal evolution ot Ihe rms

the forced TS waves are stable. Similar results apply to forcperturban_on Kinetic e ne.rg)E, mteglrateq over Fhe whole
ing frequencies =1.6 10 4 andF=2.010"* computational domain, is shown in Fig. 3. Since all the

Temporal stabilityln the spatial simulations we consid- modes are excited by the initial condition, any unstable mode

ered only some frequenci@sand we forced only 2D pertur- would emerge after an initial transient. The Blasius boundary

bations. To verify the behavior of more general 3D perturba—layer(caseA) is linearly unstable at Re1047 and TS waves

tions of any frequency, we decided to investigate the
temporal stability of the parallel basic flows)(y,z),0,0) le-05
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FIG. 3. Temporal evolution of the rms perturbation energy atRe47 for
FIG. 1. Streamwise spatial evolution of the amplitude of stréak<C, D the Blasius boundary layer without strealcaseA), and with streaks of
andE. increasing amplitudécasesB, C, D, andE).
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FIG. 5. Temporal evolution of the rms perturbation energy at k@47 for

FIG. 4. (a) Spanwise averaged streamwise velocity profilEg), at Re  the complete streak and for the artificial basic flow® andD.
=1047, of the Blasius boundary layeolid line) and of the streaky bound-

ary layersB, C, andD. (b) Corresponding spanwise averaged basic flow displayed in Fig. 5; the figure reveals both the destabilizing
distortionsAU (y) = U (y) = Ue(y). role of AU(y,z) and, more importantly, the dominating sta-
bilizing action ofAU(y), to which the global stabilization of
emerge clearly at times>600; the perturbation growth is TS waves can finally be attributed. The same result applies to
exponential, with values in agreement with the results of thgasec.
linear Orr—Sommerfeld anaIySiS. The low amplitude streak Boundary |ayer controlWe have shown that it is pos-
(caseB) is also unstable but with a lower amplification rate. siple to modify an unstable Blasius boundary layer into a
Streaks with larger amplitudease<C andD) are stable and, staple streaky flow introducing streamwise vortices near the
after the initial transient, perturbations decay for large timesleading edge. The “actuator” input energy is minimized by
Atoo large amplitude of the streaksaseE), however, leads  the choice of an optimal forcing and is @(1/Re) when
to inflectional instability’ compared to the streak enerd{? Moreover, it was recently
Interpretation.We now try to isolate the mechanism re- ghserved that the steady saturated streaks induced by the
sponsible for the observed stabilization of the Blasius boundpptimal vortices maintain an almost constant amplitude for a
ary layer. The basic flow distortiomU(y,z)=U(y,2)  Jarge distance downstream. The stabilization is obtained, in
—Us(y) can be separated into its spanwise averaged pagpen loop, through a modification of the basic flow induced
AU(y) and its spanwise varying pattU(y,z)=AU(y,z) by actuators situated upstream of the unstable domain. The
—AU(y). Note that nonlinear effects are essential to genertocal skin friction coefficient of the streaky flow is increased,
ateAU(y). In Figs. 4a) and 4b) we reproduce the spanwise at worst, by less than 20%, compared to the Blasius bound-
averaged velocity (y)=Ug(y) + AU(y) of the basic solu- ary layer. We tested this control strategy for Reynolds num-
tions at Re=1047 and the correspondingU(y). It can be bers up to 1047 for a fixed spanwise periodicity of the
seen how the increase of the streak amplitude leads to fulléitreaks. For larger Reynolds number probably larger streak
U-profiles and should thus have a stabilizing effect on the TMPplitudes would be necessary to achieve stabilization. The
waves® On the other hand, the terdU(y,z) leads to ve- maximum allowed ampllt_ude is _h_owever limited by the ap-
locity profiles which, based on a 2D local stability analyis, pearance of secondary instabilities on the streaks. We are

are more unstable, at some spanwise statiotisan the Bla- therefore currently identifying stabilizing streak amplitude

sius profile. The results of the complete 3D stability analysis:[h“aShOIdS for a wider range of Reynolds numbers and of

displayed in Fig. 3, may be interpreted as follows: without>Panwise wavelength.
streaks(caseA), the Blasius profile is unstable to TS waves

due to a viscous instability. Low amplitude stredkaseB)
are neither able to stabilize the viscous instability wit
AU(y), nor to create, withU(y,z), shears strong enough The authors kindly thank P. Huerre for his comments on
to support fully 3D inflectional instabilities. For moderate this Letter. The computational facilities were provided by
streak amplitudegcasesC and D), AU(y) is able to com- CNRS/IDRIS. L.B. acknowledges financial Sypport lgoke
pletely stabilize the flow but, for too large amplitudesse ~ Polytechnique(EGIDE) and VR (Vetenskapset during

E) the termAU(y,z) supports inflectional instabilities and Nis stay at LadHyX, where this work was performed.
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