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Effective slip over partially filled microcavities and its possible failure
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Motivated by the emerging applications of liquid-infused surfaces (LIS), we study the
drag reduction and robustness of transverse flows over two-dimensional microcavities
partially filled with an oily lubricant. Using separate simulations at different scales,
characteristic contact line velocities at the fluid-solid intersection are first extracted from
nanoscale phase field simulations and then applied to micronscale two-phase flows, thus
introducing a multiscale numerical framework to model the interface displacement and
deformation within the cavities. As we explore the various effects of the lubricant-to-
outer-fluid viscosity ratio μ̃2/μ̃1, the capillary number Ca, the static contact angle θs , and
the filling fraction of the cavity δ, we find that the effective slip is most sensitive to the
parameter δ. The effects of μ̃2/μ̃1 and θs are generally intertwined but weakened if δ < 1.
Moreover, for an initial filling fraction δ = 0.94, our results show that the effective slip is
nearly independent of the capillary number when it is small. Further increasing Ca to about
0.01μ̃1/μ̃2, we identify a possible failure mode, associated with lubricants draining from
the LIS, for μ̃2/μ̃1 � 0.1. Very viscous lubricants (e.g., μ̃2/μ̃1 > 1), however, are immune
to such failure due to their generally larger contact line velocity.
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I. INTRODUCTION

Advances in microfluidics and nanotechnology have boosted a rapid development of surface
engineering in the past two decades. Among the different effects of micro-/nanopatterned surfaces,
often inspired by observations in nature, one remarkable finding is that the introduction of micro-/
nanoscale roughness on an otherwise smooth hydrophobic surface can sometimes significantly
reduce the resistance to an external liquid flow. This slippery effect, due to entrapment of gas or
vapor pockets under the surface asperities (superhydrophobic Cassie state), was first observed in the
experiment of a water flow through a water-repellent pipe [1]. Subsequently, a number of studies have
demonstrated various levels of drag reduction [2–5], but also in some cases drag enhancement [6,7].
Despite the discrepancies in the literature, a common technological challenge for the application of
superhydrophobic materials is their fragility [8]. Under high pressures or external forces, such as
turbulent fluctuation or phase change, the surface texture can be partially or fully impregnated by
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the outer fluid (Cassie-to-Wenzel transition), causing the system to lose the features it was designed
for [9–11].

Liquid-infused surfaces (LIS) are an alternative when aiming for drag reduction. They are more
robust against pressure-induced failure, while displaying the same useful properties as conventional
gas-cushioned superhydrophobic surfaces [12]. Two recent experiments have demonstrated, using
microfabricated oil-impregnated pillars and grooves separately, up to 16% drag reduction in laminar
flows [13] and up to 14% drag reduction in turbulent flows [14]. In the case of the turbulent flow, the
authors also tested superhydrophobic surfaces and measured approximately 10% drag reduction [14].
The values cited above, obtained at small lubricant-to-external-fluid viscosity ratios, can eventually
decrease to nearly zero as the lubricant becomes more viscous. However, hybrid designs have been
devised to maintain the performance, see, e.g., a recent proof-of-concept study [15].

Analytically, the slippage over a superhydrophobic or liquid-infused surface can be characterized
by an effective slip length. Analogous to the definition of the Navier slip, the effective slip length is an
averaged quantity equal to the distance below the surface at which the velocity would extrapolate to
zero (to be distinguished from the intrinsic slip of molecular nature [9]). Extensive studies have been
devoted to obtaining theoretical expressions of the effective slip for two-dimensional longitudinal or
transverse grooves [18–25]. Among these, Refs. [18–21,25] assume perfect slip along the liquid-gas
interface, Refs. [21–23] assume flat menisci, while the meniscus deformation, if considered, is either
small [24,25] or in the dilute limit (i.e., the surface is mostly solid) [18]. Furthermore, for the purpose
of calculation, the shape of the interface is always assumed symmetric (i.e., flat or circular) even
under shear. This practically limits the application of the analytical results to the zero capillary limit,
being the upper/lower bound of the drag reduction depending on the specific conditions.

Understanding the dependence of the slip length on the imposed shear and the lubricant viscosity in
more realistic conditions may require a numerical approach. There are, as yet, surprisingly few fully
resolved hydrodynamic simulations able to solve the details of the flow reducing the underlying
assumptions. Most prior numerical studies still consider flat/circular menisci with zero subphase
viscosity [11,26–30]; however, they extend analytical solutions to more complex surface patterns
or the finite-Reynolds-number regime. Flexible bubble shapes were first considered in Ref. [31]
for a uniform gas mattress and later for a nonuniform distribution [32]. Using a two-phase lattice
Boltzmann method, Refs. [31,32] show that increasing the capillary number reduces the effective
slip, even below zero (i.e., more friction than a solid plate). Specifically, their nanobubbles protrude
strongly into the flow and remain trapped in the pores. Indeed, for very large protrusion angles,
negative slip is both observed experimentally [6] and verified analytically [20]. However, when the
protrusion angle is smaller and the bubbles are allowed to slide on the substrate, the phase field
simulation of Ref. [33] shows the opposite behavior: the effective slip is nearly shear-independent
for relatively low capillary numbers, while it can increase dramatically if the capillary number is
beyond some threshold. This threshold is not a single, universal value but depends on the spacing
of the grooves and the initial filling of the gas; however, the enhancement of the slip is clearly due
to depinning of the liquid-gas-solid contact line. We note that the depinning process considered
in Ref. [33] might be an idealization, since realistic solid surfaces may not be smooth/chemically
homogeneous near the edge. Furthermore, both studies consider gas bubbles submerged in water
under unrealistically large shear rates (106 ∼ 107s−1)1. Whether this is stable or can be physically
realized without generating significant heat remains an open question.

Here, we explore a slightly different flow configuration: planar shear flows over a microrough
wall partially impregnated by a lubricant fluid. Using the newly developed multiscale numerical
framework in Ref. [41], simulations at separate scales are performed to obtain the steady drag
reduction, while capturing the dynamic wetting behavior in details. As we investigate the various
effects of the viscosity ratio, the capillary number, and the static contact angle, we find that the
filling fraction has the largest impact for drag reduction. It weakens the effects of other parameters,

1In Ref. [31], the shear rates were reported as 10−6 ∼ 10−7s−1. This must be a typo.
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FIG. 1. Schematic of the problem definition and setup for the two separate simulations. The substrate is
patterned with an array of square cavities. The unit geometry shows the cross-section of the partially filled
microcavity. The boundary condition at y = H is equivalent to unit tangential stress and zero normal stress,
while the arrows near the contact lines represent the slip boundary. The local box depicts the computational
domain of the moving contact line model (the variables are denoted by a prime). Its velocity boundary conditions
correspond to a moving wall in the bending interface reference frame.

which are generally intertwined in a number of non-trivial ways. Moreover, for a given initial filling
fraction (94%), our results show that the viscosity of the lubricant can not only influence the effective
slip length, but also the robustness of the substrate under external shear. Shear-driven failure of LIS
has recently been reported in Refs. [12,16,17] in the longitudinal case. Our study predicts that a
similar drainage, though the viscosity dependence differs, may also occur in the transverse case.
Understanding of this drainage failure is instructive for improved robustness of the surface design.

II. MICROCAVITIES PARTIALLY FILLED WITH LUBRICANTS

A. Problem setup

We consider the transverse flow over an array of regularly spaced square cavities illustrated in
Fig. 1. The outer fluid of viscosity μ1 is driven by a constant shear γ̇ in the x direction, imposed
at distance H above the floor. The cavities of length L/2 and depth H/2 are partially filled with
a lubricant fluid of viscosity μ2. When the number of the microcavities is large, the system is
equivalent to a single cavity with periodic boundary conditions in the front and back. The solution
at the (quasi-)steady state is determined by the incompressible Stokes equations, written in the
nondimensional form

∇ · u = 0, − ∇p + ∇ · [μi(∇u + ∇uT )] = 0, (1)

where u = (u,v) is the velocity, p = p(x,y) the pressure, and μi = μ̃i/μ̃1 (i = 1 or 2) the
dimensionless viscosity, using H̃ and ˙̃γ H̃ as the reference length and velocity, respectively.2 For
viscous flows, the velocity and its tangential derivatives are continuous along the fluid interface [34].
The normal stress is discontinuous due to the surface tension σ̃ and the viscosity difference, giving
the pressure jump (denoted as [A]� = A2 − A1)

[p]� = κ

Ca
+ 2[μ]�nT · ∇u · n on �, (2)

where n is the outward-pointing normal at the interface �, κ its curvature, and Ca = μ̃1 ˙̃γ H̃/σ̃ the
capillary number.

2Dimensional values are denoted with a tilde throughout the manuscript.
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As the lubricant only partially fills the cavity initially, it may become distorted or splatter under
the external shear. The associated contact line motion can be described by a second capillary
number, Cac = μ̃2Ũc/σ̃ , where Ũc is the characteristic contact line velocity related to the liquid
and solid surface energies. The ratio between this velocity and the shear, χ = Ũc/( ˙̃γ H̃ ), measures
the magnitude of the local slip in the sheared dynamical system. It also scales the slip velocity near
the contact line,

u = χuc(θ )�(y) on ∂
�, (3)

where χuc(θ ) is the renormalized nanoscale contact line velocity depending on the apparent contact
angle θ , and �(y) provides the self-similar slip velocity function of the wall-parallel coordinate y

that is imposed in the vicinity of the contact line on the boundary ∂
� (see Fig. 1). Further details
of χuc(θ ) and �(y) will be provided in Sec. II B.

In summary, Eqs. (1)–(3) are determined, neglecting the fluid inertia and fixing the substrate
geometry, by the following nondimensional parameters: (i) the viscosity ratio, μ̃2/μ̃1, (ii) the static
contact angle, θs , (iii) the initial filling fraction of the cavity δ = 2d0/H (where d0 is the initial depth
of the lubricant measured from the contact point to the bottom of the cavity), (iv) the capillary number
based on the imposed shear Ca, and (v) the ratio between the characteristic contact line velocity and
the shear, χ . The effect of the presence of the lubricating cavity and the corresponding apparent slip
can be readily quantified by an effective slip length λe, defined as

λe = ū(H )

γ̇ H
− 1, (4)

with ū(H ) being the average streamwise velocity at distance H above the floor (averaged over the x

direction).
In the following, we will consider various combinations of the governing parameters (i)–(v)

and evaluate λe for each configuration. As the result will clearly depend on the motion of the
impregnated lubricant, the multiscale modeling approach that we adopt is described next. The
objective here is to provide an overall description of our methodology, rather than deriving the
full mathematical/numerical details. For the latter, including validations, we refer to our previous
work [40,41].

B. Modelling of the moving contact lines

We model the contact line dynamics in two steps. First, we solve the Cahn-Hilliard equations
within a Stokes system,

∂c

∂t
+ ũ · ∇c − m̃∇2ψ̃ = 0, ψ̃ − 3σ̃ ε̃

4

(
2

ε̃2
(c3 − c) − ∇2c

)
= 0, (5)

∇ · ũ = 0, − ∇p̃ + ∇ · [μ̃(∇ũ + ∇ũT )] + ψ̃∇c = 0. (6)

In the above, c is a nondimensional phase parameter smoothly varying from +1 in one fluid to −1 in
the other within a thickness of ε̃, ψ̃ is the fluid chemical potential, m̃ is the mobility, and σ̃ , again, is
the surface tension. The chemical potential ψ̃ measures the variation of the system free energy with
respect to c. Its gradient determines the interfacial diffusion flux −m̃∇ψ̃ , which together with the
convective flux ũc, models the creation, movement, and dissolution of phase interfaces [36].

Technically, Eqs. (5) and (6) are solved in a rectangular box in the vicinity of a contact line using
methods presented in Ref. [40] (see Fig. 1, the local box and its velocity boundary condition). They
are determined solely by the viscosity ratio, the surface tension, and the static contact angle (the
rest are fixed choosing the proper nondimensionalization); hence, the moving contact line can be
simulated separately from the cavity flow.

Inherently, we assume the length and timescales of the local box are much smaller than the
cavity; i.e., H̃ ′/H̃ � 1 and τ̃ ′/τ̃ � 1, respectively. The first condition holds by definition and is
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enforced by providing enough resolution. The second condition is automatically satisfied realizing
τ̃ ′/τ̃ = H̃ ′/Ũc/ ˙̃γ −1 = H̃ ′/H̃/χ . We will show in Sec. III that χ in our case is indeed much bigger
than 1.

The steady-state solutions of Eqs. (5) and (6) give the contact line velocity, χuc(θ ), function of
the apparent contact angle only. It is typically nonlinear and is valid down to the nanometer scale. To
impose this slip velocity in the micrometer cavity flow, as the second step, we modify the velocity
boundary condition near the contact line using asymptotic matching [41]. Here, the self-similarity
of the local velocity field is invoked and the singularity of the viscous stress is avoided [35]. The end
result is an algebraic operator, �(y), applied to χuc(θ ) on the boundary ∂
� .

We comment that our multiscale modeling approach is not limited to the phase-field model for
the nanoscale; in principle, any model able to describe the contact line dynamics, e.g., the molecular
dynamics [37] or the lattice Boltzmann [38], can be used. We also note that, by solving Eqs. (5)
and (6) in a square domain, we implicitly assume the solid surface is nanosmooth. Consequently, any
deviation from the static contact angle will result in an interface displacement, bringing the phase
field back to its local equilibrium. In practice, a real surface may have random roughness or defects
smaller than the scale of the printed patterns, causing the interface to be pinned (i.e., contact angle
hysteresis). Such effects can be included by modifying the geometry of the computational domain,
or simply by modifying the relation uc = uc(θ ) so that uc = 0 for a range of θ ’s. In Sec. III, we will
take this second approach to account for a small contact angle hysteresis.

C. Numerical methods

The governing equations, together with the boundary conditions, Eqs. (1)–(3), are solved
numerically using the two-phase flow solver described in Ref. [42], with suitable modifications
for moving contact lines. The equations are discretized in space using the finite element method and
the solver is implemented in the C++-based finite element open source library deal.II [44,45].
The interface between the two fluids is evolved using the conservative level set method [43], so
that only one fixed set of mesh is required. Specifically, we use uniformly distributed quadrilaterals
(i.e., squares) with grid spacing �x = 1/160 and time steps restricted by the stability condition
�tmax = c0Ca�x (c0 is a constant) [42]. This leads to �t = 10−4 ∼ 10−3 depending on the capillary
number Ca.

The moving contact-line velocities are precomputed by solving Eqs. (5) and (6) and used as
tabulated inputs. In the simulations, additional numerical parameters include the frequency of the
reinitialization (a technical procedure in the level set method, see Ref. [43]), the size of the local
box in the contact line model (i.e., L′ and H ′, see Fig. 1), and the size of a so-called bump function
(related to ∂
� , see Ref. [41]). These are chosen to yield numerically independent results as in
Refs. [40,41], where validations are presented.

III. RESULTS

We study the effective slip over microcavities partially filled with a second fluid using the
parameters summarized in Table I. Here, six pairs of fluids are considered as in the experiment
in Ref. [13], leading to a wide range of μ̃2/μ̃1 from 31.7 to 3.83 × 10−3. The filling fraction is
initialized to δ = 0.94 (corresponding to a depth d0 = 0.47H ) to allow for some sloshing of the
lubricant. The velocity ratio χ = Ũc/( ˙̃γ H̃ ) is set constant for all the fluid pairs and shear rates to
reduce the number of parameters and focus on the single physical effects mentioned above. This
also implies that the capillary number is varied by changing the outer fluid viscosity. As an example,
for ˙̃γ = 800 s−1, H̃ = 20 μm, and Ũc = 2.63 m/s (see Ref. [46] for the detailed estimation), the
velocity ratio χ ≈ 164 (which is indeed much greater than 1), and the corresponding Ca increases
from 1.92 × 10−3 to 1.59 for the different viscosities considered. We further modify Ca at a fixed χ to
study the effect of interface deformation. Finally, the effect of the static contact angle is investigated
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TABLE I. Parameters for the outer (subscript 1) and lubricant (subscript 2) fluids in the present study.

μ̃1[kg/ms] μ̃2[kg/ms] μ̃2/μ̃1 δ χ Ca θs (deg)

0.0024 0.0760 31.7 0.94 164 0.02 ∼ 5 80 or 105 or 76 ∼ 84
0.0024 0.0076 3.17 0.94 164 0.02 ∼ 5 80 or 105 or 76 ∼ 84
0.0152 0.0076 0.5 0.94 164 0.02 ∼ 5 80 or 105 or 76 ∼ 84
0.1504 0.0076 5.05 × 10−2 0.94 164 0.02 ∼ 5 80 or 105 or 76 ∼ 84
0.8942 0.0076 8.50 × 10−3 0.94 164 0.02 ∼ 5 80 or 105 or 76 ∼ 84
1.9850 0.0076 3.83 × 10−3 0.94 164 0.02 ∼ 5 80 or 105 or 76 ∼ 84

by considering θs = 80 deg (leading to a convex meniscus), θs = 105 deg (concave meniscus), and
χuc(θ ) = 0 for θs ∈ [76 deg ,84 deg] to mimic some contact angle hysteresis.

A. Motions at the contact line

We precompute the contact line velocity χuc as function of contact angle θ for the range of
parameters listed in Table I, using the nanoscale phase-field model described in Sec. II B. Numerically,
the nondimensional height of the local box is H ′ = 36, with grid size h = 36/128 and time step
�t = 0.5. Steady-state results obtained after 4000 time steps are plotted in Fig. 2. Here, the solid
lines correspond to static contact angle θs = 80 deg measured from the outer fluid side. The nonzero
contact line velocity at θ �= θs shows the tendency of the contact line to reach its equilibrium position.
For the results presented next, we have also used static contact angles θs = 105 deg, corresponding to
menisci protruding into the cavity, and θs ∈ [76 deg ,84 deg], modeling a contact angle hysteresis of
8 deg. Keeping the rest of the parameters unchanged, the contact line velocities for θs = 105 deg and
the case with hysteresis are obtained by shifting the curves pertaining each viscosity ratio horizontally
to the modified static angles; see Fig. 2 (right) for an example.

FIG. 2. Relations between the apparent contact angles and the contact line velocities for θs = 80 deg under
various viscosity ratios, precomputed using the contact line model described in Sec. II B. Inset shows a close-up
at small angle deviations, whereas the panel on the right illustrates how we model different static angles and
contact angle hysteresis.
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fix./pin. depin.

FIG. 3. Effective slip as function of viscosity ratio under various static contact angles, filling fractions,
and capillary numbers. The bars represent flat and fixed interfaces fully covering the cavity (δ = 1), where
the analytical result from Ref. [22] is also plotted (red line). The filled symbols, upper blue and lower green
triangles, stand for convex (θs = 80 deg) or concave (θs = 105 deg) interfaces pinned at the cavity tip in the zero
capillary limit (i.e., fixed interface). The open symbols are the steady-state solutions at δ = 0.94 for different
θs and Ca. The capillary number Ca is not indicated as it does not affect the results noticeably.

As we vary μ̃2/μ̃1 over four orders-of-magnitude, Fig. 2 reveals a nontrivial dependence of the
contact line dynamics. On the one end, χuc changes rapidly with θ for very viscous lubricants, almost
diverging for θ < 60 deg in the case of μ̃2/μ̃1 = 31.7; on the other end, as the lubricant becomes less
and less viscous, the χuc(θ ) relations eventually collapse onto one curve. Qualitatively, reduction of
χuc for decreasing μ̃2/μ̃1 is expected as we normalize the flow using the shear in the outer fluid; in
other words, it is easier (hence requires less velocity) to displace a less viscous fluid (i.e., deviating
θ from θs). In addition, the change of the curvature of the function χuc(θ ) can be inferred from the
reciprocity of the two fluids (i.e., −χuc instead of χuc and 180 − θ instead of θ for the same μ̃1/μ̃2)3.
Quantitatively, the present model has been compared favorably with Cox’ law [39], especially for
small angle deviations [40]. Since this is the regime where the fluids normally operate at, we expect
our model to accurately capture the small-scale contact line motions.

Finally, we note that the slope of the contact line velocity profiles near the static contact angle,
θs (cf. Fig. 2 inset), plays an important role in the wetting of the cavity under external shear. As we
will discuss later, the difference of the contact line velocity with the viscosity ratio completely alters
the robustness of lubricant infused cavities.

B. Effective slip above the cavities

Now, we present steady-state results of the effective slip length, defined in Eq. (4), obtained
by solving the governing Eqs. (1)–(3) for the setup depicted in Fig. 1, using the two-phase Stokes
solver described in Sec. II C. The overall results are compiled and plotted in Fig. 3 and divided into
the following two categories. First, we discuss the results obtained fixing the interface shape and
pinning the contact point at the cavity corner, and we compare them with existing theories (denoted
as “fix./pin.”). In a later section, we present results with depinned interface, i.e., contact line not at

3This is merely a qualitative argument, as it does not preserve the static angle unless θs = 90 deg.
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the cavity corner, obtained both fixing the interface (“fix./depin.”) and letting it move according to
the multiscale model presented above (“depin.”).

1. Fixed interfaces pinned at the corners.

Partly as a validation of our numerical methods, we first consider interface of fixed shapes pinned
at the cavity tips. These are obtained by imposing in the simulation flat/circular menisci fully covering
the cavities, indicated by bars/filled triangles in Fig. 3. Comparing with the analytical model taking
into account finite dissipation in the cavity [22], a close agreement is observed over the broad μ̃2/μ̃1

spectrum examined. Specifically, the results show a continuous decrease of the effective slip as
the viscosity ratio increases; the rate of variation is logarithmic for 0.1 < μ̃2/μ̃1 < 10, it begins to
saturate for μ̃2/μ̃1 � 0.1, and it is practically zero for μ̃2/μ̃1 > 10.

We further examine the curvature dependence of the effective slip length, using θs = 80 deg and
105 deg as two representative curvatures for weakly convex and concave interfaces, respectively.
As shown in Fig. 3, for μ̃2/μ̃1 < 1, weakly convex interfaces have larger slip than weakly concave
ones, consistent with previous analytical and experimental studies [7,20]. The difference of the
effective slip between convex and concave menisci increases in the limit of zero viscosity ratio; this
is approximately 25% bigger in the convex case. However, when μ̃2/μ̃1 > 1, the relative magnitude
flips: the concave interfaces have a larger slip length than the flat ones, while the convex interfaces
can even have negative slip, adding more drag to the flow. The reason for this asymmetry is rather
straightforward. Similar to the reasoning in Ref. [19], the increased shear stress modified by a more
viscous fluid will reduce the local slip, even more so when the interface bows into the channel, hence
a smaller λe for the convex meniscus than for the concave one.

Last, we remark that the dependence of the effective slip length on the curvature is nontrivial.
Previous studies have shown the existence of a critical contact angle beyond which the effective slip
becomes negative (θs � 30 deg by our definition) [7,20,31]. The angles we consider here are far from
that range.

2. Interfaces depinned from the corners.

Next, we allow the interface to deform and slide on the cavity walls under external shear, removing
the constraint of edge pinning considered earlier. The data pertain to the steady-state configuration,
reached for shorter times at smaller Ca and verified to be unaffected by any numerical perturbations.
Specifically, the effective slip length obtained initializing the filling ratio of the cavity to δ = 0.94
are displayed with open or round symbols in Fig. 3.

First, we note that the effective slip length of partially filled cavities differs appreciably from
the fully covered ones, regardless of the contact angle and the capillary number. For very low
(μ̃2/μ̃1 < 0.1) and very high (μ̃2/μ̃1 > 10) viscosity ratios, the difference is at least a factor of 2.
Meanwhile, within the cases considered for depinned interfaces, the effect of the viscosity ratio on
the slip length is weaker than it is for pinned interfaces. The overall variation of λe is reduced. These
observations suggest that the filling fraction of the cavity may be the main factor determining the
effective slip.

To examine possible relationships between λe and δ, we display in Fig. 4 the effective slip under
various filling fractions, for both convex (θs = 80 deg) and concave (θs = 105 deg) interfaces, at
μ̃2/μ̃1 = 0.05 and 3.17. For this extensive parameter study, fixed interface shapes are imposed,
corresponding to the zero capillary limit (minimum-energy interface) to speed up the simulations.
Indeed, having a small capillary number does not affect the result, as shown in Fig. 3 where the slip
length for the “fix./depin.” cases are not significantly different from the depinned cases at low Ca.

As shown in Fig. 4, the effective slip length clearly depends on the filling fraction: as the meniscus
recedes from the cavity tip, λe quickly decreases or increases depending on μ̃2/μ̃1; the variation is
the sharpest in the early stage (0.8 � δ < 1), while it is nearly negligible as δ further reduces. Plotting
λe against (1 − δ)−1, which may be interpreted as an inverse “void fraction” of the cavity, we find a
power-law relation between the effective slip and the filling fraction. Indicated by the dashed lines
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FIG. 4. Effective slip of partially filled cavities for convex (80 deg) and concave (105 deg) interfaces for
μ̃2/μ̃1 = 0.05 (blue triangles) and 3.17 (green triangles) in the zero capillary limit. The main figure shows
power law relations of the slip length when plotted against the inverse “void fraction” (1 − δ)−1, indicated by
the dashed lines (linear least squares fits for (1 − δ)−1 > 5, or equivalently δ > 0.8). The inset shows the sharp
reduction/increase of the slip length as the meniscus recedes.

in Fig. 4, the effective slip behaves as λe ∼ (1 − δ)−c for δ > 0.8, where c is a constant related to
the viscosity ratio and the overall geometry. Specifically, using linear least squares, we find c ≈ 0.38
(convex) and ≈ 0.19 (concave) for μ̃2/μ̃1 = 0.05, and c ≈ −0.40 (convex) and ≈ −0.09 (concave)
for μ̃2/μ̃1 = 3.17. At equal viscosities, the λe–(1 − δ)−1 relations display conelike patterns with the
spreading angle function of both the viscosity ratio and the meniscus curvature. At lower filling ratios,
all the points converge to the value of the slip length of the single-phase cavity. We remark that a
theoretical determination of c is likely difficult, as the governing equation here is biharmonic [21,25].
Nevertheless, our results clearly illustrate the pronounced dependence of the effective slip on the
interface displacement, already when small, for transverse grooves.

We note from above that the slip λe varies in opposite directions depending on μ̃2/μ̃1. This is also
shown in Fig. 3, where the effective slip of the depinned interfaces intercepts the red line (i.e., the
results for a flat interface) at μ̃2/μ̃1 = 1 for both contact angles under consideration. Specifically,
the effective slip λe is the same for δ = 0.94 and δ = 1, if μ̃2 = μ̃1; when μ̃2 < μ̃1, the slip is larger
for δ = 1; when μ̃2 > μ̃1, on the contrary, it is larger for δ = 0.94. This crossover thus suggests an
additional viscosity dependence of the effective slip coupled with the filling fraction of the cavities.

To quantitatively compare the effect of the viscosity ratio on λe at δ = 0.94, we display the
tangential shear stress τxy for flat, convex, and concave menisci in Fig. 5. Here, τxy is evaluated
either on the cavity tip (at y = 0) or along the fluid-fluid interface (at y = −0.03H ), and it is
normalized by the unit tangential shear stress τ∞ imposed above the floor (at y = H ). As shown in
Fig. 5, the normalized shear stress decreases as we reduce μ̃2/μ̃1 for all the cases, consistent with
enhanced slip at lower lubricant viscosities; however, τxy/τ∞ does not converge to zero as it would
have been if the cavities were fully covered. Close comparison of Figs. 5(c) and 5(d) also explains
the flipping of the relative magnitude of λe between convex and concave interfaces noted above: the
shear stress is less for convex interfaces when μ̃2/μ̃1 < 1, while it is less (on average) for the concave
ones at μ̃2/μ̃1 > 1. Moreover, Fig. 5 reveals that the distribution of the local shear for partially filled
cavities is nonuniform. When μ̃2/μ̃1 < 1, τxy/τ∞ always retains its minimum value at x = 0 and
increases gradually toward the walls (at x = ±0.25); when μ̃2/μ̃1 > 1, the shear stress profiles can
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FIG. 5. Normalized tangential stress evaluated on the plane of the cavity tip (a, c, d) or along the menisci
(b) for various viscosity ratios. In all the cases, the menisci are fixed and depinned from the corners, corresponding
to filling fraction δ = 0.94.

have several local minima/maxima depending on the protrusion angle. Such nonuniformity is most
prominent when the interface is convex. In general, both the viscosity of the two fluids and the
geometry of the liquid-infused cavities appear to influence τxy/τ∞.

We remark that constant shear stress along substrate surfaces is sometimes assumed in theoretical
models to obtain analytical solutions [22]. Although it is verified for fully covered flat cavities
(see Fig. 4 in Ref. [22]), our results suggest that it is inaccurate for partially filled ones, even
along the fluid-fluid interface; see Fig. 5(b). Since liquid-infused substrates are not always fully
covered in practice [12], our simulations suggest this assumption be relaxed when developing more
comprehensive models.

Finally, we discuss the role of capillary and hysteresis, referring back to the circular symbols
in Fig. 3. These data are obtained via the multiscale contact line model for capillary numbers
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FIG. 6. Typical shapes of stable interfaces and streamlines for the flow over a partially filled cavity. These
examples correspond to the steady state configurations, for (a) θs = 80 deg and (b) θs = 105 deg, at μ̃2/μ̃1 = 0.5
and Ca = 0.02.

Ca = 0.02 ∼ 5 and contact angles θs = 80 deg, 105 deg, or 76 deg ∼ 84 deg at initial filling fraction
δ = 0.94. Surprisingly, we find virtually no influence of the contact angle hysteresis on the effective
slip length for the entire range of viscosity ratios considered. The filled circles, corresponding to
θs ∈ [76 deg ,84 deg], lie closely on top of the blue open circles denoting θs = 80 deg. Our results
thus provide evidence that small scale roughness on the substrate surface, due to the material itself or
the fabrication precision, does not necessarily increase the overall drag over the cavities. Indeed, as
discussed in Ref. [22], the effective slip length is a far-field effect determined by the mean velocity
above the substrate. Since a small contact angle hysteresis does not alter significantly the interface
profile nor its wetting behavior, these changes are expected to be quickly smeared out away from the
substrate.

The above reasoning applies only to the cases when the capillary number is small. Further
increasing the capillary number, hence the shear, can eventually deform the fluid interface to an
extent that a stable configuration may not be attainable. In the remaining, we will consider the
lubricant-infused surface under extreme shear rates. As we examine the possible consequence under
various conditions, a seemingly counterintuitive technical solution will be suggested.

C. Possible drainage of the lubricant

First, we examine typical interface profiles, both convex and concave, under moderate shear levels;
see Fig. 6. Specifically, we consider the viscosity ratio μ̃2/μ̃1 = 0.5, the capillary number Ca = 0.02,
and the initial contact angle θ0 = θs . The steady-state solutions are taken at t = 5 in units of 1/ ˜̇γ . As
illustrated in the figure, the flow, while circulating inside the cavity, is already parallel at y ≈ 0.5H .
The deformation of the interfaces is almost negligible comparing to the initial conditions, only the
contact points displacing slightly in opposite directions due to the shear. These two configurations
are examples of lubricant-infused cavities in working condition. The overall small change of the
interface shapes is the reason for the weak shear dependence of the effective slip length discussed in
Sec. III B.
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FIG. 7. Interface profiles under increasing capillary numbers for viscosity ratio μ̃2/μ̃1 = 5.05 × 10−2 at
t = 5.

To test the robustness of the LIS under stronger shear, we successively increase the capillary
number from 0.02 to 5, keeping the other parameters unchanged (see Table I). The resulting interface
profiles are visualized in Figs. 7–9. As expected, increasing Ca generally leads to larger deformations
of the interface. For μ̃2/μ̃1 = 5.05 × 10−2 (Fig. 7), the upstream contact point continuously moves
toward the tip of the cavity, indicating a draining motion of the lubricant driven by the shear. For
μ̃2/μ̃1 = 0.5 (Fig. 8), the downstream contact point responds more instead, almost leading to the
interface rupture when Ca = 0.5. However, as we further increase the viscosity ratio, increasing
the shear has no visible effect on the interface. For μ̃2/μ̃1 = 3.17 (Fig. 9), we barely observe any
additional deformation even increasing Ca by two orders of magnitude. The lubricant stays firmly
in the cavity regardless of the external shear.

FIG. 8. Interface profiles under increasing capillary numbers for viscosity ratio μ̃2/μ̃1 = 0.5 at t = 5.
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FIG. 9. Interface profiles under increasing capillary numbers for viscosity ratio μ̃2/μ̃1 = 3.17 at t = 5.

Following these observations, we map the results pertaining all the viscosity ratios and capillary
numbers considered in the phase diagram in Fig. 10. Here, three regimes are defined, which we label
as stable, marginal, and unstable. For partially filled cavities with initial filling fraction δ = 0.94
(i.e., initial depth d0/H = 94% measured from the contact points), we consider cases where the
final depth varies within 94 ± 2% as stable; if the final depth varies between 94 ± 4%, which is very
close to the cavity tip but still below, we consider the configuration as marginal; last, if one contact
point has already/nearly hit the cavity tip, or if the interface is clearly disrupted (see, e.g., Fig. 8), we
consider the case as unstable. A similar, but simplified, criterion has also been chosen in Ref. [11]
for the onset of gas pocket instability in turbulent flows. We evaluate the final depths either in the
steady states, or at t = 5 if a steady state has not been reached.

FIG. 10. Phase diagram in the cavity capillary–viscosity ratio plane (μ̃2/μ̃1, μ̃2/μ̃1Ca) showing the
robustness of the lubricant-infused cavities under various capillary numbers and viscosity ratios. The inset
reports the same data as function of the outer capillary number Ca.
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As shown in Fig. 10, the robustness of the LIS exhibits a rather complex dependence on the
capillary number and the viscosity ratio. On the lower viscosity side, i.e., μ̃2/μ̃1 � 0.1, lubricants
of both convex and concave interfaces becomes unstable above a critical capillary number. Mapping
the data on the (μ̃2/μ̃1, μ̃2/μ̃1Ca) plane, our results suggest Cacrit ≈ 0.01μ̃1/μ̃2. That is, the critical
capillary number, defined with the outer fluid, is inversely proportional to the viscosity ratio μ̃2/μ̃1;
it is harder to drain a less viscous lubricant outside the cavity fixing the outer fluid. Note that similar
results were also observed experimentally for longitudinal grooves, where less viscous lubricants are
found to remain over a longer distance within the grooves [17]. Our simulations thus point toward
the same direction in the design of transverse LIS against shear-driven failures.

As the viscosity ratio further increases, however, the existence of a critical capillary number,
Cacrit, is no longer clear: at μ̃2/μ̃1 = 0.5, the equivalent Cacrit ≈ 0.1μ̃1/μ̃2, which would be an
order-of-magnitude higher than before; while for μ̃2/μ̃1 > 1, no Cacrit has been found within a
reasonable range of capillary numbers. This shear-induced failure can be associated with draining
in the cavities, and we propose that its mechanism be linked to the dewetting of the lubricant and to
its viscosity.

Recalling the χuc(θ ) relations for various viscosity ratios in Fig. 2, the profiles collapse onto one
curve for μ̃2/μ̃1 < 0.05, suggesting that it is the cavity capillary number, μ̃2/μ̃1Ca, that determines
the onset of failure. This is confirmed by testing one additional case with μ̃2/μ̃1 = 0.02 and the same
dependency χuc(θ ) as in the other cases (thus not extracted from the phase-field simulations); for
this case, we indeed obtain the same Cacrit ≈ 0.01μ̃1/μ̃2, consistent with the other viscosity ratios
in the same range (see Fig. 10). When μ̃2/μ̃1 increases to above 0.5, Fig. 2 shows a continuous
deviation of the wetting relations. The slope of the χuc(θ ) curve near the static angle θs increases
(in magnitude) rapidly with μ̃2/μ̃1, making it more difficult for the contact line to deform, hence
reducing the drainage of the lubricant towards the cavity corner. Since the capillary number is limited
by the shear rates and proportional to the scale of the micron-scale texture, substrates impregnated
by very viscous lubricants are in practice very difficult to fail.

The above phenomenological mechanism suggests that, taking the lubricant viscosity as a design
parameter, the intermediate viscosity ratios (e.g., μ̃2/μ̃1 = 0.01 ∼ 1 depending on the specific
condition) are to be avoided in the application of LIS. This is consistent with previous experiments
of longitudinal grooves towards the lower viscosity branch [17]; more viscous lubricants, however,
seem to ensure higher robustness.

Finally, we note that the critical capillary numbers reported here should be considered as an
estimate, since, in practice, draining of the lubricant will also depend on the physical/chemical
conditions near the cavity corner. However, we do not expect these practical limitations to influence
the qualitative insight obtained from our simulations.

IV. CONCLUSIONS

In this paper, motivated by applications of microengineered liquid-infused surfaces, we study
the drag reduction and robustness of the flow over an array of two-dimensional tranverse grooves
partially filled with an immiscible lubricant.

We use a multiscale numerical framework to model the wetting of the two fluids at the cavity
walls as well as the deformation of the interface under the shear. In particular, we combine two
separate simulation methods at different scales: (i) nanoscale phase field simulations for the contact
line dynamics, and (ii) micronscale Stokes flows simulations using information from (i) as a modified
boundary condition, assuming self-similarity of the velocity field in the vicinity of the moving contact
line. We believe the approach is, however, more general and it could be extended to include molecular
dynamics simulations modeling the surface chemistry and roughness at the nanoscale.

We examine the effective slip λe to quantify the steady-state drag reduction of the LIS. Specifically,
we fix the geometry of the cavity and vary the lubricant-to-outer-fluid viscosity ratio μ̃2/μ̃1, the
capillary number Ca, the static contact angle θs , and the filling fraction of the cavity δ. The main
results are summarized as follows.
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(1) λe depends primarily on δ; the filling fraction is therefore the main factor determining the
effective slip.

(2) Lower μ̃2/μ̃1 leads to reduced drag; the reduction is, however, less pronounced comparing
to fully covered cavities. We relate this effect to the shear stress profiles τxy along the cavity tip and
show that τxy is nonuniform (contrary to the fully covered cases).

(3) The effect of the contact angle on the effective slip length is different for different viscosity
ratios and the filling fractions.

(4) The effect of the contact angle hysteresis and of the capillary number on λe is negligible,
except

(5) when Ca increases above a critical value Cacrit, and the LIS can possibly fail. For an initial
filling fraction δ = 0.94, the critical capillary number Cacrit ≈ 0.01μ̃1/μ̃2 for μ̃2/μ̃1 � 0.1. For very
viscous lubricants (e.g., μ̃2/μ̃1 > 1), however, the cavity remains impregnated due to their generally
larger contact line velocity.

As a final remark, we note that this problem is characterized by a large number of control
parameters, including, e.g., geometry, static contact angle, surface chemistry, so that this study can
be extended in a number of nontrivial ways. In addition, from a purely hydrodynamic point of view,
the flow above the cavity may affect the contact line motion: it may therefore be relevant to study
the response of the flow in the cavity to temporally varying shear and vortices relatively far from it.
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