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Increase of turbulent drag by polymers in particle suspensions
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We study the effect of spherical particles on the turbulent flow of a viscoelastic fluid
and find that the drag reducing effect of polymer additives is completely lost for semidense
suspensions, with the drag increasing more than for suspensions in Newtonian fluids. This
different behavior is due to three separate effects. First, polymer stretching is reduced by
the presence of rigid particles, thus canceling the drag reducing benefit of the viscoelastic
fluid. Second, drag increase is provided by the growth of the particle and polymeric shear
stresses with the particles, due to larger shear rates in the vicinity of the particle surface.
Third, particles migrate towards the wall due to the shear-thinning property of the fluid,
thus enhancing the particle near-wall layer and further increasing the drag.
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Polymer addition is an efficient strategy employed to reduce drag in wall-bounded turbulent
flows; drag reductions (DR) up to 80% have been achieved with concentrations of only few
parts per million [1]. The mechanism is complex due to its multiscale nature—small amounts
of microscopic polymer molecules give a significant drag reduction in the bulk flow—and its
full physical understanding is still incomplete. However, significant advances have been made
in understanding the phenomenon [2–8]. In particular, the drag-reducing property of polymers
have been closely related to modifications of the coherent turbulent structures [9,10]. Polymers
dampen near-wall vortices but enhance the streamwise kinetic energy of the near-wall streaks, with
the net balance of these two opposite actions leading to a self-sustained drag-reduced turbulent
flow: The polymers reduce turbulence by opposing the downwash and upwash flows generated
by near-wall vortices, while they enhance streamwise velocity fluctuations in the very near-wall
regions. Recent studies on this mechanism relate the stretching of the polymers to dampening of
active and enhancement of hibernating turbulent phases [11,12].

Here, we add a further complexity to this problem, one that is relevant to a wide range of
environmental and engineering applications: a suspended rigid phase. Turbulent, wall-bounded
suspensions are often dense, i.e., the particle volume fraction � is sufficiently high that particle-
particle and particle-fluid interactions strongly influence the macroscopic flow dynamics, and in
many cases, the suspended particles have a finite size, i.e., dimensions comparable to or larger than
the smallest scales in the flow [13].

In this Rapid Communication we report direct numerical simulations of a viscoelastic fluid
laden with finite-size rigid spherical particles and show that, for a semidense suspension, the
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drag increases in the presence of polymers, contrary to what is found in single-phase flows. In
other words, we show that the resulting drag is larger than what is observed in a Newtonian fluid
with the same particle volume fraction �. The particles have two main effects on the viscoelastic
flow behavior: (i) Their presence limits the polymer stretching, hence the drag reducing effects of
polymers are quenched, and (ii) the larger strain rates near the particle surface increase the particles
and polymeric shear stresses. In addition, (iii) the shear-thinning behavior of the fluid enhances
the particle migration towards the walls, which strengthens the near-wall particle layer and further
increases the overall drag.

In the simulations, we consider an incompressible fluid governed by the Navier-Stokes equations,
with the non-Newtonian feature modeled by the constitutive finite extensible nonlinear elasticity-
Peterlin (FENE-P) closure [14], able to capture both the elasticity and shear-thinning behaviors
of polymers. In particular, the fluid is governed by the incompressible Navier-Stokes equations
with the additional viscoelastic stress τE

i j which accounts for the non-Newtonian nature of the
flow, defined as τE

i j = [Ci j/(1 − Ckk/L2) − δi j]/Wi. In the expression above, Ci j is the conformation
tensor, L the dumbbell extensibility, δi j the Kronecker delta, and Wi the Weissenberg number. The
rigid particle motion is described by the Newton-Euler equations, and their presence is modeled
with an immersed boundary method (IBM) [15]. We use an explicit fractional-step method to
solve the system of equations, where all the terms are advanced with the third-order Runge-Kutta
scheme. We include global artificial diffusion in the transport equation of the conformation tensor
in the first transient part of the simulation, and then gradually reduce it while approaching the
final statistical steady state regime, when it is completely removed. Also, we use a fifth-order
weighted essentially nonoscillatory (WENO) scheme for the advection terms in the conformation
tensor equation. Apart from that, the governing differential equations are solved on a staggered
grid using a second-order central finite-difference scheme. We use a Cartesian uniform mesh in a
rectangular box of size 6h × 2h × 4h, discretized with 960 × 320 × 480 grid points, corresponding
to 32 points per particle diameter. The flow is driven at a constant flow rate. The numerical
code has been extensively used and validated in the past for particulate flows [16,17], turbulent
Non-Newtonian flows [18,19], and multiphase problems in non-Newtonian fluids [20]. The rigid
particles are assumed to be neutrally buoyant and spherical with radius R equal to one tenth of the
channel half height h, i.e., R = h/10. Fixing the particle density and size, the flow is governed by
five additional nondimensional parameters: the Reynolds number Re, the Weissenberg number Wi,
the particle volume fraction �, the viscosity ratio β, and the dumbbell maximum extensibility L. We
define the Reynolds number Re = Ubh/ν based on the bulk velocity Ub, channel half height h, total
kinematic viscosity ν, and the Weissenberg number Wi as the ratio between the elastic and viscous
forces, i.e., Wi = λUb/h, with λ the polymer relaxation time. We performed simulations at a fixed
bulk Reynolds number equal to 2800 with different Weissenberg numbers in the low drag reduction
regime (LDR) [9,10] (Wi ∈ [0, 4]) and particle concentrations (� ∈ [0, 0.2]) such that we cover
different cases: a Newtonian single-phase flow (Wi = 0 and � = 0), Newtonian particulate flows
(Wi = 0 and � > 0), non-Newtonian single-phase flows (Wi > 0 and � = 0), and non-Newtonian
particulate flows (Wi > 0 and � > 0). If not otherwise stated, L = 60 and β = 0.9.

Using the previous set of parameters, the single-phase Newtonian case has an average friction
Reynolds number Reτ = uτ h/ν (with uτ the friction velocity) equal to 180 [21], while the polymer
addition provides a drag reduction DR of approximately 9% for Wi = 2 and 18% for Wi = 4. Here,
the drag reduction is defined as DR = (τwN − τw )/τwN , where τw is the total mean shear stress at
the wall and τwN the value for the Newtonian case at the same volume fraction. When we introduce
rigid particles in the flow, the friction Reynolds number of the suspension grows monotonically for
all the Weissenberg numbers Wi considered, as shown in Fig. 1. However, the friction Reynolds
number in the non-Newtonian cases (Wi > 0) grows with the volume fraction � faster than in the
Newtonian fluid (Wi = 0), which results in drag reduction (DR > 0) for small volume fractions
and a drag increase (DR < 0) for high particle concentrations. This result is supported by the
recent experimental measurements in Ref. [22], reported in the inset of Fig. 1, obtained in similar
conditions but in a square duct and at a slightly higher Reynolds number.
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FIG. 1. Frictional Reynolds number Reτ as a function of the particle volume fraction � for different
Weissenberg numbers Wi. The inset shows the corresponding drag reduction DR computed with respect to
the Newtonian multiphase case with the same volume fraction. The black crosses in the inset are experimental
data taken from Ref. [22]. In the figure, all viscoelastic cases are obtained with L = 60 and β = 0.9, except for
selected cases with L = 190 and β = 0.99 (�) and L = 600 and β = 0.999 (�).

The drag reducing effect of polymers is due to their elastic behavior, in terms of stretching
and elongation: Polymers are stretched by the fluctuating shear and dissipate the accumulated
energy when relaxing their length back to equilibrium [23]. In the presence of semidense particle
suspensions, this mechanism is inhibited by the motion of particles that hinders the capability of the
polymeric chains to fully stretch. To prove this, we report in Fig. 2 the square root of the mean of
the trace of the conformation tensor Ci j , i.e.,

√
Cii, where the overline is used to indicate the mean

value, normalized by the dumbbell maximum extensibility L. In the single-phase flow the polymers
tend to strongly stretch in the near-wall regions, where we see the peak of the distribution of the
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FIG. 2. Profile of the square root of the mean trace of the conformation tensor Cii normalized by the
dumbbell maximum extensibility L as a function of the wall-normal distance for two different Weissenberg
numbers Wi. The black dotted line is the polymer rest configuration.
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FIG. 3. Side view of the viscoelastic plane channel flow laden with rigid particles studied in the present
work. The color contour represents the square root of the trace of the instantaneous conformation tensor,
ranging from 0.02L (black) to 0.04L (white).

trace of the conformation tensor, while they remain essentially coiled in the bulk of the channel,
where the distribution smoothly and monotonically decreases to the minimum at the centerline. The
behavior in the presence of particles is completely different: Although in the very near-wall region
a moderate elongation is still present (around 20% of the single-phase flow), across most of the
channel height we observe an almost flat distribution with low mean values. This behavior is due
to the presence of the particles, as also visually confirmed in Fig. 3. Indeed, in the vast majority of
the channel the trace of the conformation tensor is small and roughly uniform also instantaneously,
except in the very near-wall regions.

While the diagonal components of the conformation tensor reduce, the polymer shear stress
increases. To confirm this, we examine the mean shear stress balance across the channel. For a plane
channel flow, the mean shear stress τ 12 can be decomposed into the sum of the viscous shear stress
τV

12 = μdu/dy, the Reynolds shear stress τR
12 = −ρu′v′, the viscoelastic shear stress τE

12, and the
particle contribution τP

12, with their sum being a linear function of the distance from the wall, equal
to the total shear stress at the wall and null at the center of the channel. In the previous relations,
the prime symbols are used to distinguish the fluctuation with respect to the mean (overline). These
shear stress contributions are shown in Fig. 4 for four representative cases, all normalized by the
Newtonian single-phase wall shear stress τwN . In the Newtonian case, we observe the classical

0

0.5

1

1.5

0 0.

Φ = 0.0 Wi = 0

y/h

0

0.5

1

1.5

0 0.

Φ = 0.0 Wi = 4

y/h

0

0.5

1

1.5

0 0.

15

15

Φ = 0.2 Wi = 0

y/h

0

0.5

1

1.5

0 0.

15

15

Φ = 0.2 Wi = 4

y/h

τ12

τV
12

τR
12

τE
12

τP
12

FIG. 4. Shear stress balance components across the channel for different cases. Top left: Newtonian
single phase. Top right: Non-Newtonian single phase. Bottom left: Newtonian multiphase. Bottom right:
Non-Newtonian multiphase. The colors are used to distinguish the total shear stress τ 12, the viscous stress
τV

12, the shear Reynolds stress τR
12, the polymeric shear stress τE

12, and the particle stress τP
12.
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FIG. 5. Probability P of the local shear rate γ̇ for the single-phase (solid line) and multiphase (dashed line)
systems in Newtonian (green) and viscoelastic (red) solvents.

behavior, with τV
12 being maximum at the wall and rapidly vanishing in the bulk of the channel and

the Reynolds shear stress τR
12 null at the wall and maximum in the near-wall region. The behavior

is modified by the presence of the rigid particles; in particular, the total shear stress grows because
of the particle stress contribution τP

12 which is almost uniform across the channel, except for being
null at the wall and exhibiting a maximum located at around y ≈ R. Moreover, the viscous stress
τV

12 increases at the wall while the Reynolds shear stress τR
12 decreases in the bulk of the channel.

When polymers are added in a particulate flow, the total shear stress further increases. In addition
to the relatively small shear stress contribution from the polymers τE

12, the overall drag increase is
related to the growth of the Reynolds shear stress τR

12 and to the increase of the particle τP
12 and

viscous stress τV
12, especially in the near-wall regions. This increase of near-wall activity is due to

the shear-thinning behavior of the fluid, as will be explained later.
The loss of the drag reducing effect is explained by the increase of the Reynolds stresses upon

the addition of particles, which induce local instantaneous high shear rates in their surroundings
[24,25]. We show this in Fig. 5 by the probability P of the local shear rate γ̇l for the same four
cases discussed in Fig. 4. The presence of particles strongly increases the spectrum of shear rates by
enhancing the probability of both weak and strong events, leading towards a more flat distribution.
The presence of polymers in the particulate case further modifies the distribution by reducing the
probability of low shear rates and increasing that of high shear rates. The increase of the local
shear rate is not accompanied by substantial polymer stretching, as previously observed in Fig. 3,
because of the different nature of the fluctuations in the suspension. It is known that in single-phase
polymeric flows, turbulent fluctuations are overall damped and the flow is highly anisotropic, with
strong streamwise velocity fluctuations u′ and reduced wall-normal ones v′, as shown in the top
panels of Fig. 6. This is associated with the strengthening of the elongated streamwise correlated
streaks. On the other hand, the presence of particles induces an opposite effect: Streaks are disrupted
by the particles, resulting in a decrease of u′ and an increase of v′, overall leading to a more isotropic
flow. The same happens in the multiphase non-Newtonian flow, as shown in the bottom panels
of Fig. 6. Fluctuations and local shear rates are enhanced in the particulate non-Newtonian flow
mostly in the homogeneous directions, where the mean shear is null, thus not leading to substantial
polymer stretching. Not only the fluid but also the particle dynamics are modified by the presence of
polymers; in particular, we measured a 7% increase of the particle kinetic energy in the presence of
polymers, which is consistent with the larger particle shear stress previously observed, confirming
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FIG. 6. Joint probability distribution function of the streamwise and wall-normal velocity fluctuations for
the non-Newtonian single-phase (top) and multiphase (bottom) systems at different wall-normal distances.
Left: y = 0.1h. Middle: y = 0.2h. Right: y = 0.4h.

a picture where the coupling of polymers and particles is detrimental in terms of drag reduction due
to an increased particle interaction.

As seen, the presence of the particles in a viscoelastic fluid reduces the polymer stretching and
the consequent drag reduction and induces an increase of the total shear stress also by the growth of
the polymeric shear stress, due to regions of high strain close to the particle surface. One additional
effect responsible for further drag increase arises when the fluid is shear thinning: particle migration
towards the wall. We show the local mean particle concentration �l across the channel in Fig. 7
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FIG. 7. Mean particle local volume fraction �l as a function of the wall normal distance for � = 0.2 and
three Weissenberg numbers Wi. The red symbol shows the concentration profile for β = 0.999. The inset figure
reports the rheological curve for all the cases with β = 0.9 (solid line), β = 0.99 (dashed line), and β = 0.999
(dotted line).
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and observe that particles tend to concentrate in the middle of the channel [17] and in a near-
wall layer, as demonstrated by the peaks of the local volume fraction at y = h and y ≈ R [16].
In particular, the latter expresses the tendency of finite-size rigid particles to accumulate close to
the walls, which has been recognized to be mainly responsible for the increase in drag in turbulent
suspension flows. In the viscoelastic cases, the concentration in the bulk of the channel reduces while
the near-wall peak increases, inducing a further increase in the overall drag; this behavior is caused
by the shear-thinning property of the fluid, which is well known to induce particle migration towards
the wall [26]. Indeed, in viscoelastic Poiseuille flows two different attractors exist for a suspended
particle, one at the wall and one at the centerline. The former depends on the level of shear thinning
with pronounced shear thinning increasing the wall attraction. To quantify this effect on the drag
modifications, we have performed additional simulations at � = 0 and 0.2 with different levels of
shear thinning, displayed by the rheological curves in the inset of Fig. 7. In particular, we have
varied β and L keeping the product L2(1 − β ) constant in order to have a similar amount of drag
reduction as in the single-phase case [27]. As reported in Fig. 1, we observe that the drag decreases
as the shear-thinning effect is reduced in the particulate case at � = 0.2, but remaining larger than
the one measured in a Newtonian solvent in the range of parameters studied here. The reduced level
of drag increase is due to the loss of the particle migration: Indeed, in Fig. 7 we can observe that
the particle concentration profile in the viscoelastic case with β = 0.999 is approximately equal to
what is found in the Newtonian carrier fluid.

To conclude, we have studied viscoelastic turbulent flows of particle suspensions by means of
direct numerical simulations. We have shown that, in the presence of a moderate concentration
of particles in the low drag reduction regime, the beneficial effect of polymers in terms of drag
reduction are lost, and an increase in drag is observed for sufficiently dense suspensions. The
inhibition of the drag reducing mechanism in the presence of particles is due to the quenching
of the stretching of the polymers which essentially nullifies the elastic behaviors of the fluid. On
the other hand, the further increase in drag is due to an increase of the particle and polymeric shear
stresses, especially close to the particle surface, and to the strengthening of the particle near-wall
layer induced by their migration towards the wall due to the shear-thinning fluid behavior. The
combination of these three effects explains the increase of drag in semidense and dense particulate
suspensions in viscoelastic fluids.

L.B. was supported by the ERC-2013-CoG-616186 TRITOS grant and by the Swedish Research
Council, VR 2014-5001, and acknowledge the computer time provided by SNIC (Swedish National
Infrastructure for Computing).

APPENDIX: CODE VALIDATION

The numerical code used in the present Rapid Communication has been extensively used and val-
idated for single-phase and multiphase flows of shear-thinning, viscoelastic, and elastoviscoplastic
fluids with more details on the algorithm and validation campaign discussed in previous publications
[17–20,28,29].

For the sake of completeness, we provide here a further validation of our code by comparing
the angular velocity of a sphere in an homogeneous viscoelastic simple shear flow, described by
the Oldroyd-B model, against experimental and numerical data found in the literature [30,31]. We
chose a rectangular domain of size 8R × 4R × 4R in the streamwise x, wall-normal y, and spanwise
z directions, with R the particle radius. The numerical domain is discretized with 32 grid points
per particle diameter as in the rest of the work. The particle is initially positioned at the center of
the box and a constant shear rate (γ̇0) is applied, generated by the two parallel walls moving in
the x direction. Periodic boundary conditions are considered in the y and z directions. The particle
Reynolds number Re is set equal to 0.025 and the Weissenberg number Wi is varied in the range
from 0 up to 2. Figure 8 reports our results and those from the literature; as can be seen, there
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the Weissenberg number Wi. In the figure we compare our results (red circle) with those obtained by Snijkers
et al. [30] (solid black line) and Goyal and Derksen [31] (black square).

is an excellent agreement between our numerical results and the results previously obtained, thus
confirming the validity of the present numerical implementation.
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