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Irreversibility and rate dependence in sheared adhesive suspensions
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Recent experiments report that slowly sheared noncolloidal particle suspensions un-
expectedly exhibit rate(ω)-dependent complex viscosities in oscillatory shear, despite a
constant relative viscosity in steady shear. Using a minimal hydrodynamic model, we show
that van der Waals attraction gives rise to this behavior. At volume fractions φ = 20–50%,
the complex viscosities in both experiments and simulations display power-law reductions
in shear, with a φ-dependent exponent maximum at φ = 40%, resulting from the interplay
between hydrodynamic, collision, and adhesive interactions. Furthermore, this rate depen-
dence is accompanied by diverging particle diffusivities and pronounced cluster formations
after repeated oscillations. Previous studies established that suspensions transition from
reversible absorbing states to irreversible diffusing states when the oscillation amplitude
exceeds a φ-dependent critical value γ c

0,φ . Here, we show that a second transition to
irreversibility occurs below an ω-dependent critical amplitude, γ c

0,ω � γ c
0,φ , in the presence

of weak attractions.

DOI: 10.1103/PhysRevFluids.6.L101301

The flow properties of suspensions remain challenging to predict despite the tremendous progress
to date. Even the simplest suspensions, consisting of non-Brownian particles suspended in a density-
matching Newtonian fluid, while exhibiting a Newtonian behavior in steady shear (SS) flow, can
show very rich phenomena under oscillatory shear (OS), such as flow irreversibility and chaos [1],
absorbing state transitions [2,3], and microstructure reorganizations at large accumulated strains
[4,5]. All these fundamental behaviors are predicted using very few ingredients in the equations
of motion that are in order: hydrodynamic forces, including lubrication between adjacent particles,
and hard-sphere collisions. Because the latter do not possess any characteristic time scale and their
amplitude is proportional to the driving hydrodynamic force, the system and all its material functions
are rate independent [6,7].

So far, it has been assumed that the suspension microstructure depends on the strain amplitude
(γ0) and strain history (γtot) in OS, and rate dependence (if any) is manifested in both SS and OS.
However, recent experiments challenge this assumption and demonstrate a frequency (ω)-dependent
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FIG. 1. Experiment at φ = 40%: (a) Relative viscosity (ηR) and first normal stress difference (N1, inset)
vs shear rate in SS. (b),(c) Evolution of the dynamic viscosity (η′

R) and its elastic counterpart (η′′
R) vs the total

accumulated strain at γ0 = 1% (b) and 10% (c) in OS. The angular frequencies are indicated in the figure.

rheology in OS in the absence of any rate dependence in SS [8–10]. These authors demonstrate
that, in OS, the suspension viscosity only depends on the maximum shear rate (γ0ω) and that data
taken at different volume fractions (φ) can be rescaled on a single master curve, so as to highlight
a universal behavior of these materials. Furthermore, this rheological observation questions the
physics of self-organization in the simplest driven noncolloidal suspension: it was assumed that
suspensions undergo transitions from reversible absorbing states to irreversible chaotic states if γ0

exceeds a φ-dependent critical amplitude γ c
0 (φ) independent of the driving frequency [1,2,11]; now

the experiments in [10] imply that ω may also affect irreversibility.
In this Letter, we combine experiments with simulations and show that a weak van der Waals

attraction is enough to induce the sought rate dependence in OS, while keeping the SS behavior
rate independent. Moreover, we reveal that this rheological behavior in OS is accompanied by
enhanced particle diffusivities and cluster formations below a critical shear rate, thus the onset
of rate dependence when reducing γ0 is closely related to the threshold for irreversibility. A deeper
understanding of self-organization and dynamical phase transition in suspensions is not only of
fundamental interest [12–15], but has also attracted practical attention due to its applications in
hyperuniform photonic materials or suspension flow control [16–18]. This Letter shows that a
physical ingredient up to now neglected, i.e., interparticle attraction, must be taken into account.

Our experimental samples consist of glass hollow microspheres (5–50 μm in diameter, mean
15.4 μm) dispersed in a low molecular weight polyisobutene, which is known to behave as a
Newtonian fluid (viscosity 15.8 Pa s at 21.2 ◦C) at the shear rates of interest, at three volume
fractions (20–40%). Time sweep oscillatory tests are executed on a constant-strain rheometer,
ARES G2 (TA Instruments), equipped with a cone-and-plate geometry, by imposing a sinusoidal
strain during each run, γ (t ) = γ0 sin(ωt ), for γ0 from 0.5% to 2 and ω from 5 to 200 rad/s.
After a steady preconditioning shear, the complex viscosity is followed in time in units of the total
accumulated strain, γtot = 4γ0ncyc, where ncyc is the number of cycles of the oscillatory shear. All
tests are performed repeatedly according to standard protocols, cf. Ref. [10]. Further details on the
experimental procedure can also be found in Ref. [19].

The suspensions are inertialess and non-Brownian, as the particle Reynolds number is smaller
than 10−6 and the Péclet number is larger than 105. Particle sedimentation can be neglected, as
the average Shields number is about 103. A characteristic time arising from Brownian diffusion or
sedimentation is thus irrelevant in the investigated suspensions and, accordingly, the SS behavior
shows constant viscosity and first normal stress difference negative and linear in the shear rate; see
Fig. 1(a). In OS, the relative complex viscosity, η∗

R ≡ η′
R − iη′′

R, evolves in time and is a function
of γ0, as widely reported in the literature [2,4,20], but, surprisingly, it also decreases with ω (i.e.,
shear thinning). To illustrate this, we display in Figs. 1(b) and 1(c) the relative dynamic (η′

R) and
elastic (η′′

R) viscosities vs γtot, for two values of γ0 and three of ω at φ = 40% (data for other φ

are available in Ref. [10]). η′
R is always about two orders of magnitude larger than η′′

R, thus it is
practically coincident with η∗

R, highlighting the viscous behavior of the suspension. In general, an
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ω-dependent regime is observed for γ0 � 1 and an ω-independent regime otherwise. These two
regimes coincide with those observed by Lin et al. [21], who showed that in the first regime the
microstructure self-arrangement is driven by shear-induced particle diffusions, while in the second
one the microstructure is immediately formed by the oscillation itself, similarly to what happens
for a steady flow reversal that is indeed rate independent. The dependence on the frequency and
the importance of diffusion indicate that a nonhydrodynamic force is at play [22], which cannot be
hard-sphere interactions. To identify this force, we now turn to numerical simulations.

Discrete element simulations based on a minimal hydrodynamic model are performed for
suspensions at zero Reynolds number [23]. Specifically, our model determines particle nonaffine
trajectories according to lubrication, contact (hard-sphere), and interparticle potentials, similarly to
the Stokesian dynamics [24]. Since the full many-body hydrodynamic interactions are truncated at
the level of lubrication, our method is mostly accurate for dense suspensions where interparticle
gaps are small, cf. Refs. [25,26]. The results below are therefore for φ = 40% and 50% [27].

To begin with, we note that several forces have been linked in the literature to rate dependence
(shear thinning in particular) in dense, non-Brownian suspensions: (normal-)load-dependent friction
[28], electrostatic repulsion [25,29], and van der Waals attraction [30,31]. Friction, as well as any
other possible dissipation mechanisms due to surface roughness, should lead to no less rheological
response in SS than OS, since larger deformations activate more frictional contacts at the same φ.
Indeed, we have checked that including the contact model of [28] in our system gives shear thinning
in SS instead of OS, contrary to what the experiments show. Therefore, an explanation in terms of
friction is unlikely.

As for electrostatic repulsion, its impact on the suspension rheology can be understood as an
effective volume effect [29]. At low shear (thus stress), few particle pairs come closer than an
enlarged radius due to the finite-range repulsive force; the portion of such particles (thus the effective
φ) reduces with the shear, leading to shear thinning. Although plausible, it is difficult to rigorously
establish this argument in all scenarios. In fact, our simulations show that electrostatic repulsion
causes shear thickening in OS, again contradicting the experimental results [32].

The only possibility left is attraction. Here, we consider the simplest van der Waals (vdW)
attraction, which is always present regardless of material or particle size, although weak for
micron-size glass [33,34]. Let us underline that the glass beads used in the experiments are typically
considered as insert particles and that the use of small vdW forces does not break this paradigm, as
they are very often negligible with respect to the other forces acting on the particles. As in Ref. [31],
we model a nonretarded and additive vdW as Fvdw = Aā/12(h2 + ε2), where A is the Hamaker
constant, ā = 2aia j/(ai + a j ) is the harmonic mean radius of two interacting particles, h is their
surface gap, and ε is a small constant to prevent divergence of Fvdw at h = 0; we use ε =

√
10−5a

to model glass beads. The maximal attraction F = Aa/12ε2 introduces a characteristic stress scale,
τF = F/πa2, for two touching particles, opposed to the minimal shear stress, τs = η0γ0ω/2π (η0γ̇

in SS), where η0 denotes the solvent viscosity. The ratio τs/τF thus defines a nondimensional shear
rate, hereafter denoted Sr ≡ 6η0ε

2aγ0ω/A.
Figure 2 shows the rheology of this model adhesive system. Remarkably, with the addition of

only a weak vdW attraction (∝ 1/Sr), the essential features of the complex rate-(in)dependent be-
haviors in (SS) OS seen in experiments are captured numerically [35]. Specifically, below a critical
shear rate in OS (the dotted line in Fig. 2), η∗

R exhibits power-law reductions with shear, η∗
R ∼ Sr−α ,

with α a φ-dependent positive exponent largest at φ = 40%. This nonmonotonic dependence can
be understood by considering the limits of very dilute and highly packed suspensions: at vanishing
volume fractions, collisions and vdW attractions are negligible, and the system is dominated by
hydrodynamic forces and therefore nearly rate independent; close to packing, lubrication and
contact forces dominate but, because both are proportional to the shear rate, the system again
exhibits weak rate dependence.

To provide quantitative evidence, we display the different contributions to the relative viscosity
for the ten representative cases in Fig. 3. The budget terms correspond to the Stokes (stk), lubrication
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FIG. 2. Suspension viscosities in OS and SS (inset). Dashed lines are least squares fits to data for Sr <100;
numbers indicate the slopes.

(lub), contact (ctt), and vdW forces extracted from the simulations [23]. Surprisingly, at φ = 40%,
where the maximum vdW effect is expected, virtually no contributions from the attractive vdW
forces are visible across three decades of Sr. In SS, the lubrication and contact stresses are constant
(stk only depends on φ thus identical in all cases) and so the relative viscosity; in OS, however,
lubrication is shear dependent while contact stresses are vanishing. Since the rate dependence results
from vdW, naively, one would expect it also makes a rate-dependent contribution to the stress
budget, or at least be active in OS. Its absence implies that the rheology is indirectly modulated
by weak attractions. The question, then, is how such indirect modulation occurs.

Recall that, without any inertial, thermal, or non-Newtonian effects, the rheological properties of
a suspension at any given time are determined solely from its underlying microstructure [34]. The
microstructure evolution is mediated by time-reversible Stokes flows, though the particle dynamics
themselves satisfy Onsager’s variational principle for general irreversible processes [36]. Indeed,
both experiments and simulations have shown that particle diffusion can occur in slowly sheared
suspensions, leading to irreversible and ultimately chaotic dynamics [1,20,22,37,38]. Particularly,

FIG. 3. Shear stress components of representative OS and SS cases at φ = 40%; see Fig. 2 for the
annotation.
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FIG. 4. Microstructure statistics in OS. (a) Relative particle diffusivities at φ = 40% and 50% (not
distinguished). The dashed line is a fit of Dx/D∞

x . (b) Mean fraction of active (colliding) particles on linear and
logarithmic (inset) scales. The dashed line is a power-law fit with slope β = −0.40. (c) Power-law distribution
of cluster size, P(n) ∼ n−3.33 (solid line). (d) A snapshot of the particle suspension at φ = 40%. Different
cluster groups are indicated by colors.

in OS, the threshold for irreversibility was found to be gauged by a φ-dependent critical strain
amplitude γ c

0 (φ): for γ0 > γ c
0 , suspensions are irreversible with nonvanishing effective diffusivities,

Di = 〈(
i/a)2〉/2γtot (
i denotes the particle displacement in any spatial direction i at integer-
period intervals); for γ0 < γ c

0 , the dynamics evolve towards absorbing states with Di ≈ 0 in finite
time. The system undergoes a continuous phase transition (likely conserved directed percolation
[15]) at γ0 = γ c

0 , indicated by a nonzero order parameter 〈 f ∞
a 〉, defined as the mean fraction of

“actively” colliding particles. This theoretical framework [2] applies to a remarkable variety of
situations; see, e.g., Ref. [15] and references therein. We note that none of them invokes a role for
frequency, though.

It is therefore natural to examine the microstructure statistics of our suspensions. Figure 4
shows the numerical results at φ = 40% and 50%. Surprisingly, at strain amplitudes well under
the irreversibility threshold just mentioned (γ0 � 0.2 for all simulations with γ c

0 ≈ 0.82 at φ =40%
[39]), our suspensions can be both irreversible and active. This irreversibility only occurs below a
fixed critical shear rate Src. Figure 4(a) shows that, by renormalizing the effective diffusivities with
their averages in the infinite shear limit, e.g., D∞

x = 〈Dx〉|Sr→∞, all values at φ = 40% and 50%
diverge with reducing Sr. A similar behavior is observed for the order parameter, which diverges
below Src as 〈 f ∞

a 〉 ∼ Srβ , with β = −0.40 [Fig. 4(b)]. Akin to the self-organized criticality due
to slow sedimentation [3], particles in adhesive suspensions actively form clusters with a near
power-law size distribution [Fig. 4(c)]. As an example, Fig. 4(d) shows a snapshot of the suspension
at φ = 40%, where various particle clusters are displayed in color (inactive particles are displayed
in grey).

Comparison of Figs. 4(a), 4(b) and 2 indicates that this new threshold for irreversibility is closely
related to the onset of rate dependence, both at Src ≈ 100 [40]. Below Src, the microstructure is
indirectly modulated by weak vdW interactions; their relative intensity is inversely proportional to
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FIG. 5. Phase diagrams for irreversibility in sheared adhesive suspensions. (a) Critical strain amplitudes
due to collisions (left) or attractions (right). ω is normalized by τa ≡ 6η0ε

2a/A. (b) Projection of the irre-
versibility map on the (φ,ωτa ) plane. (c) Volume of the reversible absorbing states in the (φ, ωτa, γ0) space.

the shear rate, thus the suspension shows diffusive dynamics and rate dependence at low γ0. Above
Src, hydrodynamic interactions overcome vdW, resulting in time-reversible Stokesian dynamics
and a rate-independent suspension rheology. Here, we cannot determine the value of Src exactly
due to the increasing uncertainties in the data near it. Nevertheless, by matching experiments and
simulations at Src = 100 (Fig. 2), we estimate the Hamaker constant of the vdW interaction to be
A ≈ 4 × 10−19 J in the system under investigation. This is within the range of A for most condensed
phases (cf. Ref. [33], p. 254), which validates our assumption.

More importantly, the existence of a unique Src suggests that there is a frequency-dependent
critical amplitude for the transitions between absorbing and diffusing states. This can be written
as γ c

0,ω = SrcA/6η0ε
2aω, which is independent of the volume fraction and thus must coexist with

γ c
0 (φ) (hereafter γ c

0,φ). In between the two thresholds, i.e., γ c
0,ω < γ0 < γ c

0,φ , suspensions can reach
reversible absorbing states from any initial condition; below and above this range, irreversibility
arises from either attractions (low γ0) or collisions (high γ0); see Figs. 5(a) and 5(b). However, γ c

0,ω

may also exceed γ c
0,φ , resulting in irreversible dynamics for all γ0. For example, consider a 40%

suspension oscillating at 5 rad/s: if γ0 > 0.82, the suspension is chaotic due to collisions [1,2];
whereas if γ0 � 0.82, it is irreversible due to attractions (γ c

0,ω = 18.8 for our suspensions). Note
that, when 0.82 < γ0 < 18.8, both these mechanisms promote irreversibility. In such a case, the
dynamics are controlled by collisions because collision-induced diffusions at larger γ0 occur over
a shorter time scale. We have checked that the suspension relaxation time (i.e., the time to reach
steady states) is always orders-of-magnitude longer in our simulations and experiments (cf. Fig. 1)
than those in Ref. [2]. Thus, for large values of γ0 the system dynamics are collision dominated: this
finally explains why rate dependence is observed only for smaller γ0 in OS, but not in SS, under the
same shear rate.

A new phase diagram thus emerges for irreversibility in sheared adhesive suspensions. Fig-
ures 5(b) and 5(c) show the region of reversible steady dynamics in φ and ω, and the size of the
reversibility window in γ0; the latter is measured by a positive difference between the two critical
amplitudes, (γ c

0,φ − γ c
0,ω )+, where (x)+ = max(x, 0). Notice how rapidly the window reduces as φ

or 1/ω increases. Considering the chaotic nature of many-body systems (e.g., ideal gas, planets,
etc.), microscopic irreversibility is the hallmark rather than an exception for suspensions. This is
true even in Stokes flow for, whenever particles get close, their dynamics are not governed by the
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hydrodynamics alone. Here, by combining experiments with simulations, we have shown that there
is a fundamental connection between irreversibility and suspension rheology, both of which depend
on the strain amplitude as well as the driving frequency. Future work may examine this picture
when including long-range hydrodynamic interactions, or explore the so-called active fluids whose
intriguing rheologies defy reversibility even without passive particles [41].

We thank R. Radhakrishnan, C. Ness, F. Peters, A. Los, J. Chun, and A. Leshansky for helpful
discussions. The work was supported by the Swedish Research Council (Grant No. VR 2014–5001)
and University of Campania “L. Vanvitelli” under the program “VALERE: VAnviteLli pEr la
RicErca” project, SEND.
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