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Swedish e-Science Research Centre and Linné FLOW Centre, Department of Engineering Mechanics,

KTH, SE-100 44 Stockholm, Sweden

(Received 7 September 2020; revised 14 November 2020; accepted 19 February 2021; published 22 March 2021)

Symmetry breaking (SB) of fluid-structure interaction problems plays an important role in our
understanding of animals’ locomotive and sensing behaviors. In this Letter, we study the SB of flexible
filaments clamped at one end and placed in a spanwise periodic array in Stokes flow. The equilibrium state
of the filament along the streamwise direction loses stability and experiences two-dimensional and then
three-dimensional SBs as the spanwise distance increases, or as the filament rigidity reduces. For slightly
deformed filaments, the viscous and pressure forces are commensurate, while for extremely deformed
filaments the viscous force becomes dominant.
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In nature, animals benefit from their flexible organs to, for
example, increase the swimming or flying efficiency by
using flexible fins [1–3] or wings [4,5], propel bacteria by
using flagella [6–9], sense the ambient fluid flows by flexible
whiskers [10,11] [see Figs. 1(a) and 1(b)]. Functionalities
mimicking these biological systems are of tremendous
interest to develop smart artificial devices, such as energy
extractors [12,13] and highly sensitive sensors [14].
The swimming or flying mechanisms for fish or birds

can be explained by the spontaneous symmetry breaking
(SB) of a flow configuration when inertia takes the
dominant role over viscous forces at higher Reynolds
numbers [15–18]. For instance, a flexible filament with a
pinned head is deflected, transits to periodically flapping,
and eventually to a chaotic state [15,19], as we increase the
Reynolds number or reduce the rigidity of the filament, due
to the Kelvin-Helmholtz instability. An inverted filament
(clamped at the tail) can also experience the same route of
SB [20–22]. In all these cases, without exception, the
Reynolds number is a critical parameter, which determines
the flow regime, e.g., a periodic flow, favored by efficient
swimming, flying, or energy harvesting.
However, at the microscopic scales, for example, swim-

ming bacteria with flagella, the Reynolds numbers range
from 10−4 to 10−2, and the flows are governed by the
incompressible Stokes equations [23]. Similarly, the Stokes
approximation can be applied when designing highly
sensitive flow sensors. For example, it was shown that a
cricket’s clavate hair is able to sense airflows with velocity

amplitudes down to 30 μm=s, with hair lengths of
20–250 μm, implying extremely low Reynolds numbers
[11,24,25]. The SB of Stokes flow around such sensors
with large aspect ratios, which will be modeled as flexible
filaments in the following, is universal. For example, the
whiskers of a cat are symmetric [see Fig. 1(a)], yet tiny
disturbance on one side of the body, e.g., the motion of a
mouse, causes SB.

FIG. 1. The animals’ whiskers, for example (a) cats and
(b) catfish present an important class of tactile sensors that
complement the functionalities of skin for detecting the ambient
fluid flows with high sensitivity. (c) Schematic plot of the
computational setup. The filament is clamped at the tail with
ðx; y; zÞ ¼ ð1; 0; 0Þ and the tip is initially located at (0,0,0). The
spanwise (z) extension of the domain is Lz and periodic boundary
conditions are applied. Here the computational domain is
repeated twice to illustrate the layout.
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In the Stokes regime, the combined effect of hydro-
dynamic forces arising from the viscous medium coupled
with the filament slenderness-induced flexibility (or soft-
ness) can result in geometrically nonlinear deformed
configurations [26–29]. There have been extensive studies
on the spontaneous oscillatory motion in the forms of either
traveling or helicalwaves arising in clamped filaments owing
to the buckling instability [6,9,29,30]. Unsurprisingly, the
active contribution from the molecular motor forces was
thought to be the key element to induce an instability [31].
Recently, by using a model with coupled elastohydrody-
namics and motor kinetics [32], though confined in two
dimension, Chakrabarti and Saintillan [33] reported that the
motor activity drives a Hopf bifurcation leading to traveling
wave solutions that propagate from tip to base. Moreover,
they revealed the existence of a second transition far from
equilibrium, where nonlinearities cause a reversal of the
direction of the wave propagation and produce a variety of
waveforms that resemble the beating patterns of swimming
spermatozoa [33]. Nevertheless, we also know that without
considering active forces, the balance between elastic and
viscous forces only can promote buckling transitions of an
elastic filament from a straight line to bending, even
periodically oscillating states, in specific surrounding flows
[30,34]. This passive response of a filament to its ambient
flow, particularly in the Stokes regime, is fascinating due to
the possibility that it can uncover the physical mechanisms
behind the synchronous behaviors of swimmingmicroorgan-
isms, and their unique capability of sensing the environment,
which, however, have not been well understood.
In this Letter, we report the bifurcation induced SB of

clamped flexible filaments in Stokes flow. As the filament
rigidity reduces or the spanwise distance between filaments
increases, these lose stability of the original equilibrium
position and bend in other stable equilibrium positions first
constrained in a two-dimensional (2D) plane and then fully
three-dimensional (3D). While the pressure is critical to the
bending of filaments at finite Reynolds number [35], in
Stokes flows, the pressure and viscous effects are com-
mensurate in balancing the elastic force when the bending
is at small scales.
The Cartesian system is adopted with x, y, and z

denoting the streamwise, normal and spanwise directions,
respectively. Initially the filament is placed along the x

direction and its tail is clamped. Assuming the filament has
the same density as the fluid, this initial position represents
an equilibrium state. In the spanwise direction, periodic
boundary conditions are applied and the domain size is
denoted as Lz (normalized by the filament length), within
which a single filament is contained, as schematically
plotted in Fig. 1(c), where the domain is duplicated in
the spanwise direction to clarify the computational setup. A
uniform velocity U∞ is prescribed at the inlet and far-field
boundaries of the computational domain. The pressure is
fixed at the outlet boundary.
The fluid flow is governed by the nondimensional Stokes

equation:

∇2u − ∇pþ f ¼ 0 with ∇ · u ¼ 0; ð1Þ

where u is the velocity normalized by the free-stream
velocity U∞, p is pressure normalized by μU∞=L, with μ
and L denoting the dynamic viscosity and the length of the
filament, and f is the forcing imposed by the filament to the
fluid. The inertial term is not shown as we always integrate
Eq. (1) until the solution becomes steady.
An immersed boundary method is used to model the

flexible filament, whose governing equations can be written
as [35,36]

∂2X
∂t2 ¼ ∂

∂s
�
T
∂X
∂s

�
−

∂2

∂s2
�
γ
∂2X
∂s2

�
− F; ð2Þ

where γ is the rigidity of the filament and s is the coordinate
along the filament, with s ¼ 0 and s ¼ 1 representing the
tip and the tail, respectively. T is the axial tension obtained
by applying the inextensibility constraint to the filament
∂X=∂s · ∂X=∂s ¼ 1. F is the forcing imposed by the fluid
on the filament and can be computed as

F ¼ α

Z
t

0

ðUib − UÞdt0 þ βðUib − UÞ; ð3Þ

where Uib is the interpolated fluid velocity on the filament,
U is the velocity of the filament, and α and β are negative
constants. F can be spread to the fluid mesh using the four-
point Dirac delta function to obtain f [37]. We note that the
forcing term represented by Eq. (3) is a feedback to the

FIG. 2. Filament bending with γ ¼ 0.1 for various Lz. The blue dotted lines show the projection onto the x–y plane.
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difference Uib − U that asymptotically enforces Uib ¼ U
on the immersed boundary.
Validations of the numerical results against theoretical

[38,39] and experimental [40] ones can be found in the
Supplemental Material [41]. In addition, the results are
validated against the solution of another solver adopting a
different algorithm [42] and the difference is within 1%.
Clearly this numerical setup is parameterised by the rigidity γ
and the filament’s spanwise distance Lz. At each combina-
tion of these parameters, the governing Eqs. (1) and (2) are
evolved until reaching a steady solution before collecting
data as presented below. Here, Lz ∈ ½0.08; 2.56�: at
Lz ¼ 0.08, the overall fluid and filament dynamics is
essentially 2D, and the spanwise periodically placed fila-
ments can be regarded as 2D flags, whereas, for Lz > 2.56,
the interactions between filaments become negligible and the
results can be assumed not to change for higher Lz.
As shown in Fig. 2(a), at γ ¼ 0.1, when Lz ¼ 0.08, the

filament is stable at the initial equilibrium position along x.
At larger Lz, the filament loses stability and bends in the
x–y plane to reach another equilibrium position, which will
be denoted as 2D-SB in the following [see Fig. 2(b)]. For
even larger Lz, the filament loses symmetry in the z
direction and deviates from the x–y plane, which will be
denoted as 3D-SB [see Figs. 2(c), 2(d), 2(e)]. As shown in
Fig. 3, 2D-SB and 3D-SB are also observed at fixed Lz
when reducing γ. From Fig. 1(a), whiskers of cats without
SB and with 2D-SB can be clearly identified, while in the
whiskers of catfish shown in Fig. 1(b), both 2D-SB and 3D-
SB can be seen. To illustrate the flow field, we present in
Fig. 4 the three-dimensional streamlines around the

filament for the case in Fig. 2(c). The attached flow around
the filament can be clearly seen.
The position of the tip of the filament are shown in Fig. 5

in the γ − Lz plane. The x coordinate describes the scale of
the deformation, whereas y > 0 and z > 0 illustrate the
onset of 2D-SB and 3D-SB. Because of the symmetry of
the numerical setup, negative y and z are not considered. At
γ ¼ 0.5, the filament is rigid enough and no bending is
observed even at the largest Lz, while at γ ¼ 0.05, 2D SB
appears even at the smallest Lz. The threshold lines for 2D-
SB and 3D-SB can be approximated as straight lines on the
lgðγÞ − lgðLzÞ plane at low values of Lz and converge to
γ ¼ 0.4 and γ ¼ 0.25 at Lz > 2. Clearly the 2D-SB thresh-
old line breaks the space into a symmetric part and an
asymmetric one, which is further partitioned by the 3D-SB
threshold line to 2D-SB and 3D-SB regions.
The 2D SB can be related to the buckling instabilities,

following the classical theories [43,44]. The critical shear
buckling load can be estimated as Qcr ¼ 7.837γ=L2, while
the critical concentrated tip load Qcr ¼ 2.47γ=L2 [45]. The
details of the derivation can be found in the Supplemental
Material [41]. Here, we choose six typical cases, and
redistribute the viscous force evenly along the filament,
or impose it as a concentrated load onto the tip. As shown
in Fig. 5(b), the onset of 2D SB predicted by the buckling
instability analysis agrees very well with our numerical
simulations.
As reported previously, the morphological transition and

transport of an elastic filament can be characterized
by an elastoviscous number η, which measures the flow
strength relative to viscously modulated elastic relaxation
of the filament [46–48]. Accordingly, we define here
η ¼ 8πτL3=γ, where τ is the averaged viscous shear force
on the filament. Interestingly, we find that η is almost
constant (in the range of 199–201) on the 2D SB line shown
in Fig. 5(b).
The force acting on the filament is of interest for the

reduced order modeling of filament dynamics and the
simulations of flow around a large number of filaments.
This force consists of a tangental term from the viscous
shear stress and a normal term from the pressure difference
integrated over the cross section, denoted as Fμ and Fp,
respectively. While the latter is dominant at finite Reynolds
number [35,42], the former is expected to be critical in the

FIG. 3. Filament bending with Lz ¼ 0.64 and various γ. The blue dotted lines show the projection onto the x–y plane.

FIG. 4. (a) 3D streamlines around the filament with γ ¼ 0.1 and
Lz ¼ 0.32; (b) enlarged view around the tip. The streamlines are
colored by the magnitudes of the velocities, with blue and red
representing the minimum and maximum.
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current Stokes flow. To verify this, we display the dis-
tribution of viscous and pressure forces from the tip (s ¼ 0)
to the tail (s ¼ 1) in Figs. 6(a) and 6(b). Three typical cases
illustrated in Fig. 3, with Lz ¼ 0.64 and γ ¼ 0.2, 0.08, and
0.02, are considered. The first case shows a small-scale
deformation with the tip upstream of the filament. At γ ¼
0.08 and γ ¼ 0.02, the tip is downstream of the tail, at
x ¼ 1.17 and x ¼ 1.7, respectively, and the most upstream
position, where the filament bends over, is at s ¼ 0.7
and 0.9.
Clearly, the viscous forces only dominate for γ ¼ 0.02,

while in the other two cases, the viscous and pressure forces
are commensurate. It has been proposed that if the
filaments are dense and with small-scale deformations,

such as in a hairy coated surface, the force around the tip is
much larger than that on the body of the filaments [49,50].
The present study reveals that the pressure reaches maxi-
mum at the most upstream position, which is the tip when
the deformation is small (s ¼ 1 at γ ¼ 0.2) and moves
towards the tail at larger-scale deformations (s ¼ 0.7 and
0.9 at γ ¼ 0.2, 0.08); the viscous force varies mildly from
the tip to the tail.
The moments generated by the viscous and pressure

forces with respect to the tail are also plotted [see Figs. 6(c)
and 6(d)]. The moments attain their maximum at s ¼ 0,
with the viscous component taking over as γ decreases.
These data indicate that the tip force is critical to study the
deformation of the filament related with the moments, but

FIG. 5. (a),(b), and (c) Contours of the x, y, z position of the filament’s tip on the logðγÞ − logðLzÞ plane. y > 0 and z > 0 represent
2D-SB and 3D-SB, respectively. The threshold of 2D-SB and 3D-SB can be approximated as logðγÞ ¼ 0.97 logðLzÞ þ 0.58 and
logðγÞ ¼ 0.68 logðLzÞ − 1.5, denoted as the dash-dotted straight line in (b) and the dashed straight line in (c), at low Lz and approach
γ ¼ 0.4 and γ ¼ 0.25, at Lz > 2. The purple dots in (b) represent the critical points calculated by buckling instability analyses based on
distributed viscous forces, while the green circles are based on concentrated tip loads.
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inadequate for the fluid and structure interactions associ-
ated with the forces.
In summary, the symmetry breaking of flexible filaments

in Stokes flow is numerically studied. The filaments, with
rigidity γ, are clamped on one end and placed periodically
with spanwise distance Lz. When increasing Lz, the flow
becomes increasingly 3D, the spanwise interaction of
filaments reduces and the filaments are prone to lose
stability of the original equilibrium position: 2D SB and
3D SB are observed in sequence when increasing the
spacing and when reducing γ following a similar path.
These forms of SBs are ubiquitous in nature and can be
clearly identified from e.g., the whiskers of animals. The
threshold for the 2D and 3D SB can be approximated as
straight lines in the log γ − logLz plane at low Lz, whereas
they approach γ ¼ 0.4 and 0.25 at Lz > 2 when filament-
filament interactions become negligible, in good agreement
with buckling stability theory. As the deformation becomes
larger, the viscous force takes over the pressure force to
dominate the fluid and structure interactions, and the
maximum of the force moves from the tip to the most
upstream position of the filament.
Future extension of the present work may be devoted to

instabilities and interactions between filaments in a non-
Newtonian fluid matrix, in which case the relaxation time
of the fluid microstructures will add nontrivial effects to
those already discussed here.
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