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Rayleigh-Taylor (RT) fluid turbulence through a bed of rigid, finite-size spheres is investigated by means
of high-resolution direct numerical simulations, fully coupling the fluid and the solid phase via a state-of-
the-art immersed boundary method. The porous character of the medium reveals a totally different physics
for the mixing process when compared to the well-known phenomenology of classical RT mixing.
For sufficiently small porosity, the growth rate of the mixing layer is linear in time (instead of quadratical)
and the velocity fluctuations tend to saturate to a constant value (instead of linearly growing). We propose
an effective continuum model to fully explain these results where porosity originated by the finite-size
spheres is parametrized by a friction coefficient.
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Introduction.—Rayleigh-Taylor (RT) turbulence is
strongly influenced by physical phenomena such as rota-
tion [1–3], surface tension [4], viscosity variations, and/or
viscoelastic effects [5–8]. Little is known about RT
turbulence, and buoyancy-driven turbulence in general,
in porous media. This is in spite of the importance of
the problem in a variety of environmental applications.
Among the many possible examples, we mention here the
geological storage of CO2 in saline aquifers [9] in order to
mitigate the effects of emissions on climate changes and all
processes involving the injection of a hot fluid into a cooler,
fluid-saturated, subsurface rock including the so-called
thermal enhanced oil recovery [10].
All these applications have renewed the interest to

understand RT-induced mixing in porous media [11–15].
Accurate prediction of the performance of these processes
requires a model describing the fully coupled dynamics of
the rock–fluid system. Our aim here is to propose a simple
model of porous buoyancy-driven turbulent flow whose
universal properties are extracted via a phenomenological
theory. The simple model we study here shares with all real
complex systems two key properties: (i) the fluid motion is
triggered by the RT instability and (ii) the fluid motion
evolves in a porous medium. We will show that the fluid-
structure interaction problem radically changes the classical
RT scenario giving rise to new physics which can be
captured by simple theoretical arguments.
Here, we address the problem of RT turbulence in

porous media by extensive numerical simulations of a
fully resolved two-phase flow, representing a disordered

distribution of solid particles (spheres) in the computational
domain for different values of porosity. A state-of-the-art
immersed-boundary method is employed to simulate the
presence of the particles [16–18]. We find that the growth
of the mixing layer is strongly affected by the presence
of particles and, for sufficiently large concentrations, the
mixing layer grows linearly in time. Velocity fluctuations
are reduced and saturate to a constant value in the limit of
large concentrations, with increasing anisotropy. The pres-
ence of particles also suppresses the turbulent heat transfer.
The resulting phenomenology is in sharp contrast with the
well-known quadratic growth rate of the mixing layer,
accompanied by the linear growth in time of velocity
fluctuations occurring in classical RT turbulence [8].
Moreover, we compare the results of the fully resolved
model with an effective continuous model in which the
porosity is parametrized by a friction coefficient, a model
for which simple theoretical predictions are possible, and
find a good agreement with the results of the fully resolved
model.
Model for porous RT turbulence.—We consider the

Boussinesq model for the buoyancy-driven incompressible
flow with velocity ufðx; tÞ and temperature Tðx; tÞ in the
presence of gravity g ¼ ð0; 0;−gÞ

∂uf

∂t þ uf · ∇uf ¼ −∇pþ ν∇2uf − βgT þ f; ð1Þ

where ν is the kinematic viscosity of the fluid, p the
pressure, β the thermal expansion coefficient, and fðx; tÞ is
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the immersed-boundary forcing that accounts for the
presence of the particles. The temperature equation is
solved in all the computational domain for both fluid
and solid phases

∂T
∂t þ ucp · ∇T ¼ ∇ · ðκcp∇TÞ; ð2Þ

where ucp and κcp are the velocity and thermal diffusivity
of the combined phase. These last two quantities can be
expressed in a volume of fluids formulation [19], based on
the combined single-phase values and on the local volume
fraction. Because in the case considered here the particles
do not move, i.e., the forcing term f does not depend on
time, ucp ¼ ð1 − ξÞuf, where ξðxÞ is a phase indicator field
that equals to 0 in the fluid phase and to 1 in the solid phase.
Similarly, the combined thermal diffusivity is written as
κcp ¼ ð1 − ξÞκf þ ξκs where κf and κs are the thermal
diffusivity of the fluid and solid phases, respectively [20].
The computational domain contains a random distribution
of N solid spherical particles (obstacles) of macroscopic
radius rp. Particles are fixed in space and the no-slip and
no-penetration boundary conditions on their surface are
imposed indirectly via the forcing term fðxÞ in Ref. (1).
Further details on the numerical method can be found in the
Supplemental Material [21] and in Refs. [20,22–24].
The velocity and temperature fields in Eqs. (1) and (2)

are defined in a domain of volume V ¼ Lx × Ly × Lz, with
periodic conditions on the domain boundaries. The porosity
of the domain, the ratio of the void volume over the total
volume, is ϕ ¼ 1 − NVp=V ¼ 1 − hξðxÞi, where Vp ¼
ð4=3Þπr3p is the volume of a single particle and h·i
represents the volume average.
We perform direct numerical simulations of Eqs. (1) and

(2) at different values of porosity. For simplicity and
numerical convenience, the simulations described in this
Letter assume κf ¼ κs ¼ κcp ¼ ν. The domain size has
horizontal dimensions Lx ¼ Ly ¼ 32rp and vertical height
Lz ¼ 128rp. A resolution of 16 points per particle diameter
is used, giving a total of Nx ¼ Ny ¼ 256 and Nz ¼ 1024

grid points on a regular grid. Numerical results are averaged
over four independent runs starting with different initial
perturbations and are presented as dimensionless quantities
using Lz and τ ¼ ðLz=AgÞ1=2 as space and time units,
respectively.
The initial condition for Rayleigh-Taylor instability and

turbulence is a layer of cooler (heavier) fluid over a warmer
(lighter) layer at rest, i.e., Tðx; 0Þ ¼ −ðθ0=2ÞsgnðzÞ (T ¼ 0
is the reference temperature) and ufðx; 0Þ ¼ 0 where θ0 is
the initial temperature jump which defines the Atwood
number A ¼ ð1=2Þβθ0. This initial condition is unstable
and after the linear instability phase, the system develops a
turbulent mixing zone that grows in time starting from the
plane z ¼ 0 [8].

The phenomenology of the pure fluid case (ϕ ¼ 1) is
well known [6,8]. After the initial linear instability, the
flow enters into a nonlinear phase where a turbulent mixing
layer is produced and evolves in the vertical direction.
The mixing layer amplitude can be defined in terms of the
mean vertical temperature profile T̄ðz; tÞ≡ ½1=ðLxLyÞ�×R
Tðx; tÞdxdy as the region of width h in which jT̄ðzÞj ≤

ðθ0=2Þr where r < 1 is a threshold (typically r ¼ 0.9).
In the turbulent phase, the width of the mixing layer grows
asymptotically as hðtÞ ¼ cAgt2, while vertical and hori-
zontal velocity fluctuations grow linearly in time, with
vertical fluctuations about two times larger than horizontal
fluctuations and isotropic velocity gradients [25]. The
determination of the dimensionless coefficient c has been
the object of many numerical and experimental studies both
in three dimensional, where it is in the range 0.02–0.04
[6,26–28], and in two dimensional [29–31].
Figure 1 shows a section of the temperature field for

classic RT turbulence and a case with porosity ϕ ¼ 0.6.
Qualitative differences between the two cases are evident,
in particular, the presence of strongly anisotropic, vertically
elongated, plumes in the porous case. These differences are
quantified in Fig. 2, where we plot the time evolution of the
mixing layer hðtÞ for different values of the porosity,
starting from the standard case ϕ ¼ 1. We observe that
the presence of solid particles strongly reduces the growth
of the mixing layer. Although in the pure fluid case the
mixing layer at late times follows the classical t2 law [8],
already for ϕ ¼ 0.8 it shows a different scaling law and, for
the smallest values of porosity ϕ ¼ 0.7 and ϕ ¼ 0.6, the
growth becomes linear (see inset of Fig. 2). Moreover, also
the coefficient of the linear growth depends on the porosity.
We notice that at short times, t=τ < 0.5, the presence of the
particles has no effects on the evolution of hðtÞ because the
width of the mixing layer is here comparable with inter-
particle scale.

FIG. 1. Vertical sections of the temperature field for Rayleigh-
Taylor turbulence. Left: standard RT turbulence in homogeneous
fluid with porosity coefficient ϕ ¼ 1. Center: fully resolved
simulation of porous RT turbulence with ϕ ¼ 0.6. Right: effective
homogeneous model with friction coefficient ατ ¼ 3.
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The reduced growth of the mixing layer is associated
to the suppression of the turbulent velocity fluctuations.
In Fig. 3, we show the horizontal uxðtÞ and vertical uzðtÞ
rms velocities in the mixing layer. These are computed in a
phase averaged sense as uxðtÞ ¼ hðuf · x̂Þ2i1=2, x̂ being the
unit vector along the x axis, and similarly for uz, where
brackets indicate average over the mixing layer. Figure 3
shows that both components are reduced in the presence of
particles. For the smallest value of porosity, the velocity
fluctuations become almost constant at large times. This is
in agreement with the linear growth of the mixing layer
observed in Fig. 2. We observe also a small increment of
the anisotropy of the velocity components uz=ux with
respect to the case of pure fluid ϕ ¼ 1, which is not
surprising given the elongated structures observed in Fig. 1.
The growth of the mixing layer is a basic measurement of

the amount of mass mixed by the turbulent flow. Recently, a
more direct indicator of the mixed mass, M, has been

introduced which has the advantage of being a conserved
inviscid quantity [32]. It is defined by the integral

M ¼
Z

4ρY1Y2d3x; ð3Þ

where ρ is the mixture density, and the mass fractions, in
the present case of a symmetric temperature jump, are
Y1ðxÞ ¼ ðθ0=2 − TÞ=θ0 and Y2ðxÞ ¼ ðθ0=2þ TÞ=θ0.
Although for the higher values of porosity, M follows

the t2 behavior observed in the standard RT turbulence [32],
for the lower values ϕ ¼ 0.7 and ϕ ¼ 0.6, it displays a clear
linear behavior (see inset of Fig. 3).
Figure 4 shows the dimensionless turbulent heat transfer

Nu ¼ 1þ huf · ẑTih=ðκfθ0Þ as a function of the Rayleigh
number, defined for RT turbulence as Ra ¼ Agh3=ðνκfÞ.
We observe large fluctuations for all the values of porosity,
even after averaging over realizations. Nonetheless it is
possible to observe a reduction of Nu, for given Ra, by
decreasing the value of porosity. A similar behavior has
been observed in the case of rotating Rayleigh-Taylor
turbulence where the reduction of Nu is produced to the
decoupling of velocity and temperature fluctuations due to
the bi-dimensionalization of the flow [3]. For large poros-
ity, ϕ ¼ 1 and ϕ ¼ 0.8, the scaling is in agreement with
the so-called ultimate state regime Nu ≃ Ra1=2 already
observed in the pure fluid case [8]. For smaller values of
ϕ, there is a clear indication of a transition to a different
regime compatible with a Ra1=3 scaling. Indeed, assuming
that h ∼ t and urms ∼ t0, we obtain Nu ∼ t and Ra ∼ t3

which imply Nu ∼ Ra1=3.
Interpretation in terms of an effective model.—Let us

now show that the features of the porous RT turbulence can
be obtained by an effective continuous model (without
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FIG. 2. Temporal evolution of the mixing layer h in four
simulations of porous RT turbulence with different values of the
porosity ϕ. Dashed line represents the t2 behavior. Inset: the same
quantities in lin-lin plot to emphasize the linear growth at later
times for the two cases at smallest porosities. The dashed line
represents the result from the continuous model with ατ ¼ 3.
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FIG. 3. Temporal evolution of the vertical (solid lines) and
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the porosity under investigation. Inset: temporal evolution of the
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102

103

108 109 1010

N
u

Ra

φ=1
φ=0.8
φ=0.7
α τ=3
Ra1/2

Ra1/3

FIG. 4. Nusselt number Nu as a function of the Rayleigh
number Ra from three simulations of porous RT turbulence and
from one simulation of the continuous model. From top to
bottom: ϕ ¼ 1 (black line), ϕ ¼ 0.8 (red line), ϕ ¼ 0.7 (blue
line), ατ ¼ 3 (pink line). The upper dashed line represents the
ultimate state scaling Ra1=2, the lower dotted line is the Ra1=3

scaling.

PHYSICAL REVIEW LETTERS 121, 224501 (2018)

224501-3



particles), in which the porous medium is parametrized by a
friction coefficient. The model is obtained by averaging the
microscopic equation over a volume which includes many
particles and therefore filters the discrete nature of the
porous medium. In the limit of small particles, the porous
medium is considered as a homogeneous fluid with an
additional effective friction term −αu added to the momen-
tum Eq. (1) [33]. The friction coefficient α is

α ¼ ν
45ð1 − ϕÞ2

r2pϕ2
: ð4Þ

We remark that the use of a continuous model for the
problem discussed in this Letter is not justified a priori,
because there is no large-scale separation between particles
size and box size. Moreover, particles are not very small to
guarantee the presence of a Stokes flow in the pores. This is
why the fluid inertia contribution is retained. The continu-
ous model can be corrected taking into account finite
particle Reynolds number Rep ¼ rpu=ν (where u repre-
sents the magnitude of the flow velocity around the
particle) by the factor f1þ ½ϕ=50ð1 − ϕÞ�Repg [33].
For simplicity, in the following, we consider the extension
of the continuous model to the Boussinesq equations in the
limit of small particles with linear friction (4) only, and we
find that it is able to reproduce many of the results of the
full microscopic model and sheds light upon the mecha-
nism at the basis of the results discussed in the previous
section.
In the limit of large porosity, ϕ ≃ 1, the friction

coefficient (4) vanishes and therefore we expect that the
standard RT turbulence phenomenology holds. Therefore,
in this limit, we can assume that h ≃ βgθ0t2 and U ≃ βgθ0t.
On dimensional grounds, by using these scaling laws, one
sees that αu becomes dominant over u · ∇u in Eq. (1) after
a time tα ≃ 1=α. Therefore, for t > tα, we expect a different
phenomenology given by the balance of the buoyancy term
which injects energy and the friction term which removes
the energy in the system. This balance gives the new scaling
laws

h ≃
βgθ0
α

t; ð5Þ

U ≃
βgθ0
α

: ð6Þ

Therefore, already at the level of dimensional analysis,
the effective model is able to reproduce the behavior
observed in the fully microscopic model, i.e., the saturation
of velocity fluctuations and the linear growth of the mixing
layer.
In Fig. 5, we plot the time evolution of the rms of the

horizontal and vertical velocities for three different simu-
lations of the effective model: one for the standard RTwith

α ¼ 0 and two with larger values of the friction coefficient.
The case ατ ¼ 3 corresponds to the case ϕ ¼ 0.6 according
to Eq. (4) and will be used to make a quantitative
comparison of the homogeneous model with the full
microscopic model. As in the microscopic model, we
observe that while for α ¼ 0 the large-scale velocity grows
linearly in time (after an initial transient), in the simulations
with friction the velocity saturates to a constant value.
Moreover, anisotropy increases with α, because the hori-
zontal velocity is suppressed more than the vertical one, a
feature also observed in the microscopic model (see Fig. 3).
In the inset, we report the vertical rms velocity multiplied
by the friction coefficient α, which, according to Eq. (6),
gives a constant value independent on α.
Figure 6 shows the evolution of the mixing layer width,

hðtÞ, from the three simulations of the effective model at
increasing values of the friction coefficient. The presence of
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friction slows down the growth of the mixing layer but also
changes its slope. For the largest values of α, the growth
becomes linear (see inset of Fig. 6) in agreement with the
prediction (5).
The case ατ ¼ 3 is also plotted in the inset of Fig. 2 for a

direct comparison with the full model. It is evident that the
simple homogeneous model is able to reproduce quantita-
tively the behavior and the transition observed in the
microscopic model.
Conclusions.—We have numerically studied Rayleigh-

Taylor turbulence in the presence of fixed macroscopic solid
particles, for different values of porosity coefficient.We have
shown that the presence of particles reduces the growth of the
mixing layer, which for small porosity follows asymptoti-
cally a linear behavior. In this regime, turbulent velocity
fluctuations saturate to a constant value.We have interpreted
these results in terms of a continuous homogeneous model
with an additional linear friction term representing the
effective porosity of the medium. Dimensional analysis
predicts that the friction term at late times modifies the
asymptotic growth of the mixing layer. This is confirmed by
extensive simulations of the effective model which is shown
to reproduce the main features observed in the full model.
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