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We study suspensions of deformable (viscoelastic) spheres in a Newtonian solvent in
plane Couette geometry, by means of direct numerical simulations. We find that in the limit of
vanishing inertia, the effective viscosity u of the suspension increases as the volume fraction
occupied by the spheres ® increases and decreases as the elastic modulus of the spheres
G decreases; the function u(®,G) collapses to a universal function p(®.) with a reduced
effective volume fraction ®.(P,G). Remarkably, the function u(®.) is the well-known
Eilers fit that describes the rheology of suspension of rigid spheres at all ®. Our results
suggest different ways to interpret the macrorheology of blood.

DOLI: 10.1103/PhysRevFluids.3.012301

Most of the fluids we encounter in our everyday life—from the mud we wade through to the blood
that flows through our veins—are complex fluids. One of the most useful ways to understand the
rheology of complex fluids is to model them as suspensions of objects in a Newtonian solvent with
dynamic viscosity u¢ and density pr [1,2]. The rheology of suspensions can be quite complex, as it
depends on the shear rate y, the volume fraction ® occupied by the suspended objects, the properties
of the suspended objects themselves (some examples are rigid spheres, bubbles, a different fluid
enclosed in a membrane), and their polydispersity. In the simplest case of rigid spheres in the limit of
small @, and vanishing inertia (small y), also ignoring thermal fluctuations (infinite Peclet number),
the fractional increase in the effective viscosity of the suspension is given by (see, e.g., Ref. [3],
Sec. 4.11)

i=1+§q>+0(<1>2). (1)

1t
At present there is no theory that allows us to calculate  for any given ® and y. Different empirical
formulas provide a good description of the existing experimental and numerical results [4—7]. Among
those, we consider here the Eilers formula [1,2],
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which fits well the experimental and numerical data [5,6] for both low and high values of ®, up to about
0.6. In the expression above, @, is the geometrical maximum packing fraction, and B is a constant,
and the best fit to the data yields @, = 0.58-0.63 and B = 1.25-1.7. If theradius R of the spheres and
the shear rate are large enough, the particle Reynolds number, defined as Re = (p; Ry)/ s, is greater
than unity, inertial effects are non-negligible, and the viscosity u = u(®,Re). Remarkably, direct
numerical simulations (DNSs) in Ref. [8] demonstrated that the Eilers fit is a good approximation
even for inertial suspensions if ® in Eq. (2) is replaced by an increased effective volume fraction
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FIG. 1. Top: The fractional increase in effective viscosity w/us as a function of the volume fraction @ for
several different values of the capillary numbers Ca = 0.02 (4), 0.1 (x), 0.2 (%), 0.4 (1d), and 2 (A). All the
cases have K = 1. For comparison we also plot the same data for rigid particles [8] [Ca = O (e)]. The inset
shows the same data replotted as a function of Ca for different ® ~ 0.0016 (green), 0.11 (blue), 0.22 (magenta),
and 0.33 (red). Bottom: The same data replotted as a function of effective volume fraction @, collapses to a
universal function given by the Eilers fit, Eq. (2), with &,, = 0.6 and B = 1.7. The horizontal error bars show
the standard deviation of the effective volume fraction. In the figure we also show the fitted data for three
more cases at ® = 0.11, Ca = 0.2, and viscosity ratio K = 0.01 (black), 0.1 (brown), and 10 (orange). The
interested reader is referred to the Supplemental Material [16] for a discussion of the effect of K on the effective
viscosity.

®.(d,Re). Due to the increase of the effective volume fraction with the applied shear, the suspension
viscosity increases, a phenomenon called inertial shear thickening.

In this Rapid Communication we add a different complexity to this problem, one that is particularly
important to understand the rheology of biological flows; while keeping small Re, we allow the
suspended particles to be deformable. In particular, we model the spheres as viscoelastic material
with an elastic shear modulus G and viscosity us. Thereby we introduce two different dimensionless
parameters: the capillary number Ca = u¢y /G and the viscosity ratio K = us/u¢. This problem
has a long history starting with the work by Taylor [9] who assumed a small deformation (Ca — 0),
and showed that for small &, the coefficient of the linear term on the right-hand side of Eq. (1) is
(5K +2)/(2K + 2). Later analytical calculations [10—14] attempted to extend the result of Taylor to
higher order in ® and Ca using perturbative expansions. Recently, numerical simulations [15] have
been used to estimate the deformation and suspension viscosity for elastic capsules.

We use direct numerical simulations (DNSs) of deformable spheres in plane Couette flow to
calculate u(®,Ca), for a wide range of ® (up to ~33%) and Ca (0.02-2). We find that u increases
as @ increases and decreases as Ca increases, i.e., we find shear thinning due to deformability.
More importantly, the function u(®,Ca) collapses to a universal function u(®,.) (see Fig. 1), with a
reduced effective volume fraction ®.(®,Ca). Here, @, is not a fit parameter, but found independently
from the shape of the deformed particles in the suspensions. Remarkably, the function pu(®.) is well
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FIG. 2. Top: Sketch of the channel geometry. The top and bottom walls, located at y = 4h, move with
opposite velocities +V,, in the streamwise x direction. Left: Shape of the deformed particle for lowest @ (just
a single object in the computational box) for three different capillary numbers, Ca = 0.02, 0.2, and 2. Right:
Shape of the deformed particles at Ca = 0.2 for three different volume fractions, & = 0.11, 0.22, and 0.33.
The intensity of color shows B'2. In all our simulations we use Re = 0.1 with several different values of
® ~ 0.0016, 0.11, 0.22, and 0.33, and Ca = 0.02, 0.1, 0.2, 0.4, and 2. We use the viscosity ratio s/ = 1
for all our simulations, except for three more cases with ¢ = 0.11 and Ca = 0.2, where u,/u; = 0.01, 0.1,
and 10.

described by the FEilers fit, Eq. (2). This demonstrates a striking universality of complex fluids: The
Eilers fit works for non-Brownian inertialess suspensions of rigid objects, suspensions at moderate
Re, and also for non-Brownian suspensions of deformable objects, provided one uses ®,. instead
of ®.

We perform DNS in the plane Couette geometry—see Fig. 2 for a sketch of our computational box.
The deformable spheres suspended in the Newtonian fluid are modeled with a two-phase approach:
The local volume fraction is denoted by ¢, i.e., ¢ = 1 inside the viscoelastic solid phase and ¢ = 0
in the fluid phase, with a sharp boundary in between; hence ® = (¢), where (-) denotes the volume
average [17]. The incompressible Navier-Stokes equations are solved everywhere for a monolithic
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velocity field [18-20] u and a stress tensor o'/ given by

o'l = ¢l + (1 — ¢p)o, (3a)
0/l = —psi 4+ 2uDY + GBY, (3b)
o;j = —p8Y +2usDV. (3¢)

Here, the suffixes f and s indicate the fluid and solid phase, D"/ = (1/2)(3'u’ + 3/u') the rate-of-
strain tensor, p the pressure, and 8"/ the Kronecker delta. Clearly the fluid phase is a Newtonian one
with dynamic viscosity us and the solid phase is both viscous (us) and hyperelastic with the left
Cauchy-Green tensor BY. Both ¢ and B/ are conserved quantities advected by the local velocity u.

The dynamical equations are solved using a second-order finite-difference scheme in space and a
third-order Runge-Kutta scheme in time. The pressure is obtained by solving the Poisson equation
using Fourier transforms. We use a Cartesian uniform mesh in a rectangular box of size 16R x
10R x 16R, with 16 grid points per particle radius R. Periodic boundary conditions are imposed in
the streamwise x and spanwise z directions and no-slip conditions at the walls located at y = —h
and y = h, with y the wall-normal direction, which move in opposite directions with a constant
streamwise velocity +V,, = hy. We have validated our code by reproducing the results of Ref. [21],
and details of our implementation can be found in Ref. [22]. An additional validation can be found
in the Supplemental Material [16] where we compare our results with Ref. [23]. We have checked
that doubling the resolution in all directions results in an insignificant (less than 0.5%) change in the
results. Also, the size of the domain has been chosen sufficiently large to avoid confinement effects
[8,24]. The list of parameters investigated is given in the caption of Fig. 2.

We first run a set of simulations with the smallest ® & 0.0016 which corresponds to one sphere
in the computational volume. After the transients die out, the sphere deforms to approximately an
ellipsoid. Examples are shown in Fig. 2, left column, for three different values of Ca. We characterize
these shapes by the Taylor parameter [9],

b—a
b+a’

where b and a are the lengths of the semimajor and semiminor axis in the shear xy plane. For
higher values of ®, we start our DNS with the spheres randomly distributed in the computational
domain and then wait until 7, = 20/y to reach a statistical stationary state [25]. Typical snapshots
of the suspensions are shown in Fig. 2, right column, for three different values of ®. We calculate
T by averaging over all the ellipsoids and plot 7(®,Ca) in Fig. 3. We also show the results of the
perturbative analysis of Ref. [12], which, as expected, agrees with our results at small Ca and small
@, and results from the numerical simulations of single particles in a box in Refs. [26-28].

We calculate the effective viscosity u(®,Ca) as the ratio between the shear stress at the walls and
y. The effective viscosity w, normalized by u¢, as a function of & for several different values of Ca
and as a function of Ca for several different values of @, is shown in Fig. 1. Clearly, for a fixed Ca,
the effective viscosity increases with @, whereas for a fixed ®, the effective viscosity decreases as
the capillary number increases. The increase of Ca can, on one hand, be interpreted as a decrease in
G (with y and pu¢ held constant), i.e., u decreases as the spheres become more deformable. On the
other hand, the increase of Ca can be interpreted as an increase of y (with G and p held constant),
consequently u decreases as y increases, i.e., we observe shear thinning. This latter interpretation is
valid only when the inertial effects remain vanishingly small. This is consistent with earlier studies
[13,25] for small Ca and & (for a demonstration, see the Supplemental Material [16]).

At constant @, as Ca increases, 7 increases and the spheres become approximately prolate
spheroids aligned with the shear directions [15]. This suggests that the shear thinning (decrease
in ) with increasing Ca can be interpreted in terms of a decrease in the effective volume fraction
d.., a concept successfully used in the past for suspensions with different properties, such as charged
colloidal particles, fiber and platelet suspensions, and polyelectrolyte solutions [2,29-31]. Here, we

T =
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FIG. 3. Top: The Taylor deformation parameter 7 Eq. (4) as a function of capillary number Ca = 0.02 (+),
0.1 (x), 0.2 (x),0.4 ([J), and 2 (A) for @ ~ 0.0016 (green), 0.11 (blue), 0.22 (magenta), and 0.33 (red). All the
cases have K = 1. The black solid line shows the result of the perturbative calculation of Ref. [12] expected
to hold for small Ca and ®. The black symbols are numerical results from the literature for a single particle
in a box. In particular, the triangle and rhombus are the results from Refs. [26,27] which were calculated for
® =~ (.06, while the circle the two-dimensional simulation from Ref. [28] with ® ~ 0.05. Bottom: The effective
volume fraction @, as a function of the volume fraction ®. The inset shows &,/ P as a function of the capillary
number Ca, with logarithmic scale for the x axis.

define it by ®. = (47r/3)(a)?/V, where (a) is the mean semiminor axis of all the particles calculated
from the DNS and V the total volume of the computational box. We use the variance of a to estimate
the error in ®.. The choice of using the minor axis is different from what was done in previous works
for fiber suspensions [32-34], where the major axis is usually considered. This is motivated by the
fact that in our case the particles are not tumbling and are approximately aligned with the mean shear
direction, thus, what matters is the dimension in the direction normal to the mean shear, i.e., the minor
axis. The reduced volume fraction ®. increases with ® and decreases with Ca [see Fig. 3(bottom)].
Furthermore, we find that ®./® is a function of Ca alone [see the inset of Fig. 3(bottom)], a finding
useful for future modeling. This brings us to the central result of this Rapid Communication in
Fig. 1(bottom): The effective viscosity u/us plotted as a function of @, for all the different cases
collapses to a universal function, i.e., we have shown that the effect of the deformability of the
particles can be included into the effective viscosity of the suspension as follows,

w/us = F[Pe(P,Ca)l, (3)

where @, is the effective volume fraction encoding the deformation, and F a universal function.
Remarkably, we find that the Eilers fit, Eq. (2), with ® replaced by ®. provides a good description
of this universal function. Data for four different values of the viscosity ratio K are included in
Fig. 1(bottom), which also collapse to the universal Eilers fit. As shown in the Supplemental Material
[16], we find that u /s depends weakly on the viscosity ratio K. The data from another recent DN'S
[15] of fluid-filled deformable capsules can also be collapsed to the universal Eilers fit; see the
Supplemental Material [16].
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FIG. 4. Left: The effective viscosity of suspensions of RBCs for different deformabilities and viscosity ratio
plotted as a function of the effective volume fraction collapses to the Eilers fit. The data are obtained from Fig. 5
of Ref. [35]. The brown points correspond to normal RBCs in saline, while the blue, red, and green ones to
RBC:s in dextran solutions of viscosities 3.2, 11, and 67 cP, respectively. The gray symbols are the rigid RBCs
treated with acetylaldehyde. Right: The effective volume fraction @, as a function of ® necessary to obtain the
collapse in the left panel.

Finally, we demonstrate how robust our results are by applying them to experimental data [35]
on the viscosity of suspensions of red blood cells (RBCs)—to distinguish such a suspension from
blood, which is a more complex system, we call [36] them erythrocite suspensions (ESs). Although
several experiments have measured the effective viscosity of erythrocite suspensions under a range
of volume fractions and shear rates (see, e.g., Refs. [37,38] for a recent review of numerical and
experimental results), only Ref. [35] measured the effective viscosity at four different capillary
numbers too by changing the viscosity us of the solvent [39], and compared it against one rigid case
obtained by treating the RBCs with acetaldehyde. To apply our result to these data we first fit the
Eilers formula to the case of the hard RBCs, obtaining B = 1.25 and a maximum packing fraction
@, = 0.88, as the undeformed shape of the RBCs is not spherical but disklike [40]. With these
changes we find that the viscosity of RBCs can be collapsed to the Eilers fit, as shown in Fig. 4(left).
As a necessary condition for this collapse we obtain the dependence of the effective volume fraction
®. with @ shown in Fig. 4(right). The curves are approximately linear, and decrease with Ca for a
fixed @, which is similar to what we have obtained from our simulations [Fig. 3(bottom)]. As various
diseases, including malaria and sickle cell anemia, increase the deformability of RBCs, our results
suggests the intriguing possibility that it may also be possible to use our method to model the change
in the effective viscosity of blood in such cases [41].

To conclude, our simulations show that a suspension of deformable incompressible spheres in a
Newtonian fluid displays shear thinning and that this can be understood in terms of a reduction of the
effective volume fraction occupied by the suspended spheres due to their deformation. Considered in
conjunction with earlier results [8], we find that the Eilers fit used with the concept of effective volume
fraction is a surprising powerful too to interpret rheological data. In other words, the suspension
dynamics is mainly determined by excluded volume effects for non-Brownian suspensions of rigid
and deformable particles, the former also in the weakly inertial regime. A word of caution though,
in that not all aspects of non-Brownian suspensions can be described by an effective viscosity, e.g., a
laminar to turbulent transition in a suspension is qualitatively different from that of a Newtonian fluid
[42]. In view of our initial success in interpreting existing rheological measurements of suspensions
of RBCs, we suggest a systematic experimental investigation of suspensions of cells and capsules
with different deformabilities.
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