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A B S T R A C T

We consider suspensions of deformable particles in a Newtonian fluid by means of fully Eulerian numerical
simulations with a one-continuum formulation. We study the rheology of the visco-elastic suspension in plane
Couette flow in the limit of vanishing inertia and examine the dependency of the effective viscosity μ on the solid
volume-fraction Φ, the capillary number Ca, and the solid to fluid viscosity ratio K. The suspension viscosity
decreases with deformation and applied shear (shear-thinning) while still increasing with volume fraction. We
show that μ collapses to an universal function, μ(Φe), with an effective volume fraction Φe, lower than the
nominal one owing to the particle deformation. This universal function is well described by the Eilers fit, which
well approximate the rheology of suspension of rigid spheres at all Φ. We provide a closure for the effective
volume fraction Φe as function of volume fraction Φ and capillary number Ca and demonstrate it also applies to
data in literature for suspensions of capsules and red-blood cells. In addition, we show that the normal stress
differences exhibit a non-linear behavior, with a similar trend as in polymer and filament suspensions. The total
stress budgets reveals that the particle-induced stress contribution increases with the volume fraction Φ and
decreases with deformability.

1. Introduction

Particles suspended in a carrier fluid can be found in many biolo-
gical, geophysical and industrial flows. Some examples are the blood
flow in the human body, pyroclastic flows from volcanoes, sedimenta-
tion in sea beds, fluidized beds and slurry flows. Despite the numerous
applications, it is still difficult to estimate the force needed to drive
suspensions, while in a single phase flow the pressure drop can be ac-
curately predicted as a function of the Reynolds number [1] and the
properties of the wall surface (e.g. roughness [2], porosity [3,4], elas-
ticity [5]). This is due to the complexity of multiphase flows where
additional parameters become relevant, such as the size and shape of
particles, the density difference with the carrier fluid, their elasticity
and the solid volume fraction, denoted here Φ; each of these parameters
may be important and affect the overall dynamics of the suspension in
different and sometimes surprising ways [6]. Here, we focus on sus-
pensions where particles are deformable, the solid volume fraction is
finite and we use numerical simulations to fully resolve the fluid-
structure interactions and the stresses in the solid and liquid. Indeed,
there has been growing interest in the study of particles whose shape
can modify and adapt to the kind of flow. Examples range from a single
liquid droplet with constant surface tension to red blood cells enclosed
by a biological membrane or cells with stiff nuclei [7–9]. Such studies
are motivated by the practical need to analyse the behavior of droplets

with contaminated interfaces, cells enclosed by biological membranes,
and various synthetic capsules encountered in chemical and biochem-
ical industries, with specific applications in chemical and biomedical
engineering.

From a theoretical point of view, Einstein [10] showed in his pio-
neering work that in the limit of vanishing inertia and for dilute sus-
pensions (i.e. Φ→ 0) the relative increase in effective viscosity of a
suspension of rigid particles in a Newtonian fluid, i.e., the suspension
viscosity, is a linear function of the particle volume fraction Φ .
Batchelor [11] and Batchelor and Green [12] added a second order
correction in Φ; for higher volume fractions, the viscosity starts to in-
crease faster than a second order polynomial [13], existing analytical
relations are not valid and one needs to resort to empirical fits. One of
the available empirical relations for the effective viscosity of rigid
particle suspension that provide a good description of the rheology at
zero Reynolds number both for the high and low concentration limits is
the Eilers fit [14–17]. Inertia has been shown to introduce deviations
from the behavior predicted by the different empirical fits, an effect
that can be related to an increase of the effective volume fraction at
intermediate values of Φ [18]. Interesting phenomena are also observed
at high volume fractions once friction forces become important.

In this context, understanding the rheology of deformable objects
has been a challenge for many years. Deformability is here char-
acterised in terms of the Capillary number Ca, which is the ratio
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between viscous and elastic forces, so that low Ca’s correspond to
configurations dominated by elastic forces where particles easily re-
cover the equilibrium shape and deformations are small. The first ef-
forts to predict the rheological properties of such suspensions is the
work by Taylor [19] who assumed small deformations and showed that
for small Φ the coefficient of the linear term in Einstein’s relation is a
function of the ratio between the particle and fluid viscosities. Later
analytical calculations [20–23] attempted to extend the result to higher
order in Φ and Ca, similarly to what done by Batchelor for rigid par-
ticles, using perturbative expansions. Only recently high-fidelity nu-
merical simulations have been used to study such problem [24–28].

In the present work, we will focus on deformable particles with a
viscous hyper-elastic behavior. These are a special class of elastic ma-
terials (the constitutive behavior is only a function of the current state
of deformation) where the work done by the stresses during a de-
formation process is dependent only on the initial and final config-
urations, the behavior of the material is path independent and a stored
strain energy function or elastic potential can be defined [29]; these can
show nonlinear stress-strain curves and are generally used to describe
rubber-like substances. Also, many researchers used materials with si-
milar constitutive relations to simulate particles, capsules, vesicles and
even red blood cells [24,30–33].

1.1. Outline

In this work, we present Direct Numerical Simulations (DNS) of a
suspension of hyper elastic deformable spheres in a Couette flow at low
Reynolds number. The fluid is Newtonian and satisfies the full in-
compressible Navier–Stokes equations, while momentum conservation
and the incompressibility constraint are enforced inside the solid ob-
jects. In Section 2, we first discuss the flow configuration and governing
equations, and then present the numerical methodology used. The
rheological study of the suspension is presented in Section 3, where we
also discuss the role of the different parameters defining the elastic
particles. We will present a new closure for the shear stress of suspen-
sions of deformable objects, based on an estimate of their deformation,
obtained using available numerical and experimental data and the Ei-
lers fit. Finally, a summary of the main findings and some conclusions
are drawn in Section 4.

2. Formulation

We consider the flow of a suspension of deformable viscous hy-
perelastic particles in an incompressible Newtonian viscous fluid in a
channel with moving walls, plane Couette geometry. The solid sus-
pension have the same density ρ as the fluid. The unstressed reference
shape of the particle is a sphere of radius r. Fig. 1 shows a sketch of the
geometry and the Cartesian coordinate system, where x, y and z (x1, x2,
and x3) denote the streamwise, wall-normal and spanwise coordinates,
while u, v and w (u1, u2, and u3) denote the corresponding components
of the velocity vector field. The lower and upper impermeable moving
walls are located at = −y h and =y h, and move in opposite direction
with constant streamwise velocity ± Vw.

The fluid and solid phase motion is governed by conservation of
momentum and the incompressibility constraint:
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where the suffixes f and s are used to indicate the fluid and solid phase.
In the previous set of equations, ρ is the density (assumed to be the same
for the solid and fluid), and σij the Cauchy stress tensor. The kinematic
and dynamic interactions between the fluid and solid phases are de-
termined by enforcing the continuity of the velocity and traction force
at the interface between the two phases

=u u ,i i
f s (2a)

=σ n σ n ,ij j ij j
f s

(2b)

where ni denotes the normal vector at the interface. The fluid is as-
sumed to be Newtonian

= − +σ pδ μ D2 ,ij ij ij
f f (3)

where δij is the Kronecker delta, p is the pressure, μf the fluid dynamic
viscosity, and Dij the strain rate tensor ∂ ∂ + ∂ ∂u x u x( / / )/2i j j i . The solid is
an incompressible viscous hyper-elastic material undergoing only the
isochoric motion with constitutive equation

= − + +σ pδ μ D GB2 ,ij ij ij ij
s s (4)

where μs is the solid dynamic viscosity, and the last term the hyper-
elastic contribution modeled as a neoHookean material, thus satisfying
the incompressible Mooney–Rivlin law, where G is the modulus of
transverse elasticity and Bij the left Cauchy–Green deformation tensor
( =B F Fij ik jk where = ∂ ∂F x X/ij i j is the deformation gradient, being x and
X the current and reference coordinates [29]).

To numerically solve the fluid-structure interaction problem at
hand, we adopt the so called one-continuum formulation [34], where
only one set of equations is solved over the whole domain. This is ob-
tained by introducing a monolithic velocity vector field valid every-
where, found by applying the volume averaging procedure [35,36].
Thus, we can write the Cauchy stress tensor σij in a mixture form, si-
milarly to the Volume of Fluid [37] and Level Set [38,39] methods
commonly used to simulate multiphase flows:

= − +σ ϕ σ ϕσ(1 ) ,ij ij ij
f s

(5)

where ϕ is a local phase indicator based on the local solid volume
fraction. Thus, at each point of the domain the fluid and solid phases
are distinguished by ϕ, which is equal to 0 in the fluid, 1 in the solid,
and between 0 and 1 in the interface cells. The set of equations can be
closed in a purely Eulerian manner by introducing a transport equation
for the volume fraction ϕ
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and updating the left Cauchy–Green deformation tensor components
with the following transport equation:
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expressing the fact that the upper convected derivative of the leftFig. 1. Sketch of the channel geometry and coordinate system adopted in this study.
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Cauchy–Green deformation tensor is identically zero [29].
The equations are solved numerically: the time integration is based

on an explicit fractional-step method [40], where all the terms are
advanced with the third order Runge–Kutta scheme, except the solid
hyper-elastic contribution which is advanced with the Crank–Nicolson
scheme [41]. The governing differential equations are solved on a
staggered grid using a second order central finite-difference scheme,
except for the advection terms in Eqs. (6) and (7) where the fifth-order
WENO scheme is applied. The code has been extensively validated, and
more details on the numerical scheme and validation campaign are
reported in Ref. [5]. Note that, no special artifact is used to avoid or
model the particle-wall and particle-particle interaction, because the
hydrodynamic repulsion is brought by the soft lubrication effect due to
the geometry change via the particle deformation [42]. More details on
the numerical method can be found in Ref. [30].

2.1. Numerical setup

We consider the Couette flow of a Newtonian fluid laden with
hyper-elastic deformable spheres. The Reynolds number of the simu-
lation is fixed to = =ργr μRe ˙ / 0.1,2 f where γ̇ is the reference shear rate,
so that we can consider inertial effects negligible. The total solid vo-
lume fraction of the suspension Φ is defined as the volume average of
the local volume fraction ϕ, i.e., = ϕΦ . Hereafter, the double ⟨⟨ · ⟩⟩
indicates the time and volume average while the single ⟨ · ⟩ the average
in time and in the homogeneous x and z directions. Four values of total
volume fraction Φ≈ 0.0016, 0.11, 0.22, and 0.33 are considered, to-
gether with five values of elastic moduli G, resulting in the capillary
numbers = =μ γ GCa ˙ / 0.02,f 0.1, 0.2, 0.4, and 2. For all the previous
cases the solid viscosity is set equal to the fluid viscosity, i.e.,

= =μ μK / 1s f . To study the effect of the solid viscosity, we run three
additional simulations for the case with =Φ 0.11 and =Ca 0.2 with the
following solid/fluid viscosity ratio = =μ μK / 0.01,s f 0.1, and 10. The
full set of simulations analysed is reported in Table 1, together with the
color scheme and symbols used in the figures throughout the manu-
script. Note that, the range of the viscoelsatic parameters (Ca and K), as
well as the volume fraction Φ, are similar to that of many previous
works that can be found in the literature [18,28,32,33,43]. The nu-
merical domain is a rectangular box of size 16r×10r×16r in the x, y,
and z directions, discretized on a Cartesian uniform mesh with 16 grid
points per sphere radius r. No-slip boundary conditions are imposed on
the solid walls, while periodic boundary conditions are enforced in the
homogeneous x and z directions. All the simulations are started from a
stationary flow with a random distribution of the particles across the
domain. The grid independence of the results has been verified by si-
mulating the case with =Φ 0.22 and =Ca 0.2 with double grid points in
each direction, resulting in a difference in the effective viscosity lower
than 0.5%. The effect of the size of the domain on the results (e.g.,
confinement effects) has not been studied in the present work, and the

domain size was chosen the same as in a previous study [18]; the in-
terested reader is referred to Ref. [44] for more details on confined
suspensions in a similar geometry. Note that, similarly to the box size,
also the general set-up and most of parameters used in this study are
chosen as in Ref. [18] where suspensions of rigid spheres are examined
to ease comparisons.

3. Results

We start the analysis of the suspension of deformable particles by
showing the mean streamwise velocity profile uf and the solid con-
centration ϕ in Fig. 2, where the shaded area represents the spread of
the data due to the different Capillary numbers. The mean streamwise
velocity equals Vw at the wall due to the no-slip condition with the
moving wall, and is null at the center line for symmetry. The velocity
profile, a straight line for a Newtonian fluid, is clearly different due to
the presence of the suspended particles. In particular, the velocity de-
creases faster than the Newtonian case close to wall, i.e., the wall-
normal derivative of the velocity profile at the wall increases, it shows a
local minimum around y≈ 0.75 h and then goes smoothly to zero; these

Table 1
Summary of the DNSs performed, all at a fixed particle Reynolds number, = =ργr μRe ˙ / 0.12 f .

Case
Φ 0.0016 0.0016 0.0016 0.0016 0.0016 0.11 0.11 0.11 0.11 0.11
K 1 1 1 1 1 1 1 1 1 1
Ca 0.02 0.1 0.2 0.4 2 0.02 0.1 0.2 0.4 2

Case
Φ 0.22 0.22 0.22 0.22 0.22 0.33 0.33 0.33 0.33 0.33
K 1 1 1 1 1 1 1 1 1 1
Ca 0.02 0.1 0.2 0.4 2 0.02 0.1 0.2 0.4 2

Case

Φ 0.11 0.11 0.11
K 0.01 0.1 10
Ca 0.2 0.2 0.2
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y/h
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0.4

0.6

10.50
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Fig. 2. (top) Mean fluid streamwise velocity profile uf, normalized with the wall velocity
Vw, and (bottom) mean local volume fraction distribution ϕ along the wall-normal di-
rection y.
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differences are enhanced for high values of volume fractions and Ca-
pillary numbers, especially in the near wall region and around the local
minimum. The shape of the velocity profile is strongly related to the
mean distribution of the particles across the channel, as shown by the
wall-normal profiles of the local solid volume fraction in the bottom
panel of the same figure. The particles have a non uniform distribution
in the y direction, with a clear layer close to the wall as shown by the
peak in the concentration around y≈ 0.75 h. This is due to the excluded
volume effects at the wall [18,45], and corresponds to the position of
the local minimum of velocity. Also, we note that the location of
maximum particle concentration moves towards the wall for increasing
volume fractions.

The wall-normal derivative of the streamwise velocity at the wall
can be used to estimate the effective viscosity of the non-Newtonian
fluid made by the suspension of particles in the Newtonian fluid.
Indeed, we define the effective suspension viscosity μ, normalized by
the fluid one μf, as follows

=
μ
μ

σ
μ γ̇

.f
12
w

f (8)

The effective viscosity as a function of the total volume fraction Φ and
of the Capillary number Ca is shown in Fig. 3. Here, the solid color
circles represent the limiting case of completely rigid particles ( =Ca 0),
taken from the simulations in Ref. [18], while the black circles are the
results for drops with =Ca 0.15 from Ref. [27] and the dashed line Pal’s
empirical relation [23]. We observe that the effective viscosity is a
monotonic non-linear function of both variables, and in particular, it
increases with the volume fraction Φ and decreases with the Capillary
number Ca. All the deformable cases have lower effective viscosity then
the rigid ones at the same volume fraction, and the difference is en-
hanced for the higher values of the Capillary number. Note also that the
growth rate of the effective viscosity is reducing for increasing Capillary
numbers, and that it appears to be almost linear for the highest Ca
under consideration, something usually associated to suspensions of
monodisperse particles (Φ→ 0) [10]. As clearly shown in the figure, the
limit for Ca→ 0 is the rigid particle behavior, while for Ca→∞ the
suspension viscosity approaches that of the fluid, i.e., μ/μf→ 1. In the
top panel of Fig. 3, we display with grey lines a fit to our data. The data
for rigid spheres collapse well onto the Eilers fit; this is an experimental
fit for non-Brownian particles at zero Reynolds number, valid also for
high volume fractions [15–17], reading

= ⎡
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+
−

⎤
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μ
μ

B1 Φ
1 Φ/Φ

,f E
m

2

(9)

where = −Φ 0.58 0.63m is the geometrical maximum packing, and
= −B 1.25 1.7E a coefficient. Here we use =Φ 0.6m and =B 1.7E . The

simulations pertaining suspensions of deformable particles are fitted
with by an expression formally similar to the Batchelor and Green re-
lation [12] , i.e., a second order extension of the Einstein’s formula
[10],

= + +
μ
μ

μ B1 [ ]Φ Φ ,Bf
2

(10)

where [μ] is the intrinsic viscosity equal to 5/2 for rigid dilute particles
and BB is a coefficient equal to 7.6 for non-Brownian spheres. For the
cases of deformable particles studied here, we use the intrinsic viscosity
computed from simulations with a single sphere (Φ≈ 0.0016 for the
domain considered here), while BB is kept as a fitting parameter. This
second-order relation is usually inaccurate for Φ≳ 0.15, when the
viscosity starts increasing faster than a second order polynomial [13].
However, we show here that it remains valid for values of the volume
fraction up to =Φ 0.33 in the case of deformable particles, provided the
intrinsic viscosity [μ] is modified to take into account the change of
shape. In other words, in the case of deformable particles, both [μ] and
Φ are function of the Capillary number Ca. The fitting coefficients

obtained by the method of least squares are reported in Table 2, to-
gether with the intrinsic viscosity extracted from our simulations. This
is computed as ≈ −μ μ μ μ[ ] ( )/( Φ)f f .

Next, we study the particle deformation. Fig. 4 shows instantaneous
particle configurations: the top row represents the cases at =Ca 0.2 and
increasing Φ, i.e., 0.11, 0.22 and 0.33, while the bottom row is for the
dilute suspension =Φ 0.0016 and increasing Ca, i.e., 0.02, 0.1, 0.2, 0.4
and 2. We observe that the shape is strongly affected by Ca and weakly
by Φ. In particular, the particles, originally spheres, progressively be-
come elongated ellipsoids as Ca increases. To quantify this effect, we
therefore evaluate the deformation by means of the so-called Taylor
parameter

= −
+

a b
a b

,T
(11)

where a and b are the semi-major and semi-minor axis of the inscribed
ellipse passing through the particle center in the −x y plane, and re-
port its dependency on Ca in Fig. 5. Note that, the parameter T is
averaged over all the particles and in time. In the figure results from the
literature, obtained in the limit of Φ→ 0, are also reported as com-
parison. We note that the Taylor parameter increases with both the
Capillary number and the volume fraction, the former being more

Table 2
The fitting parameter BB in Eq. (10) used for the curves in Fig. 3 and the intrinsic
viscosity [μ] computed from our simulations.

Ca [μ] BB

0.02 2.988 16.15
0.1 2.633 4.998
0.2 2.274 2.988
0.4 1.779 2.069
2 0.641 1.677

1

2

3

4

5

0.30.20.10

μ
/μ

f

Φ

1

2

3

4

10.10.01

μ
/
μ

f

Ca

Fig. 3. The effective viscosity μ/μf as a function of (top) the volume fraction Φ and of
(bottom) the Capillary number Ca, for several different values of volume fractions
Φ≈ 0.0016 (brown), 0.11 (blue), 0.22 (orange), and 0.33 (red) and of Capillary numbers

= +Ca 0.02 ( ), 0.1 (× ), 0.2 (*), 0.4 (⊡), and 2 (△). All the cases have =K 1. For com-
parison we also plot the same data for rigid particles [18] ( =Ca 0 (color circles), the
results for drops with =Ca 0.15 from Ref. [27] (black circles) and Pal’s empirical relation
[23] (black dashed line). (For interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this article.)
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effective than the latter. The trend is the same as obtained for dilute
systems, as shown by the brown curve in Fig. 5, pertaining our results
for a single particle, and by the symbols indicating results in the lit-
erature [31,46,47].

To fully characterize the non-Newtonian suspension behavior, we
report in Fig. 6 the first and second normal stress difference, 1N and ,2N

as a function of the Capillary number Ca for all the volume fractions
under investigations. These are a measure of the viscoelasticity of the
flow and are defined as

= −σ σ ,1 11 22N (12a)

= −σ σ .2 22 33N (12b)

In the Eulerian framework adopted here, they can be easily com-
puted from Eq. (5). The first normal stress difference 1N is positive
whereas the second one 2N is negative, with >/ 11 2N N . This beha-
vior is typical of most viscoelastic fluids, and corresponds to the fluid
forcing the walls apart [6]; it is similar to the one observed for sus-
pensions of capsules [28], filaments [48] and polymers. We observe
that an increase in volume fraction leads to an increase of the first
normal stress difference 1N and a decrease of the second one 2N (in-
crease in the absolute value). Both the normal stress differences are

non-monotonic with Ca, showing a maximum and minimum which
moves at lower Ca for increasing volume fractions, which is similar to
what discussed in Ref. [48] for a filament suspension. Our results are in
agreement with the data from the simulations of elastic capsules in
Ref. [28], where, however, the non-monotonic behavior of the normal
stress difference is not appearing owing to a more limited range of
Capillary number considered.

The total shear stress, σ12, can be decomposed into the sum of the
fluid σ12

f and particle stress σ ,12
s see Eq. (5). The mean fluid stress is the

sum of the viscous and Reynolds stresses, while the solid one is the
some of the viscous, Reynolds and hyper-elastic stresses:

Fig. 4. (top) Instantaneous shape of the deformed particles at =Ca 0.2 for three different volume fractions: =Φ 0.11, 0.22, and 0.33. (bottom) Shape of the particle in the dilute case,
=Φ 0.0016, for increasing Capillary numbers =Ca 0.02, 0.1, 0.2, 0.4 and 2.

0

0.5

1

10.10.01

T

Ca

Fig. 5. Taylor deformation parameter ,T defined in Eq. (11), as a function of the Ca-
pillary number Ca for different values of volume fraction Φ. The symbol and color scheme
is the same as in Fig. 3. The brown symbols are numerical results from the literature for a
single sphere in a box. In particular, the triangles and rhombus are the results from
Refs. [46,47] which were calculated for Φ≈ 0.06, while the circles are the 2D simulation
from Ref. [31] with Φ≈ 0.05. The black dashed line shows the result of the perturbative
calculation of Ref [22] expected to hold for small Ca and Φ.

0

1

2

10.10.01

N
1

Ca

-0.8

-0.4

0

10.10.01

N
2

Ca

Fig. 6. (top) First and (bottom) second normal stress difference, 1N and ,2N as a function
of the Capillary number Ca. The color and symbol scheme is the same as in the previous
figures. The normal stresses are normalized by μ γ̇f .
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(13)

Each of these contribution have been averaged in time and in the
homogeneous directions and displayed in Fig. 7 as function of the wall-
normal distance y for the cases with =Ca 0.2 and volume fractions

=Φ 0.11, 0.22 and 0.33 (top, middle and bottom panel). The stresses
are normalized by the total wall value. In the figure, the solid, dashed
and dash-dotted lines represent the fluid viscous stress, the particle
viscous and hyper-elastic stresses, respectively. The Reynolds stress
contributions are negligible in all the cases considered here, thus not
shown in the graphs. The circles and triangles are the fluid viscous
stress and particle stress in the rigid case ( =Ca 0) obtained from a
complementary simulation.

We observe that the fluid viscous stress is the only not null com-
ponent at the wall. At the lowest volume fraction shown here the fluid

viscous stress is the dominant contribution, being responsible for more
than 50% of the total stress at each wall-normal location. It has a
minimum value around y≈ 0.75 h corresponding to the location of
maximum particle stress and to the maximum particle concentration as
previously discussed (see Fig. 2). As the volume fraction is increased,
the fluid viscous stress becomes smaller and smaller; this is compen-
sated by an increase in the particle stress contribution which eventually
becomes the dominant one. This behavior is observed for both rigid and
deformable particles, with the main difference being a lower particle
stress contribution across the all channel in the deformable case than
the rigid one, especially close to the center line. Moreover, in the de-
formable particle suspension, we can further separate the particle stress
in its viscous and hyper-elastic contributions. The hyper-elastic con-
tribution is the dominant one, being responsible for almost the totality
of the total stress and for its distribution across the domain. On the
other hand, the viscous stress in the solid is almost null at low volume
fractions, and progressively grows with it. Also, its profile is almost
uniform across the whole domain, except close to the wall where it is
always negligible as the solid volume fraction vanishes.

In Fig. 8 we summarize the stress balance by showing the volume-
averaged percentage contribution of all the non-zero components of the
total shear stress, i.e., fluid viscous stress (green), particle viscous stress
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w . The color scheme is the same as in the previous figure, with
blue, orange, and red curves indicating the different volume fractions =Φ 0.11 (top
panel), 0.22 (middle panel) and 0.33 (bottom panel). In each plot, the symbols are used
for the rigid case ( =Ca 0), the circles • and triangles ▲ being the fluid viscous and
particle stresses, and the lines for the deformable ones with =Ca 0.2, with the solid —,
dashed − − and dash-dotted − −· lines representing the fluid viscous stress, the particle
viscous stress and the particle hyper-elastic contribution. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the web version of this
article.)
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(blue), and particle hyper-elastic stress (grey). Each panel shows how
the stress balance change with Capillary number, and each panel cor-
responds to a different volume fraction ( =Φ 0.11: top panel; 0.22:
middle panel; 0.33: bottom panel). For every volume fraction, both the
fluid and particle viscous stresses decrease with the Capillary number,
while the particle elastic contribution increases (in the range of Ca
considered here). Interestingly, notwithstanding the fact that the solid
viscosity and volume fraction are constant, the normalized particle
elastic stress decreases as Ca→ 0, and the viscous contribution becomes
relevant; conversely, as Ca→∞ the percentage contribution of the
particle viscous stress vanishes and the total particle stress reduces to its
elastic contribution. Comparing the budget for varying volume fraction
Φ, we observe that as the volume fraction increases, the fluid stress
progressively decreases due to the reduced volume of fluid, while the
particle stress increases due to the increase of the solid fraction. The
latter increase in the particle stress holds for both the viscous and
elastic part of the particle stress, and is related to the increase of the
number of particles in the domain.

3.1. Universal scaling of the effective viscosity

Next, we propose a scaling for the suspension viscosity. As already
discussed, the effective viscosity of rigid particle suspensions with
negligible inertial effect is well described by the Eilers fit (Eq. (9)), valid
for a wide range of volume fractions. In the deformable case we can
evaluate an effective volume fraction Φe, a concept successfully used in
the past for suspensions with different properties, such as charged
colloidal particles, fiber and platelets suspensions, polyelectrolyte so-
lutions [6,49–51]. Here, we evaluate it based on spheres of radius equal
to the semi-minor axis of the ellipsoid a, the same used to compute the
Taylor parameter, i.e., = × πaΦ N 4/3 /e 3 totV where N is the number of
particles in the computational box of volume totV . Obviously, the ef-
fective volume fraction Φe is less than the nominal one Φ, and thus
represents a reduced volume fraction due to the particle deformations.
We propose to define the effective volume fraction using the minor axis,
differently from what done in previous works for fiber or rigid non-
spherical suspensions [52–54]; the choice is motivated by the fact that
the deformable particles are not rotating, thus, the excluded volume
effect is less than the one based on the major axis; moreover, since the
particles are approximately aligned with the mean shear direction,
what affects the effective viscosity is the dimension in the direction
normal to the mean shear, i.e., the minor axis. As shown in the top
panel of Fig. 9, Φe increases with the volume fraction Φ and decreases
with the Capillary number Ca, similarly to the effective viscosity μ; in
particular, Φe is an almost linear and monotonic function of Φ and their
ratio, independent of Φ, decreases with Ca (see the inset figure). A fit to
the data yields

= −eΦ Φ .e 1.25 Ca (14)

Note that the form of Eq. (14) is chosen to satisfy the following con-
ditions: i) Φe is a linear function of Φ for a fixed Ca; this implies that
deformability is weakly influenced by particle-pair interactions, typi-
cally proportional to Φ2. ii) for Ca→ 0 we expect to recover the rigid
case with the effect of the deformability disappearing, i.e., =Φ Φe . iii)
for Ca→∞ the particles deform more and more, eventually giving no
resistance to the fluid, i.e., =Φ 0e . This simple relation is reported in
the inset of the top panel in Fig. 9 to show the quality of the fitting. Note
that, Eq. (14) has been derived for the case with =K 1, thus no explicit
dependency on the viscosity ratio has been included.

Next, we plot the effective viscosity μ, already shown in Fig. 3, now as
a function of Φe, see the bottom panel of Fig. 9. As clearly seen, all the
data collapse on an universal curve, which is well described by the Eilers
fit used for the rigid-particle suspensions. Note that, this scaling applies
to all the volume fractions Φ and Capillary numbers Ca considered (the
fit works also for all the cases with different solid to fluid viscosity ratio K
considered in the present work which will be discussed later). Moreover,

we also include in the figure the data taken from Ref. [28] pertaining a
suspension of capsules (black symbols) as a proof of the universality of
the scaling. This is further proved in the inset figure, where the red blood
cell measurement of Ref. [55] for different Ca and K are collapsed on the
Eilers formula; note that, in order to apply our result to these data, we
first fit the Eilers formula to the case of the rigid RBCs, obtaining

=B 1.25 and a maximum packing fraction =Φ 0.88,m as the undeformed
shape of the RBCs is not spherical but disk-like [56].

Therefore, we have shown that the effect of the particles deforma-
tion can be included into the suspension shear stress as follow

=σ μ γ̇ (Φ (Φ, Ca, K)),12
f eF (15)

where Φe is the measure of the reduction in the nominal volume frac-
tion due to the deformation, (which we have estimated with Eq. (14) for
the case of =K 1), and F is the Eilers formula in Eq. (9) or any other
approximation of the effective suspension viscosity as function of the
solid volume fraction. In summary, this closure provides the shear stress
for non-Newtonian suspensions made of deformable elastic particles,
with microstructure effects coded into the analytical function F . This
closure is valid for suspension flows with negligible inertia.

3.2. Effect of the solid to fluid viscosity ratio K

Finally, in this last section, we briefly assess the effect of the para-
meter K, i.e., the ratio of the solid viscosity μs and the fluid one μf. Here,
we focus our analysis on a single volume fraction =Φ 0.11 and
Capillary number =Ca 0.2, and we consider four different values for K:
0.01, 0.1, 1 (also discussed previously) and 10.

The two panels in Fig. 10 shows the effect of K on the effective
viscosity μ/μf (top) and on the Taylor parameter T (bottom). The ef-
fective viscosity monotonically increases with K, changing
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approximately from 1.24 to 1.5 due to the increase of K by a factor of
1000. This suggest a weak dependence of the suspension viscosity on
this parameter (compared to the one with Ca), at least for the con-
sidered volume fraction. Differently, the Taylor parameterT decreases
for an increase of K. These results suggest that high values of K make
the particle effectively more rigid, thus reducing the overall deforma-
tion (T ), resulting in higher suspension viscosities; on the other hand,
low values of K increase the particles deformation (T ), thus reducing
the suspension viscosity. The limit behavior for K→∞ is the rigid
particle case, while for K→ 0 the particle is more deformable, but the
particle contribution to the suspension viscosity does not vanish com-
pletely due to the finite Capillary number Ca, i.e., μ/μf↛1 for K→ 0;
this is different from what observed for the Capillary number Ca where
μ/μf→ 1 for Ca→∞. Finally, Fig. 11 shows the total shear budget, si-
milarly to Fig. 8. We note that the fluid stress slightly decreases with K,
thus the total particle stress slightly increases. This is obtained by a
strong increase of the viscous particle stress, and contrasted by a small
reduction of the elastic counterpart. Similarly to the discussion above,
we observe that low values of K only slightly modify the suspension
rheology, while changes can be noticed for high values of K when the
particle become more rigid and less deformable, thus approaching the

behavior of rigid spheres.

4. Conclusion

We have studied the rheology of a suspension of deformable viscous
hyper-elastic particles in a Newtonian fluid in a wall-bounded shear
flow, i.e., Couette flow, at low Reynolds number such that inertial ef-
fects are negligible. The deformable particles are made of a
neoHookean material, satisfying the Mooney–Rivlin law. The multi-
phase flow is solved with the use of a one-continuum formulation by
introducing an indicator function to distinguish the fluid and solid
phases, i.e., the solid volume fraction ϕ. The results are numerically
obtained by solving the conservation of momentum and the in-
compressibility constraint in a fully Eulerian fashion.

The rheology of the suspension is analyzed by discussing how the
suspension effective viscosity μ is affected by variations of the particle
volume fraction Φ, the Capillary number Ca and the solid to fluid
viscosity ratio K. We observed that μ is a non-linear function of all this
parameters =μ μ (Φ, Ca, K), being Φ and Ca the most effective. The
suspension of deformable particles has a viscosity lower than the one
for rigid particles; this is due to the deformation, quantified here by the
Taylor parameter ,T which grows with both Φ and Ca, but decreases
with K. As the Capillary number is proportional to the shear, suspen-
sions of deformable particles are shear-thinning, as known for blood.
The non-linear dependency on the different parameters is further ex-
emplified by the first and second normal stress differences, 1N and 2N .
These are not null, indicating the visco-elasticity nature of the sus-
pension, and show a non-monotonic dependence with Ca. 1N is positive
while 2N negative, with > ,1 2N N similarly to what found for sus-
pension of flexible filaments and polymers. With a stress budget study,
we have shown that the particle stress grows with both the volume
fraction Φ and the Capillary number Ca, and that the particle stress is
determined by its elastic part, with only a weak viscous contribution,
which exhibits an opposite trend with Ca.

Finally, we propose an universal scaling for the effective viscosity of
suspensions of deformable particles, which is able to collapse all the
data onto the Eilers fit, usually valid for rigid particles. To this end, we
introduce a reduced effective volume fraction, function of the capillary
number and of the nominal volume fraction, accounting for the effect of
deformability. Based on our and others’ data, we provide an estimate of
this effective volume fraction and hence an analytical closure for the
shear stress valid for suspension of deformable particles (and capsules)
with negligible inertia.

This work proposes a new approach to suspensions of deformable
objects and can be extended in a number of ways. Additional simula-
tions and experiments may improve the estimate given here of the ef-
fective volume fraction by quantifying particle deformation for e.g.,
particles of different shapes, such as oblate or biconcave red-blood cells.
Alternatively, one may consider inertial effects as in Ref. [18], and the
effect of a time-dependent shear rate to relate the particle average de-
formation to the history of the applied stresses. For slow variations of
shear rates, however, we expect to retrieve the rheological properties
described here, i.e., shear thinning, while memory effect may appear
for fast enough deformations.
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