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Abstract We present a modification of a recently developed volume of fluid method for multiphase problems
(Ii et al. in J Comput Phys 231(5):2328–2358, 2012), so that it can be used in conjunction with a fractional-
step method and fast Poisson solver, and validate it with standard benchmark problems. We then consider
emulsions of two-fluid systems and study their rheology in a plane Couette flow in the limit of vanishing
inertia. We examine the dependency of the effective viscosity μ on the volume fraction Φ (from 10 to 30%)
and the Capillary number Ca (from 0.1 to 0.4) for the case of density and viscosity ratio 1. We show that the
effective viscosity decreases with the deformation and the applied shear (shear-thinning) while exhibiting a
non-monotonic behavior with respect to the volume fraction. We report the appearance of a maximum in the
effective viscosity curve and compare the results with those of suspensions of rigid and deformable particles
and capsules. We show that the flow in the solvent is mostly a shear flow, while it is mostly rotational in
the suspended phase; moreover, this behavior tends to reverse as the volume fraction increases. Finally, we
evaluate the contributions to the total shear stress of the viscous stresses in the two fluids and of the interfacial
force between them.

1 Introduction

In the last decades, developments in colloidal science have proven to be crucial for fabrication of functional
materials. Particles or droplets, with typical scales of micron, are manipulated to self-organize into controlled
patterns with high precision, which then form basic building blocks for more complex structures [44]. One
important aspect to consider during the synthesis and assembly of innovative materials is the rheological
behavior of the system [29]. Indeed, the material properties will depend on the distribution of the dispersed
phase, and thus, a more accurate control of the production process can help to generate materials of desired
properties [58].

A great amount of work has been done in the past to study rigid and deformable particle suspensions
[1,18,41,42,51]. In his pioneering work, Einstein [15] showed that, in the limit of vanishing inertia and for
dilute rigid particle suspensions, the viscosity is a linear function of the particle volume fraction. Although
Batchelor and Green [4] and Batchelor [3] added a second-order correction, all existing analytical relations
are not valid for moderately high concentrations and one needs to resort to empirical fits. One of the available
empirical relations that provides a good description of the rheology at zero Reynolds number both in the high
and low concentration limits is the Eilers fit [16,23,48,64]. Recently, inertia and deformation have been shown
to introduce deviations from the behavior predicted by the different empirical fits, and these effects can be
related to an increase and decrease of an effective volume fraction [31,42].
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Less attention has been given to emulsions, which are instead the object of the present work. Emulsions
are biphasic liquid–liquid systems in which the phases are separated by a deformable interface subject to
interfacial surface tension. These can be found in a variety of applications, ranging from advanced materials
processing, waste treatment, enhanced oil recovery, food processing to pharmaceutical manufacturing. Simi-
larly to particle suspensions, it is often desirable to predict or manipulate the rheology and microstructure of
emulsions, which in general exhibit highly varied rheological behaviors [27]; however, there has been limited
progress toward the creation of theoretical models that can reliably predict the rheology and microstructure
of such flows [25,26], and for years measurements of emulsion rheology were not quantitatively understood
because of the complexity of the phenomenology involved and the difficulty to properly choose materials
with controlled properties [27]. Thus, numerical simulations can help to fill this gap, and indeed there has
been considerable progress in the development of numerical simulations able to study such multiphase flows
[36,56].

Different techniques have been proposed to numerically tackle the problem at hand. The so-called front-
tracking method is an Eulerian/Lagrangian method, used to simulate viscous, incompressible, immiscible
two-fluid systems, first developed by Unverdi and Tryggvason [57] and Tryggvason et al. [54]. When dealing
with moving and deformable boundaries, an alternative approach are the so-called front-capturing methods,
which are fully Eulerian and handle topology changes automatically. A strong advantage of these methods is
that they are easier to parallelize than their Lagrangian counterpart. Eulerian interface representations include
essentially the volume of fluid (VOF) [45] and level-set (LS) [46,47,50] methods. The volume of fluid method
defines different fluids with a discontinuous color function, and its main advantage is the intrinsic mass
conservation; however, it suffers from an inaccurate computation of the interface properties, such as normals
and curvatures [10,17]. Differently from the volume of fluid, the level-set method prescribes the interface by
a continuous function which usually takes the form of the signed distance to the interface. Thus, normals and
curvatures can be readily and accurately computed, while mass loss or gain may occur. In this work, we will
employ the volume of fluid method.

In a conventional VOF method, the interface separating different fluids is piece-wisely reconstructed in
each numerical cell by straight line segments, which are then used to calculate the numerical fluxes necessary to
update the local volume of fluid function. This geometric reconstruction effectively eliminates the numerical
diffusion that smears out the compactness of the transition layer of the interface. Different methodologies
have been proposed to accurately recover the exact surface geometry from the discretized VOF function:
the simple line interface calculation (SLIC) method [30] and the piecewise linear interface calculation (PLIC)
[61,62], the latter being furthermodified by several authors [2,19,33,37,39].Another technique is the tangent of
hyperbola for interface capturing (THINC) method [59], which avoids the explicit geometric reconstruction by
using a continuous sigmoid function rather than the Heaviside function, thus allowing a completely algebraic
description of the interface; this enables the computation of the numerical flux partially analytically. An
improvementwas proposed by combining the original THINCmethodwith the first-order upwind scheme in the
so-called THINC/WLIC (THINC/weighted linear interface capturing) method [60]. Recently, the method has
been further developed in themulti-dimensional THINC (MTHINC)methodwhere the fullymulti-dimensional
hyperbolic tangent function is used to reconstruct the interface [21]. The numerical fluxes can be directly
evaluated by integrating the hyperbolic tangent function, and the normal vector, curvature, and approximate
delta function can be directly obtained from the derivatives of the function. Moreover, the scheme does not
require the geometric reconstruction, and a curved (quadratic) surface can be easily constructed as well.

1.1 Outline

In this work, we first present our numerical solver for multiphase incompressible flows and then employ it to
study liquid–liquid systems (emulsions) in a plane Couette flow at low Reynolds number. The two fluids are
Newtonian and satisfy the full incompressible Navier–Stokes equations. We compare our results with those of
suspensions of rigid and deformable particles and with capsules, consisting of a second fluid enclosed by a thin
elastic membrane. In Sect. 2, we first discuss the flow configuration and governing equations, and then present
the numerical methodology used and its validation. The rheological study of the emulsions is presented in
Sect. 3, where we also discuss the role of the different non-dimensional parameters governing the flow. Finally,
a summary of the main findings and some conclusions are drawn in Sect. 4.
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Fig. 1 Sketch of the channel geometry and coordinate system adopted in this study

2 Formulation

We consider the flow of two incompressible viscous fluids, separated by an interface, in a channel with moving
walls, i.e., in a plane Couette geometry. Figure 1 shows a sketch of the geometry and the Cartesian coordinate
system, where x , y, and z (x1, x2, and x3) denote the streamwise, wall-normal, and spanwise coordinates,
while u, v, andw (u1, u2, and u3) denote the corresponding components of the velocity vector field. The lower
and upper impermeable moving walls are located at y = −h and y = h, respectively, and move in opposite
direction with constant streamwise velocity ± Vw.

The two-fluid motion is governed by the conservation of momentum and the incompressibility constraint,
and the kinematic and dynamic interactions between the two fluid phases are determined by enforcing the
continuity of the velocity and traction force at the interface between the two phases, i.e.,

u f 1
i = u f 2

i and σ
f 1
i j n j = σ

f 2
i j n j + σκni , (1)

where the suffixes f 1 and f 2 are used to indicate the two phases, σi j denotes the Cauchy stress tensor, ni
the normal vector at the interface, κ the interface curvature, and σ the surface tension (assumed here to be
constant).

To numerically solve the two-phase interaction problem at hand, we use the volume of fluid method
following Ii et al. [21]. We introduce an indicator (or color) function H to identify each fluid phase so that
H = 1 in the region occupied by the fluid f 1 and H = 0 otherwise. Considering that the fluid is transported
by the flow velocity, we update H in the Eulerian framework by the following advection equation written in
divergence form:

∂φ

∂t
+ ∂ui H

∂xi
= φ

∂ui
∂xi

(2)

where ui is the local fluid velocity and φ the cell-averaged value of the indicator function.
Once φ is known, the two-fluid equations can be rewritten in the so-called one-continuum formulation [55],

so that only one set of equations is solved over the whole domain. This is achieved by introducing a monolithic
velocity vector field ui , defined everywhere and found by applying the volume averaging procedure [38,52].
Thus, ui is governed by the following set of equations:

∂ui
∂t

+ ∂uiu j

∂x j
= 1

ρ

(
∂σi j

∂x j
+ fi

)
, (3.1)

∂ui
∂xi

= 0 (3.2)

where ρ is the density, fi the surface tension force defined as fi = σκniδ, being δ the delta function at the
interface, and σi j is the stress written in a mixture form, i.e.,

σi j = (1 − φ) σ
f 1
i j + φσ

f 2
i j . (4)

Note that we have chosen φ to be the volume fraction of fluid 2, i.e., this is zero in the fluid 1, whereas φ = 1
in the fluid 2, and 0 ≤ φ ≤ 1 close to the interface. Both fluids are assumed to be Newtonian so that their
stress tensors can be written as σi j = −pδi j + 2μDi j , where p is the pressure, δi j the Kronecker delta, μ
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the dynamic viscosity, and Di j the strain rate tensor (defined as Di j = (∂ui/∂x j + ∂u j/∂xi )/2). Finally, the
mixture density ρ and dynamic viscosity μ are simply averaged in terms of the local φ:

ρ = (1 − φ) ρ f 1 + φρ f 2 and μ = (1 − φ) μ f 1 + φμ f 2. (5)

Note that, in order to solve Eqs. (3.1) and (2), we need to determine the indicator function H , the normal vector
ni , and the curvature κ .

2.1 The MTHINC method

The indicator function H can be reconstructed in various ways; here, we use the multi-dimensional tangent of
hyperbola for interface capturing (MTHINC) method, developed by Ii et al. [21], where a multi-dimensional
hyperbolic tangent function is used as an approximated indicator function. In particular, the indicator function
H is approximated as

H (X, Y, Z) ≈ Ĥ (X, Y, Z) = 1

2

(
1 + tanh

(
β (P (X, Y, Z) + d)

))
(6)

where X, Y, Z ∈ [0, 1] is a centered local coordinate system defined in each cell, P is a three-dimensional
surface function, β a sharpness parameter, and d a normalization parameter. The function P can be either a
linear function (a plane)

P (X, Y, Z) = a100X + a010Y + a001Z (7)

or a quadratic function (a curved surface)

P (X, Y, Z) = a200X
2 + a020Y

2 + a002Z
2

+ a110XY + a011Y Z + a101X Z + a100X + a010Y + a001Z .
(8)

The coefficients al,m,n are determined algebraically by imposing the correct value of the three normal com-
ponents ni and the six components of the Cartesian curvature tensor li j = (

∂ni/∂x j + ∂n j/∂xi
)
/2 for the

function P in each cell. Finally, the parameter d is found by enforcing the following constraint:

∫ 1

0

∫ 1

0

∫ 1

0
Ĥ dX dY dZ = φ. (9)

The integration can be performed analytically in one direction, and numerically in the other two directions by
the two-point Gaussian quadrature.

The unit normal vector is defined as ni = mi/|∇φ|, being mi the gradient of the volume of fluid function,
i.e., mi = ∂φ/∂xi . Here, we compute mi using the usual Youngs’ approach [61,62], where first the values
of the derivative at the cell corners are calculated, and then averaged to find the cell-center value. Once the
normal vector is known, the curvature κ can be easily found by taking the divergence of the normal vector,
i.e., κ = −∂ni/∂xi , and the surface tension force fi can be computed by the continuum surface force (CSF)
model [5], where the 1D approximate delta function δ is directly approximated by δ ≈ |∇φ|. Thus, we obtain

fi = σκniδ ≈ σκ
∂φ

∂xi
. (10)

2.2 Numerical discretization

The equation of motion is solved with an extensively validated in-house code [32,40–42]. The equations are
solved on a staggered uniform grid with velocities located on the cell faces and all the other variables (pressure,
stress, and volume of fluid) at the cell centers. All the spatial derivatives are approximated with second-order
centered finite differences, while the time integration is discussed hereafter.

First, the volume of fluid function is updated in time from the time step (n) to (n + 1) by solving Eq. (2),
following the procedure proposed by Ii et al. [21]. In particular, the time evolution of φ is calculated by
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evaluating the numerical fluxes sequentially in each direction, a robust and easy approach called directional
splitting. Thus, Eq. (2) is discretized sequentially in the three Cartesian direction, i.e.,

φ
i jk
(∗) = φ(n) − 1


x

(
f
i+ 1

2 , j,k
(n) − f

i− 1
2 , j,k

(n)

)
+ 
t


x
φ
i, j,k
(∗)

(
u
i+ 1

2 , j,k
1 − u

i− 1
2 , j,k

1

)
,

φ
i jk
(∗∗) = φ(∗) − 1


x

(
g
i, j+ 1

2 ,k
(∗) − g

i, j− 1
2 ,k

(∗)

)
+ 
t


x
φ
i, j,k
(∗∗)

(
u
i, j+ 1

2 ,k
2 − u

i, j− 1
2 ,k

2

)
,

φ
i jk
(∗∗∗) = φ(∗∗) − 1


x

(
h
i, j,k+ 1

2
(∗∗) − h

i, j,k− 1
2

(∗∗)

)
+ 
t


x
φ
i, j,k
(∗∗∗)

(
u
i, j,k+ 1

2
3 − u

i, j,k− 1
2

3

)
(11)

where the subscript in parenthesis indicates the time iteration, with (n) and (n+1) the old and new time steps,
and (∗), (∗∗), and (∗ ∗ ∗) sub-iterations. Also, 
t = t(n+1) − t(n) is the time step, and f , g, and h are the
numerical fluxes defined later on. Note that Eq. (11) is implicit in the function φ in each sub-step. Next, we
solve an additional equation in order to ensure the divergence-free condition of the fully multi-dimensional
operator [2,37]:

φ
i jk
(n+1) = φ(∗∗∗) − 
t

(
φ
i jk
(∗)

u
i+ 1

2 , j,k
1 − u

i− 1
2 , j,k

1


x
+ φ

i jk
(∗∗)

u
i, j+ 1

2 ,k
2 − u

i, j− 1
2 ,k

2


y

+ φ
i jk
(∗∗∗)

u
i, j,k+ 1

2
3 − u

i, j,k− 1
2

3


z

)
.

(12)

Finally, we need to specify how the numerical fluxes are treated. These are defined as the space/time integration
of the product of the velocityui and the indicator function H ,which is substituted by its approximate counterpart
Ĥ , i.e.,

f
i± 1

2 , j,k
(n) = 1


y
z

∫
δt(n)

∫

y

∫

z

(
u1 Ĥ

)i± 1
2 , j,k

dy dz dt,

g
i, j± 1

2 ,k
(∗) = 1


x
z

∫
δt(∗)

∫

x

∫

z

(
u2 Ĥ

)i, j± 1
2 ,k

dx dz dt,

h
i, j,k± 1

2
(∗∗) = 1


x
y

∫
δt(∗∗)

∫

x

∫

y

(
u3 Ĥ

)i, j,k± 1
2 dx dy dt.

(13)

The temporal integration can be replaced by a spatial integration along the upwind path on the velocity field.

For example, in the x-direction the upstream path is 
x+ =
[
xi+ 1

2 − 
tui+ 1
2 , j,k, xi+ 1

2

]
for u

i+ 1
2

1 ≥ 0 or


x− =
[
xi+ 1

2 , xi+ 1
2 − 
tui+ 1

2 , j,k
]
for u

i+ 1
2

1 < 0. A similar procedure is applied in the other two coordinate

directions. Thus, the numerical fluxes can be computed as

f
i+ 1

2 , j,k
(n) =

⎧⎨
⎩

1

y
z

∫

x+

∫

y

∫

z Ĥ

i, j,k
(n) dx dy dz for u

i+ 1
2 , j,k

1 ≥ 0

− 1

y
z

∫

x−

∫

y

∫

z Ĥ

i+1, j,k
(n) dx dy dz for u

i+ 1
2 , j,k

1 < 0,

g
i, j+ 1

2 ,k
(∗) =

⎧⎨
⎩

1

x
z

∫

x

∫

y+

∫

z Ĥ

i, j,k
(∗) dx dy dz for u

i, j+ 1
2 ,k

2 ≥ 0

− 1

x
z

∫

x

∫

y−

∫

z Ĥ

i, j+1,k
(∗) dx dy dz for u

i, j+ 1
2 ,k

2 < 0,

h
i, j,k+ 1

2
(∗∗) =

⎧⎨
⎩

1

x
y

∫

x

∫

y

∫

z+ Ĥ i, j,k

(∗∗) dx dy dz for u
i, j,k+ 1

2
3 ≥ 0

− 1

x
y

∫

x

∫

y

∫

z− Ĥ i, j,k+1

(∗∗) dx dy dz for u
i, j,k+ 1

2
3 < 0.

(14)

Similarly to Eq. (9), the numerical integration can be performed analytically in one direction, and numerically
in the other two by the two-point Gaussian quadrature.

Once the volume of fluid function has been updated, i.e., φn+1 is available, differently from what done by
Ii et al. [21], the time integration of Eq. (3.1) is here performed with a fractional-step method [22] where the
evolution equation is advanced in timewith a second-order Adam–Bashforth scheme, and a Fast Poisson Solver
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Fig. 2 The 2D Zalesak’s disk: simulation of a slotted disk undergoing solid body rotation [63]. The black line denotes the exact
initial solution, whereas blue and red the solutions obtained after one and five full revolutions. The two left figures are obtained
with β = 1 and the two right ones with β = 2. In both sides, the results in the two panels are obtained with 33 and 66 grid points
per diameter (color figure online)

Fig. 3 The 3D Zalesak’s disk: the three panels represent the exact initial solution, and those after one full rotation with 33 and
66 grid points per diameter

is used to enforce zero divergence of the velocity field. Due to the non-uniformity of the density, the Poisson
equation used to enforce a divergence-free velocity field results in an equation with variable coefficients, i.e.,

∂

∂xi

(
1

ρ

∂p

∂xi

)
= 1


t

∂ ûi
∂xi

(15)

where the pressure p and density ρ are evaluated at n + 1 and the velocity ûi is the non-divergence-free
predicted velocity. In order to employ an efficient FFT-based pressure solver with constant coefficients (see
also [12,13]), we use the following splitting of the pressure term [14]:

1

ρ

∂p

∂xi
→ 1

ρ0

∂p

∂xi
+

(
1

ρ
− 1

ρ0

)
∂ p̃

∂xi
(16)

where ρ0 is a constant density equal to the lowest density of the two phases, and p̃ is an approximated pressure
obtained by linear extrapolation, e.g., p̃ = 2pn − pn−1. With this splitting, the Poisson equation can be
rewritten as

∂2 p

∂xi∂xi
= ρ0


t

∂ ûi
∂xi

+ ∂

∂xi

[(
1 − ρ0

ρ

)
∂ p̃

∂xi

]
. (17)

Note that also the correction step of the fractional-step method needs to be modified accordingly.

2.3 Code validation

The Zalesak’s disk [63], i.e., a slotted disk undergoing solid body rotation, is a standard benchmark to validate
numerical schemes for advection problems, since the initial shape should not deform under rigid body rotation.
The setup is the same as described by Ii et al. [21], and the comparison of the initial shape (black line) and
those after one (blue line) and five (red line) full rotations is shown in Fig. 2. We consider two grid resolutions
here, 100 and 200 grid points per box size (being the disk of size 0.3), and two different values of the sharpness
parameter β: 1 and 2. The deformed shape of the disk shows an overall good agreement with the initial one,
with the comparison deteriorating when more rotations are performed. Better agreement is found on the finer
grid, and this is further slightly improved in the case with β = 2. As expected, the major differences are found
on the sharp edges of the geometry, which are difficult to maintain undeformed. The test has been repeated
in 3D, and the results are shown in Fig. 3. Again, quite good agreement is found between the initial and final
shapes, with the difference reducing with increasing resolution.

Next, we study a deformed interface in a shear flow in order to evaluate the capability of the method
to capture a heavily deformed and stretched interface [43]. We consider a circle of radius 0.2π , centered at
[0.5π, −0.2(π + 1)] in a box of side 2π with the prescribed velocity field u1 = sin(x) cos(y) and u2 =
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Fig. 4 A deformed interface in a shearing flow: the black, blue, and red lines denote the interface at t = 0, 5π and 10π ,
respectively. The three panels are obtained with 100, 150, and 200 grid points per box side (color figure online)
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(a) (b)

Fig. 5 Validation of the multiphase solver, based on VOF with the multi-dimensional tangent of hyperbola interface capturing
(MTHINC) method. a Shape of a 3D deformable drop in shear flow for different Capillary numbers. The black, blue, andmagenta
colors are used for Ca = 0.1, 0.2, and 0.3, respectively. b Center of mass position (blue) and rising speed (green) of a 2D rising
droplet in a Newtonian fluid. In both panels, the solid lines are our results, while the points are results taken from the literature
(color figure online)

− cos(x) sin(y) for t < 5π , and with the reversed velocity for t > 5π . First, the interface deforms due to
the imposed velocity field reaching its maximum stretching at t = 5π ; after the flow reversal, the interface
deformation starts reducing, and at time t = 10π the interface goes back to its initial position. Figure 4 shows
the interface shape at time t = 0 (black line), at t = 5π (blue line), and at t = 10π (red line) for a mesh
resolution of 100 (left panel), 150 (middle panel), and 200 (right panel) grid points in each direction. We can
observe that the tail of the interface is broken in smaller segments at its maximum stretching (t = 5π), and
that the breakup reduces as the mesh is refined. In the reversed phase, all these interface segments merge, and
the shape is almost circular at the final instant (t = 10π), with some wiggles in the bottom part of the circle,
yet reducing as the grid is refined.

We conclude this part on the numericalmethod performance by noting that the parasitic current often caused
by numerical errors in the curvature estimation [35,53] is effectively suppressed in the present methodology
by the continuous VOF distribution with the curved surface reconstruction, as shown by Ii et al. [21].

Finally, we present two different validations of our code where we compare our results with those reported
in the literature: first, we consider a 3D deformable drop in a simple shear flow, and then 2D and 3D rising
droplets in a buoyancy-driven flow.

Shear-driven flow We consider a 3D unit spherical drop located at the center of a computational domain of
size 8× 4× 8, with a resolution of 16 grid points for the drop diameter. The top and bottom boundaries move
with opposite velocity ±U , giving a shear rate γ̇ = U/2, while periodic boundary conditions are imposed
in the streamwise x and spanwise z directions. The same density and viscosity are specified for the spherical
drop and the surrounding fluid, the Reynolds number is fixed to 0.1, and three Capillary numbers are studied:
0.1, 0.2 to 0.3. Figure 5 (left) shows the steady-state deformed shapes obtained by our numerical simulations
(solid lines), which are in excellent agreement with the numerical results reported by Ii et al. [21], shown with
points of the same color in the Figure.

Buoyancy-driven flow The method is further validated for a 2D droplet rising in a fluid as studied numerically
by Hysing et al. [20]. The domain is rectangular with size 1×2; no-slip boundary conditions are applied on the
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Fig. 6 (Left)Mean solvent streamwise velocity profile u f 1, normalizedwith thewall velocity Vw, and (right) average local volume
fraction distribution, φ, along the wall-normal direction y. Different colors are used to represent different volume fractions Φ:
10% (blue), 20% (orange) and 30% (red) (color figure online)

horizontal walls and free-slip boundary conditions on the sides. A round droplet with radius R is initially placed
at the centerline of the channel at a distance of 0.5 from the bottom wall. The non-dimensional parameters
governing the flow are the Reynolds number Re = ρ1Ug2R/μ1, the Eötvös number Eo = ρ1U 2

g2R/σ , the
Capillary number Ca = μ1Ug/σ , and the viscosity and density ratio kμ = μ2/μ1 and kρ = ρ2/ρ1, where we
have chosen as reference length and velocity scales the drop diameter (2R) and the velocityUg = √

gL , being
g the gravitational constant. The simulation is performed with the parameters corresponding to the benchmark
test case 1 byHysing et al. [20], i.e., Re = 35, Eo = 10,Ca = 0.2857, kμ = 10, and kρ = 10. The comparison
of the drop center of mass and rise velocity is reported in Fig. 5 (right); the nearly perfect agreement between
our results and those taken from the literature thus verifies again our implementation. Finally, we extend the
comparison to a 3D droplet rising in a fluid as studied experimentally by Legendre et al. [24], (Re = 259,
Eo = 0.35, Ca = 0.0025, kμ = 1.56, and kρ = 1.16). From our simulation, we obtain a rising velocity of 8.5
cm/s, compared to 8.1 cm/s found by Legendre et al. [24], with an error of 5% well within the 10% uncertainty
in the velocity measurement reported by those authors.

3 Results

We consider the plane Couette flow of two Newtonian fluids separated by an interface with interfacial tension
σ . The density and viscosity of the two fluids are assumed to be equal (ρ0 and μ0), and the Reynolds number
of the simulation is set equal to Re = ρ0γ̇ r2/μ0 = 0.1, where γ̇ is the reference shear rate, so that we can
consider inertial effects negligible.We denote the solvent as fluid 1 and the suspended phase as fluid 2. The total
volume fraction Φ is defined as the volume average of the local volume fraction φ, i.e., Φ = 〈〈φ〉〉. Hereafter,
the double 〈〈·〉〉 indicates time and volume average while the single 〈·〉 average in time and in the homogeneous
x and z directions. Four values of the total volume fraction Φ ≈ 0.0016, 0.1, 0.2, and 0.3 are considered,
together with three values of the interfacial tension σ , resulting in the Capillary numbersCa = μ0γ̇ r/σ = 0.1,
0.2, and 0.4. Note that the Capillary numbers considered in this study are below the critical value for droplet
breakup under shear flow in similar conditions [8,9]; indeed, Caserta et al. [8] and Caserta and Guido [6] found
that this system is mainly modified by deformation and coalescence; thus, these effects will be investigated in
our simulations. The numerical domain is a rectangular box of size 16r×10r×16r in the x , y, and z directions,
discretized on a Cartesian uniform mesh with 16 grid points per radius r . No-slip boundary conditions are
imposed on the solid walls, while periodic boundary conditions are enforced in the homogeneous x and z
directions (see Fig. 1). All simulations start with a stationary flow and a random distribution of spherical
droplets of fluid 2 with unit radius across the domain. Note that the general setup and most of the parameters
used in this study are chosen as in Picano et al. [31] and Rosti and Brandt [41] where suspensions of rigid
and deformable spherical particles are examined. The independence of the results from the grid resolution and
domain size was tested by performing two additional simulations for the case with high volume fraction and
Capillary number, i.e., Φ = 0.3 and Ca = 0.4: (i) a simulation with double grid points in all the directions;
(ii) a simulation with double domain size in the homogeneous directions x and z. The difference in the results
was found to be < 2%.
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Fig. 7 (Left) The effective viscosity μ/μ0 as a function of the volume fraction Φ for different values of the volume fraction,
Φ ≈ 0.0016 (brown), 0.1 (blue), 0.2 (orange), and 0.3 (red), and of Capillary number Ca = 0.1 (×), 0.2 (∗) and 0.4 (�). (Right)
Time evolution of the effective viscosity μ/μ0 for volume fractions Φ = 0.1 (blue), 0.2 (orange), and 0.3 (red) and for Capillary
number Ca = 0.1 (color figure online)

We start the analysis of the two-fluid flow by showing the mean streamwise velocity profile of the solvent
phase u f 1 in the left panel of Fig. 6. The blue, orange, and red colors are used to distinguish the three different
volume fractionsΦ = 0.1, 0.2, and 0.3, respectively; the shaded area with the same color represents the spread
of the data due to the different Capillary numbers studied in this work. In the Newtonian case, shown with a
dashed black line, the velocity profile is linear, decreasing from Vw at the wall, due to the no-slip condition, to
zero at the center line, for symmetry. The wall-normal profile is not straight in the emulsion, and the velocity
decreases faster than in the Newtonian case close to the wall, i.e., the wall-normal derivative of the velocity
profile at the wall increases; also, the profile shows a local minimum around y ≈ 0.75h. These differences are
enhanced for high values of volume fractions and Capillary numbers, and are strongly related to the distribution
of the dispersed phase across the channel, reported in terms of average local volume fraction of the suspended
fluid 〈φ〉 in the right panel of the same Figure. Indeed, the suspended fluid has a non-uniform distribution in
the wall-normal direction, with a strong peak in the concentration around y ≈ 0.75h, (the position of the local
minimum of velocity), which moves toward the wall for increasing volume fractions. From the Figure, we
can also observe a significant variation with the Capillary number as the volume fraction increases; this result
differs from what reported by Rosti and Brandt [41] for deformable particles, where only minor variations
were observed in the volume fraction distribution for different Capillary numbers.

The wall-normal derivative of the streamwise velocity at the wall can be used to estimate the effective
viscosity of the non-Newtonian emulsion made of the two Newtonian fluids. We define the effective viscosity
μ, normalized by the reference value μ0, as

μ

μ0
= 〈〈σw

12〉〉
μ0γ̇

. (18)

Figure 7 (left) shows the effective viscosityμ as a function of the total volume fractionΦ for all theCapillary
numbers Ca considered. We observe that the effective viscosity decreases with the Capillary numbers Ca and
exhibits a non-monotonic behavior with respect to the volume fraction: in particular, it first increases with the
volume fraction up toΦ = 20% and then decreases. These data are obtained by time-averaging the results over
a time of approximately 40γ̇ −1 after a long transient of approximately 80γ̇ −1. Indeed, the system is reaching a
quasi-statistically steady state after this interval for all the cases we have investigated, as shown in Fig. 7 (right)
where we report the time history of the effective viscosity μ for three different volume fractions (Φ = 0.1,
0.2, and 0.3) and Capillary number Ca = 0.1. Note that we have defined as quasi-statistically steady-state
regime a condition where the global properties of the system (e.g., the effective viscosity) change by less than
3% over a time of 20γ̇ −1.

Next, we test whether an expression similar to that used for rigid and deformable objects can be used
also for emulsions. To this end, we fit the effective viscosity of our simulations with the relation proposed by
Batchelor and Green [4], i.e., a second-order extension of Einstein [15] formula,

μ

μ0
= 1 + [μ]Φ + BBGΦ2, (19)
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Table 1 The fitting parameter BBG in Eq. (19) used for the curves in Fig. 7 and the intrinsic viscosity [μ] computed from our
simulations

Ca [μ] BBG

0.1 1.7538 − 2.2078
0.2 1.6615 − 3.4116
0.4 1.4769 − 3.6253

1

2

3

4

0 0.1 0.2 0.3

μ
/
μ
0

Φ

Fig. 8 The effective viscosity μ/μ0 as a function of the volume fractionΦ for three Capillary numbers Ca: 0.1 (dashed line), 0.2
(solid line), and 0.4 (dotted line). The gray lines are the present results for a two-fluids system, the green and purple are results
taken from the literature for deformable elastic particles [41] and capsules [28], respectively, while the black dash-dotted line
represents the rigid particle limit [32] (color figure online)

where [μ] is the intrinsic viscosity (equal to 5/2 for rigid dilute particles) and BBG is a coefficient equal to 7.6
for non-Brownian spheres. In the two-fluids system studied here, we measure the intrinsic viscosity [μ] from
the simulations with a single droplet in the computational domain (corresponding to the case Φ ≈ 0.0016),
i.e., [μ] ≈ (μ − μ0) / (μ0Φ). The coefficient BBG is kept as a fitting parameter, whose values are reported
in Table 1, together with the intrinsic viscosity extracted from our simulations. We see that the second-order
expression is applicable for values of the volume fraction up to Φ = 0.3 in the two-fluid system considered
here, provided that both [μ] and BBG are modified to take into account the droplet deformation, i.e., they are
assumed as functions of the Capillary number Ca. For rigid particle suspensions, this second-order relation
is usually inaccurate for Φ � 0.15, as the viscosity increases faster than a second-order polynomial [49];
however, it has been shown recently to apply up to Φ ≈ 0.33 for suspensions of deformable particles [41].
From the data in the Table, we observe that in the case of emulsions both the intrinsic viscosity [μ] and the
second-order coefficient BBG are decreasing with the Capillary number Ca. Also, BBG is negative for all the
Capillary numbers Ca: the function μ = μ (Φ) has a maximum. This can be explained by considering the
limiting behaviors for Φ = 0 and 1; indeed, the limit for Φ → 0 and Φ → 1 is μ = μ0, i.e., we recover the
fluid viscosity; thus, the function μ = μ (Φ) must show a maximum for 0 < Φ < 1. These results are in good
agreement with the experiments by Caserta et al. [7,8].

Finally, we compare in Fig. 8 the effective viscosity μ of the present two-fluids system with the results
taken from the literature at similar volume fraction and Capillary number. In particular, the present results are
shown in the Figure with gray lines, while green lines represent the case of deformable hyper-elastic particles
[41], the purple lines indicate the case of deformable capsules [28], and the black line is the result for rigid
particles [32]. In the deformable cases reported (two-fluids system, capsules, and elastic particles), results
pertaining three different Capillary numbers are shown in the Figure: Ca = 0.1 (dashed line), 0.2 (solid line),
and 0.4 (dotted line). We clearly note that all the deformable cases show smaller effective viscosity than in
the presence of rigid particles, with the difference increasing with the volume fraction Φ and the Capillary
number Ca. Also, the present results are those with lower effective viscosity, followed by capsules and finally
by deformable particles whose results are the closest to the one for rigid particles. The reduction in the effective
viscosity with respect to the case of rigid spheres indicates a reduced influence of the suspended phase on the
flow of the carrier phase. This is due to the deformability which allows the intrusions to attain a shape which
is able to reduce the obstruction to the flow and adapts to it.
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Fig. 9 (Top) Instantaneous shape of the suspension at Ca = 0.2 for three different volume fractions: Φ = 0.1, 0.2, and 0.3.
(bottom) Shape of the particle in the dilute case, Φ = 0.0016, for increasing Capillary numbers Ca = 0.1, 0.2, and 0.4

0.3

0.6

0.9

1.2

0 0.1 0.2 0.3

S/
S 0

Φ

0

0.1

0.2

−1 −0.5 0 0.5 1

p
df

Q

Fig. 10 (Left) Normalized mean interface surface area S as a function of the volume fraction Φ for different Capillary numbers
Ca. The symbol and color scheme is the same as in Fig. 7. (Right) Probability density function of the flow topology parameter
Q for all the volume fractions Φ and for a fixed Capillary number Ca = 0.2. The color scheme is the same as in Fig. 7, and the
dashed and solid lines are used for fluid 1 and 2, respectively (color figure online)

We now study the behavior of the interface in the emulsions under investigations here. Figure 9 displays
instantaneous configurations of the interface between the two fluids: the top row reports cases at Ca = 0.2
and increasing Φ, i.e., 0.1, 0.2, and 0.3, while the bottom row is for the dilute suspension Φ = 0.0016 and
increasing Ca, i.e., 0.1, 0.2, and 0.4. We observe that, in the dilute case, the shape progressively changes
from a sphere to an ellipsoid as the Capillary number Ca increases. However, in the case of an emulsion,
the interface shape rapidly degenerates from that of an ellipsoid due to the merging process: indeed, we can
observe the formation of elongated structures spanning large portions of the domain in both the streamwise
and spanwise directions. To quantify the deformation, it is common in the literature to evaluate the so-called
Taylor parameter

T = a − b

a + b
, (20)

where a and b are the semimajor and semiminor axes of the inscribed ellipse passing through the center of the
droplet in the x–y plane. However, due to the merging, only few interface shapes are truly ellipsoidal, and thus,
this measure is not appropriate for the present case. An alternative indicator of the deformation and merging of
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the droplets is reported in the left panel of Fig. 10, where the mean interface surface area S, normalized by its
initial value S0, is depicted as a function of the total volume fractionΦ. We observe that S decreases (although
not monotonically) with the volume fraction Φ and increases with the Capillary number Ca. In the dilute case
(brown symbols), the surface is always larger than the initial spherical shape, as expected being the sphere the
shape with lowest surface area to volume ratio. As Ca increases and the average shape changes going from a
sphere to an ellipsoid (see the bottom panels in Fig. 9), the surface area increases. Thus, at a fixed Capillary
number and increasing volume fraction, the total surface area reduces due to the merging. We can therefore
conclude the following: (i) for the low Capillary number cases (Ca = 0.1, displayed with the symbol ×) the
merging is the dominant effect because the droplets are only slightly deforming, and most of the deviations
from the initial configuration are due to the merging; (ii) for the high Capillary number cases (Ca = 0.4,
shown by �) the deformation is dominant at low volume fractions when the surface area is increasing, but
eventually, as Φ increases, the merging reduces the total surface area; (iii) finally, the cases with intermediate
Capillary number (Ca = 0.2, indicated with ∗) present a mixed behavior, although at high Φ the merging
always prevails, reducing the total area.

In order to evaluate the different flow behaviors in the two fluids, we compute the so-called flow topology
parameterQ, successfully used by De Vita et al. [11] among others. The flow topology parameter is defined as

Q = D2 − Ω2

D2 + Ω2 (21)

where D2 = Di j D ji and Ω2 = Ωi jΩ j i , being Ωi j the rate of rotation tensor, Ωi j = (∂ui/∂x j − ∂u j/∂xi )/2.
WhenQ = −1 the flow is purely rotational, regionswithQ = 0 represent pure shear flow and thosewithQ = 1
elongational flow. The distribution of the flow topology parameter for the cases with Ca = 0.2 and different
volume fractions Φ is reported in Fig. 10 (right). In particular, we show the probability density function (pdf)
of Q in the two liquid phases separately. We observe that in the fluid 1 the flow is mostly a shear flow, as
demonstrated by a sharp peak atQ = 0. On the other hand, the flow of fluid 2 shows a broad peak for Q < 0,
meaning that the flow is more rotational. However, this peak displaces toward Q = 0 as the volume fraction
is increased. This is caused by the increased merging at high Φ, which generates large structures (see Fig. 9)
which spans a larger and larger area of the domain.

To understand the rheological behavior of the emulsion, we consider the different contributions to the
momentum transfer. The streamwise component of the mean momentum equations for a Couette flow with
streamwise and spanwise homogeneous direction reads [34]

μ0
d2〈u〉
dy2

− ρ
d〈u′v′〉
dy

+ 〈 f1〉 = 0 (22)

where the ′ indicates the fluctuation with respect to the mean. Integrating the equation in the wall-normal
direction y, we obtain

d〈σ12〉
dy

= 0 (23)

where we have defined the total shear stress 〈σ12〉 as the sum of the viscous and Reynolds stresses, with the
addition of a contribution from the interfacial tension fi , i.e.,

〈σ12〉 = μ0
d〈u〉
dy

− ρ〈u′v′〉 +
∫ y

0
〈 f1〉. (24)

Note that, although the integral of the interfacial tension over a full droplet is null, the wall-normal profile of
its contribution is not, and it must thus be accounted for. Finally, the viscous and Reynolds stresses can be
further decomposed into the contribution of the two fluids, see Eq. (4), giving the following expression:

〈σ12〉 =
(

μ0
d〈u〉
dy

− ρ〈u′v′〉
)

︸ ︷︷ ︸
fluid 1

+
(

μ0
d〈u〉
dy

− ρ〈u′v′〉
)

︸ ︷︷ ︸
fluid 2

+
∫ y

0
〈 f1〉 dy︸ ︷︷ ︸

interfacial tension

(25)

where the averages in the first two brackets are performed separately in the two phases. Each of these contribu-
tions has been averaged in time and in the homogeneous directions and displayed in Fig. 11 (left) as function
of the wall-normal distance y for the cases with Ca = 0.2 and volume fractions Φ = 0.1, 0.2, and 0.3 (top,
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Fig. 11 Decomposition of the total shear stress 〈σ12〉 in its contributions [see Eq. (25)], normalized by the total wall value 〈σw
12〉.

The Figures in the left column show the profile of the shear stress components as a function of the wall-normal distance for the
case withCa = 0.2 while those in the right column the percentage distribution of the shear stress contribution as a function of the
Capillary number Ca. The top, middle, and bottom rows indicate the three volume fractions Φ = 0.1, 0.2, and 0.3, respectively.
The shear stress contribution due to the interfacial tension, viscous stress of fluid 1 and viscous stress of fluid 2 are shown with
the dash-dotted−·−, dashed− −, and solid— lines in the right column and with the gray, blue, and green bars in the histograms
in the right column (color figure online)

middle, and bottom panels in the left column). Note that the stresses are normalized by the total wall value;
thus, they vary between 0 and 1 and the Reynolds stress contributions are not shown being negligible in the
inertialess limit.

The viscous stress of fluid 1 is the only not null component at the wall, due to the fact that the fluid 2
has null concentration there (see Fig. 6 (right)). At the lowest volume fraction shown here the fluid 1 viscous
stress is the dominant contribution, being responsible for more than 70% of the total stress at each wall-normal
location. It has a minimum value around y ≈ 0.75h corresponding to the location of maximum concentration
of fluid 2 as previously discussed. As the volume fraction is increased, the fluid 1 viscous stress becomes
smaller and smaller; this is compensated by an increase in the fluid 2 viscous stress contribution. Moreover,
we observe that the interfacial tension term is almost uniform across the channel, and that its contribution
increases with the volume fraction. In Fig. 11 (right), we summarize the stress budgets analysis by showing
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the volume-averaged percentage contribution of all the nonzero components of the total shear stress, i.e., fluid
1 viscous stress (blue), fluid 2 viscous stress (green), and interfacial tension (gray). Each panel shows how the
stress balance changes with the Capillary number, and each panel corresponds to a different volume fraction
(Φ = 0.1: top panel; 0.2: middle panel; 0.3: bottom panel). For every volume fraction, we observe that the
percentage contribution of the viscous stress of the solvent and suspended fluids increases with the Capillary
number; on the other hand, the contribution of the interfacial tension slightly decreases with the Capillary
number (see Fig. 10 (left)). These results are similar to the one reported for hyper-elastic particles by Rosti
and Brandt [41] who also found an increase in the particle contribution with the elasticity Capillary number
(i.e., deformability).

4 Conclusions

We have implemented and validated a volume of fluid methodology based on the MTHINC method first
proposed by Ii et al. [21]which can be used to studymultiphase problems.A fullymulti-dimensional hyperbolic
tangent function is used to reconstruct the interface, and the main advantages can be summarized as follows: (i)
the geometric reconstruction of the interface is not required; (ii) both linear and quadratic surfaces can be easily
constructed; (iii) the continuous multi-dimensional hyperbolic tangent function allows the direct calculations
of the numerical fluxes, derivatives, and normal vectors; (iv) the hyperbolic tangent function prevents the
numerical diffusion that smears out the interface transition layer. Moreover, the implementation presented
here allows the use of an efficient FFT-based fractional-step method to solve the system of equations and is
based on the splitting of the pressure in a constant and a varying term, which makes the FFT solver applicable
also when the density in the two phases differs.

We have studied the rheology of a system of two Newtonian fluids in a wall-bounded shear flow, i.e., plane
Couette flow, at low Reynolds number such that inertial effects are negligible. The rheology of the emulsion
is analyzed by discussing how the effective viscosity μ is affected by variations of the volume fraction Φ and
Capillary numberCa. The effective viscosityμ is a nonlinear function of both these parametersμ = μ (Φ,Ca),
and the emulsion shows an effective viscosity lower than the one of suspensions of rigid particles, deformable
elastic particles, and capsules. Differently from these other cases, here the droplets can merge, especially at
high volume fractions and high Capillary numbers. Also, the effective viscosity curve has a negative second
derivativewith respect toΦ, thus suggesting the presence of amaximum in the curve at higher volume fractions.
The overall deformation of the emulsion has been quantified in terms of the interface surface area and the flow
within the two phases studied by means of the flow topology parameter. In particular, we have shown that the
flow of the suspending fluid is mainly a shear flow, while that of the dispersed fluid is more rotational.

Finally, we have analyzed the contributions to the total shear stress of the two fluid phases and of the
interfacial force and showed that the Reynolds stress contributions are negligible at this Reynolds number
and that the viscous stress of the two fluids provides the dominant contribution. These have a non-uniform
distribution across the channel, with the percentage contribution of both phases increasing with the volume
fraction and Capillary number. An important contribution comes from the interfacial tension, whose effect
increases with the volume fraction and decreases with the Capillary number.

The study presented in this work will be extended to consider different viscosity and density ratios between
the two fluids, and to better understand the non-monotonic behavior of the effective viscosity and its effect on
the rheological behavior of emulsions.
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