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Abstract The flapping states of a flexible fiber fully

coupled to a three-dimensional turbulent flow are

investigated via state-of-the-art numerical methods.

Two distinct flapping regimes are predicted by the

phenomenological theory recently proposed by Rosti

et al. (Phys. Rev. Lett. 121:044501, 2018) the under-

damped regime, where the elasticity strongly affects

the fiber dynamics, and the over-damped regime,

where the elastic effects are strongly inhibited. In both

cases we can identify a critical value of the bending

rigidity of the fiber by a resonance condition, which

further provides a distinction between different flap-

ping behaviors, especially in the under-damped case.

We validate the theory by means of direct numerical

simulations and find that, both for the over-damped

regime and for the under-damped one, fibers are

effectively slaved to the turbulent fluctuations and can

therefore be used as a proxy to measure various two-

point statistics of turbulence. Finally, we show that

this holds true also in the case of a passive fiber,

without any feedback force on the fluid.

Keywords Turbulence � Fiber � Dispersed flows �
Multiphase flows

1 Introduction

The interaction between elastic structures and fluid

flows concerns several problems relevant for both

biological and industrial applications, such as, e.g.,

flow control [1], passive locomotion of swimmers

[2–4] and energy harvesting from flow-induced

vibrations [5–9]. Moreover, fundamental studies have

focused on the dynamics of constrained, elastic

filaments in laminar flows, investigating the essence

of flapping instabilities and related phenomena

[3, 10–12].

On the other hand, in the field of particle-laden

flows attention has been devoted to the dynamics of

fiber-like objects dispersed in laminar or turbulent

flows. In this latter framework, a further distinction

can be made depending on the size of the fiber

compared to that of the existing flow scales. A

significant number of contributions have considered

fibers with length smaller than the Kolmogorov scale

[13, 14], revealing the nature of effects such as

preferential alignment for neutrally-buoyant rods [15]
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and preferential concentration when their inertia

enters into play [16, 17].

Fewer studies have addressed the case of finite-size

fibers whose length is comparable to scales belonging

to the inertial range. Among these, experimental

analyses have outlined the potential of using dispersed

rigid rods as a measurement tool for turbulent flows

[18], since their tumbling rate is found to be approx-

imately equal to the characteristic time of turbulent

structures of comparable size (provided inertia does

not affect the fiber dynamics [19, 20]).

The case of flexible fibers has been recently

addressed both experimentally [21, 22] and numeri-

cally [23, 24]. One of the main findings of Ref. [24] is

the identification of a flapping regime where the fiber

deformation is slaved to turbulent fluctuations,

enabling to quantify their statistical properties by

measuring only the distance and velocity difference

between the fiber free ends.

Further attempts of such a Lagrangian description

have seen the employment of other kinds of particles

for evaluating both two-point (limited to distances

between particles smaller than the Kolmogorov

viscous scale) and single-point quantities [25, 26],

paving the way for new strategies to investigate

turbulent flows. Overall, such efforts are needed in

order to increase our understanding of turbulence and

establish, in particular, a connection between scaling

laws and spatial structures, e.g., vortex filaments

[27, 28]. In passive scalar turbulence, this connection

leads to a complete understanding of the meaning of

intermittency and anomalous scaling [29, 30].

The goal of this work is to present an exhaustive

description of the dynamical phenomenology associ-

ated to a long flexible fiber (i.e., having a rest length

falling within the turbulence inertial range of scales)

freely moving in a controlled turbulent flow. More

specifically, we aim to categorize the different regimes

that can be predicted theoretically by combining a

simple structural model for the fiber with a widely

studied turbulence model: the so-called homogeneous,

isotropic and stationary turbulence model. We will

present and discuss the different flapping states that

may occur depending on the choice of the character-

istic parameters, supporting our physical intuitions

with evidence from fully-resolved numerical simula-

tions. Furthermore, the underlying hypothesis of

passive fiber, on which the phenomenological model

that will be introduced in this work relies, will be

reviewed by considering numerical experiments in

which the feedback exerted by the fiber on the flow is

deactivated; This will clarify whether this is crucial to

capture the essential dynamics.

The idea of using a fiber to measure two-point

turbulence statistics was recently proposed by Rosti

et al. [24]. Our goal here is to give a detailed

presentation on how to exploit a flexible fiber as a

proxy of turbulence statistics and to present new

results.

The present work is structured as follows: Sect. 2

presents the numerical method along with its valida-

tion. In Sect. 3 we introduce our phenomenological

model while in Sect. 4 we discuss the different

dynamical regimes and provide corroborations from

DNS. Section 5 concerns the case of passive fiber and

in Sect. 6 we propose parameters for possible exper-

iments. Finally, Sect. 7 draws some conclusions.

2 Numerical method

We consider the fully coupled dynamics of a flexible

fiber, governed by the Euler–Bernoulli equation,

immersed in an incompressible three-dimensional

turbulent flow field, governed by the Navier–Stokes

equations.

In an inertial, Cartesian frame of reference the

equations of momentum and mass conservation for the

incompressible flow read as

oui

ot
þ ouiuj

oxj
¼ � 1

q
op

oxi
þ m

o2ui

oxjxj
þ f Ti þ f Fi ; ð1Þ

oui

oxi
¼ 0; ð2Þ

where ui is the fluid velocity field, p the pressure, f Ti
and f Fi two volume body forces used to sustain the

turbulent flow and to account for the presence of the

immersed fiber, respectively, and q and m the density

and kinematic viscosity of the fluid (being l ¼ qm the
dynamic viscosity). The problem can be made non-

dimensional by choosing reference length and velocity

scales, U� and L�, and by defining the Reynolds

number as Re ¼ qU�L�=l. The equations of motion

are solved in a triperiodic box, with periodic boundary

conditions applied in all the three Cartesian directions.

123

358 Meccanica (2020) 55:357–370



The forcing f Ti is used to generate and sustain a fully

turbulent flow with homogeneous, isotropic, and

stationary statistics. To do so, we use the spectral

forcing scheme proposed by Eswaran and Pope [31],

which involves the addition of energy to the Fourier

modes of the velocity at wavenumbers inside a low

wavenumber shell. The injected energy is obtained

from a formulation based on Uhlenbeck–Ornstein

processes and the resulting flowfield displays neither

anisotropy nor unreasonably high correlation times

[31].

The fluid–solid coupling force f Fi is obtained by the

Immersed Boundary Method (IBM), a technique used

to simulate the flow past solid bodies, first developed

by Peskin [32] to simulate blood flow inside a heart.

The main feature of this method is that the numerical

grid does not need to conform to the geometry of the

object, which is replaced by the body force distribu-

tion f Fi which mimics the presence of the body on the

fluid and restores the desired velocity boundary

conditions on the immersed surfaces. Two sets of grid

points are needed: a fixed Eulerian grid xi for the fluid

and a moving Lagrangian grid Xi for the structure. The

body force is found by first computing the fluid–solid

interaction force as

Fi ¼
Uib

i � UC
i

Dt
; ð3Þ

where Uib
i is the interpolated fluid velocity on the

Lagrangian points which does not satisfy the boundary

condition on the immersed objects, UC
i the desired

velocity of the Lagrangian points, andDt the time step.

The interpolation from the Eulerian grid to the

Lagrangian one of the fluid velocity is performed

using a smooth Delta function, i.e.,

Uib
i ¼

Z
V

uid Xi � xið ÞdV ; ð4Þ

where the integration is performed over the whole

fluid domain V. Similarly, the spreading of the fluid–

solid interaction force (Eq. (3)) from the Lagrangian

grid to the Eulerian one is performed as

f Fi ¼ q1

Z
c

Fid Xi � xið Þds; ð5Þ

where s is the curvilinear coordinate along the fiber.

The update of the Lagrangian points is achieved by

solving a separate equation that describes the

dynamics of the flexible fiber; in our simulations we

use the Euler–Bernoulli beam equation together with

the inextensibility condition [33]

q1
o2Xi

ot2
¼ o

os
T
oXi

os

� �
� c

o4Xi

os4
� Fi; ð6Þ

oXi

os

oXi

os
¼ 1; ð7Þ

where T is the tension, q1 the the fiber linear density, c
the bending rigidity, and Fi the fluid–solid interaction

force. This model is fully justified as far as the ratio

between the filament length and its diameter, = c/d,

is much larger than unity. The fiber is free to move in

the flow, thus, zero force, torque and tension boundary

conditions are enforced at the two ends of the fiber.

Gravitational effects are neglected, i.e., the Froude

number is always much larger than unity.

The fluid equations are solved numerically on a

staggered grid, with pressure points located at the cell

center and velocity components at the cell faces, using

a second order finite difference code. Equations (1)

and (2) are advanced in time by a fully explicit

fractional step-method, where the third-order Runge–

Kutta method is used, and the Poisson equation is

solved by Fast Fourier Transform. To solve the fiber

equation we follow the explicit two-step method

proposed by Huang et al. [11].

Note that, the exact relation between the fiber

volume and linear density is not clearly defined in the

method described above due to the uncertain definition

of the shape and cross-section of the fiber, which,

although being mono-dimensional in the theory, has a

finite thickness due to the spreading operation

(Eq. (5)), with the Dirac-delta function having a

support of 4 grid points. The problem can be solved

as follows: we first simulate a free fiber with a

prescribed bending rigidity c in void, i.e., without

fluid, and measure its main oscillation frequency fosc.

By standard normal mode analysis techniques, we can

write that fosc ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ðq1c4Þ

p
(where a � p=22:4),

which can then be used to obtain the actual value of the

fiber linear density due to its finite thickness.

2.1 Validation

The numerical code used in this work has been

extensively validated in the past for turbulent flow
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simulations [35–37]. Here, we provide one more

comparison with literature results for the specific case

of a flexible filament.

First, we validate the structural solver by studying

the oscillations of a hanging filament under gravity, as

done by Huang et al. [11]. The filament is initially held

stationary with an angle of 0:1p from the vertical

(Fig. 1a) and then, after being released, starts swinging

due to the gravity force. The unit filament is discre-

tised in our simulation with 100 Lagrangian points.

Figure 1b shows the time history of the free-end

position obtained by our simulation (solid line) and by

Huang et al. [11] (red dots); a good agreement with the

literature data is evident.

Next, we validate the fluid-structure interaction

solver by considering a pulsating flow in a plane

channel filled with glycerine (Re ¼ umc=m ¼ 60

being um the maximum velocity). A row of 5

filaments is hinged vertically on the bottom wall

(Fig. 2a). The pulsating frequency of the channel is

0:016c=um, matching the filaments natural frequency

(the filaments Young modulus is 2:05=qu2m). Fig-

ure 2b shows the streamwise displacement of the tip of

the last filament with respect to time: our results (solid

line) are compared with the experimental measure-

ments (red dots) and with the simulations (blue dots)

reported by Pinelli et al. [34]. Both the frequency of

oscillation and the magnitude of the displacement

match the literature results.

2.2 DNS setup

Details are given here on the numerical simulations

whose data are reported in the remaining part of the

paper. We consider a flexible fiber immersed in an

incompressible three-dimensional turbulent flow field;

in Fig. 3 we report an instantaneous visualization of

the turbulent flow along with the dispersed fiber to

give a qualitative insight of the resulting scenario.

The equations of motion are solved in a triperiodic

box with size L ¼ 2p, discretized on a Cartesian

uniform mesh using 128 grid points per side. With this

grid resolution, the resulting turbulence two-point

statistics is consistent with the 4
5
th Kolmogorov law in

the inertial range of scales (as one can notice for the

Eulerian quantities in Fig. 11), with negligible differ-

ences if doubling the number of nodes in all directions.

The resulting turbulent dissipation rate �, made

dimensionless with the cube of the velocity root-mean

square divided by the size of the box, is about 2.6 and

the Reynolds number at the Taylor microscale is about

Rek ¼ 92. Concerning the discretization of the fiber,

the spacing between the Lagrangian points is taken

equal to that of the Eulerian grid described before.

Depending on the chosen length of the fiber, the

number of Lagrangian points used in the simulations

ranges from 16 to 41.

The results presented hereafter are obtained by

solving the equation of motion and tracking the fibers

(a)

(c)

(b)

Fig. 1 Validation of the hanging filament under gravity:

a sketch of the initial condition; b time evolution of the y-

coordinate of the free-end of a filament due to gravity (the solid

black line represents our numerical results, while the red dots

those by Huang et al. [11]); c envelope of filament positions

over time. (Color figure online)
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dynamics for more than 40 large-eddy turnover times,

with the statistical quantities averaged over at least 20

large-eddy turnover times.

3 Phenomenological model

In this section, we start by reviewing the arguments

presented in Ref. [24]. Our goal is to model the

coupling between the fiber and the flow in a simple, yet

effective way. For this purpose, we begin by estimat-

ing the different timescales of the problem.

Recalling the fiber dynamical equation (6) and

neglecting at first the forcing from the flow, one can

define the fiber elastic time sc by balancing the inertial
and bending terms:

sc ¼ a
q1c

4

c

� �1=2

; ð8Þ

where c is the fiber length, q1 the linear density

difference, c the bending rigidity and the factor a �
p=22:4 results from a normal mode analysis, corre-

sponding to the first natural frequency of the beam in

the unsupported (free–free) case. If we model now the

fluid–solid interaction force F with a simple viscous

term F ¼ �lð _X� uÞ [38], another characteristic time

can be estimated by balancing the inertial term with

the introduced damping:

sl ¼ 2q1
l

: ð9Þ

(a) (b)

Fig. 2 Validation of filaments in pulsating channel flow:

a sketch of the case; b the streamwise displacement of the tip of

the last filament at the right end of the row with respect to time.

The solid black line is used to show our numerical results, while

the red and blue dots experimental and numerical results from

the literature [34]. (Color figure online)

Fig. 3 A snapshot from our DNS of homogeneous isotropic

turbulence in which a flexible fiber (line in dark red) is

immersed. Isosurfaces of Q (in cyan) depict the instantaneous

vorticity field, and the three back planes are coloured according

to the value of the enstrophy field. (Color figure online)

123

Meccanica (2020) 55:357–370 361



It has to be noted that the expression chosen for the

drag does not account for anisotropic effects (as done,

e.g., for fibers in low-Reynolds flows [39]), since in

our case the flow has an essentially isotropic nature

and no preferential alignment is expected.

An analogy can be drawn between our model and a

damped harmonic oscillator, so that we can derive an

expression for the equivalent damping ratio:

f ¼ sc
sl

¼ ac2l

2q1=21 c1=2
: ð10Þ

The critical condition f ¼ 1 represents the threshold

between two different regimes: for f\1 (under-

damped regime) the elasticity is expected to strongly

affect the fiber dynamics, while for f[ 1 (over-

damped regime) elastic effects are strongly inhibited.

More details will be given in the next section.

Concerning the flow, from the well-known 4
5
th

Kolmogorov law combined with dimensional analy-

sis, the turnover time of turbulent eddies of size r is

expected to behave as

sðrÞ� r2=3��1=3; ð11Þ

where � is the turbulent dissipation rate of kinetic

energy. Let us now assume that the flow structures

(i.e., eddies) effectively acting in the fluid-structure

coupling are those with the same size of the fiber, i.e.,

r � c. This also implies that the activated oscillation

mode of the fiber is essentially the first one (whose

associated timescale is supplied by Eq. (8)). Having

collected these relations, we are able to make predic-

tions regarding the flapping states of the elastic

structure depending on the physical parameters.

4 Fiber flapping states

4.1 Under-damped regime

For 0\f\1 (under-damped regime), we expect that

the fiber response shows an oscillatory behavior.

Therefore, we impose a resonance condition between

the elastic time and the hydrodynamic one, i.e.,

sc � sðcÞ, from which a critical value of the bending

rigidity can be found:

cudcrit � c8=3�2=3q1a
2: ð12Þ

Looking at the expression above, a further distinction

can be made. In the limit of vanishing c (subcritical

case), the fiber can be thought to be slaved to the flow

due to the relatively faster forcing compared with its

response, therefore flapping at the eddy frequency.

Such a slaved dynamics is expected to hold true when

both the rotational and translational Stokes number are

sufficiently small. The rotational and translational

Stokes numbers are defined as

St ¼ t0u0

c0
; ð13Þ

where t0 is the Stokes time and c0 and u0 are

characteristic length and velocity scales. Two different

length and velocity scales are used: for the transla-

tional case the length scale is set equal to the fiber

length c0 ¼ c and the velocity scale is chosen equal to

the rms fluid velocity u0 ¼ u0, while for the rotational
Stokes number the length scale is set equal to c0 ¼ pc
and the velocity scale to half the velocity difference

u0 ¼ duk=2 at the fiber scale. The two Stokes times are

measured through numerical simulations where we

consider a rotating and translating fiber with speed u0
in a quiescent fluid with the same viscosity and density

used in the rest of the work. We then measure the

decay time from our results, as shown in Fig. 4. The

values of both these two non-dimensional parameters,

0

0.5

1

0 2 4 6
t

Fig. 4 Time history of the normalized velocity (red) and

angular velocity (blue) of a filament translating and rotating in a

quiescent fluid. The dashed lines are analytical expressions in

the form of c1e
t=t0 plotted with the values of t0 that best fit our

data and shifted upwards for major clarity. (Color figure online)
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computed using the expressions given above, are

approximately Oð1Þ. In particular, the translational

Stokes number for c=L ¼ 0:16 and q1= q0L
2ð Þ ¼ 0:042

is equal to 7 while the rotational one equals 0.3. The

fact that the translational Stokes number is not smaller

than unity, as it is for the rotational Stokes number,

suggests that the possibility of using a fiber as a proxy

of two-point statistics of turbulence is controlled by

the (smallness of the) rotational Stokes number rather

than by the translational Stokes number. Further

analysis of this issue are however worth investigating

to arrive at a firm conclusion.

In the opposite supercritical case, where the elastic

time is much smaller than the hydrodynamic one, the

fiber reaction is expected to be far more rapid than the

fluid forcing.

To corroborate these expectations, we consider

results from DNS of two cases, both belonging to this

under-damped regime but with different c. We start by

looking at how the fiber end-to-end distance varies in

time (Fig. 5a). The two curves look clearly different:

in the subcritical case, finite-size and continuous

variations of the signal are found, with a mean end-to-

end value of around 0.55; conversely, in the super-

critical case, the fiber remains almost unbent (the

mean end-to-end distance is about 0.99) and isolated

bursts are observed (such as that occurring from

tu0=c � 6, where u0 is the velocity root-mean square),

when interactions occur with energetic eddies. These

observations are confirmed by the pictorial views in

Fig. 6 where the overlapped fiber configurations at

different time instants are collected: we observe

appreciable deformations in the subcritical case, while

the fiber essentially behaves like a rigid rod in the

supercritical regime.

For a deeper understanding, the corresponding

temporal spectra are analysed and reported in Fig. 5b.

A substantial difference can be noticed between the

two cases: in the supercritical case, the dominant

frequency is the natural frequency of the fiber, i.e.,

f ¼ 1=sc, with a clear peak in the spectra, while for the
subcritical one the peak of the spectrum is less distinct

and found at the turbulent frequency fturb ¼ 1=sðcÞ.
To confirm the theoretical predictions, we explore

the parametric space by considering fibers with

different combinations of density q1, length c and

bending rigidity c. Figure 7 shows the ratio between

the dominant frequency f and the turbulent frequency

fturb as a function of the ratio between the fiber bending

stiffness c and its corresponding critical value cudcrit. As
one can observe, two clearly different regimes are

found, defining two distinct flapping states of the fiber,

with a well defined threshold around c ¼ cudcrit. For
c\cudcrit, i.e., the subcritical cases, all the points lay on a
horizontal line characterized by an oscillation fre-

quency equal to the turbulent one; on the contrary, for

c[ cudcrit, supercritical regime, all the points collapse

on an inclined line with slope 0.5, indicating that the

(a) (b)

Fig. 5 a Time histories of the end-to-end distance and b

corresponding spectra for the subcritical case c=cudcrit ¼ 0:3

(blue) and the supercritical case c=cudcrit ¼ 50 (green) in the

under-damped regime. In b the dominant frequencies are

marked with a circle and, for the sake of visualisation, values

of the supercritical case are divided by 103. (Color figure online)
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oscillation frequencies grow with the bending rigidity

and are larger than the turbulent frequency. These

findings thus confirm the idea that the subcritical case

is fully governed by turbulence, unlike the supercrit-

ical one which exhibits a structural response behavior.

The net demarcation between the two regimes also

allows us to quantitatively separate a hard regime of

oscillation (for c[ cudcrit) from a soft one occuring for

c\cudcrit.
A complementary analysis is performed by looking

at the probability density function (PDF) of the

longitudinal velocity difference duk � ½uðr; tÞ �
uð0; tÞ� � r̂ sampled at the free ends of the fiber,

compared with the same quantity computed in the

Eulerian frame. Results for the two fibers considered

previously are shown in Fig. 8: the PDF of the

Eulerian data shows a non-symmetric bell shape,

while two very different curves are found for the two

fibers. Indeed, while we notice a good agreement in the

subcritical case between the Eulerian and Lagrangian

data, a significative difference is found for the

supercritical one. This result supports one more time

the idea that the fiber dynamics in the subcritical

regime is dominated by turbulence, while in the

supercritical one the fiber response comes from its

structural elasticity. Concerning the first case, we

ascribe the small mismatch occurring between the

Lagrangian and Eulerian measurements to the differ-

ent number of samples (about two order of magnitudes

lower for the former).

Focusing on the subcritical situation and aiming at

exploiting the capability of flexible fibers acting as a

proxy of turbulent eddies, the consequent step is to use

Fig. 6 Superposition of instantaneous fiber configurations for

the subcritical case c=cudcrit ¼ 0:3 (left) and the supercritical case

c=cudcrit ¼ 50 (right) in the under-damped regime (same as

Fig. 5). The red circle encloses the undeformed fiber configu-

ration. (Color figure online)

10−1

100

101

102

10−2 100 102 104

105 106 107

f
/f

γ/γ

γ/γ

Fig. 7 The fiber oscillation frequencies (normalized by the

turbulence frequency at the fiber length scale) as a function of

the fiber bending rigidity (normalized by the corresponding

critical value, given by Eq. (12) for the under-damped case

(lower axis) and Eq. (15) for the over-damped case (upper axis).

Blue: c=L ¼ 0:12 and q1=ðq0L2Þ ¼ 0:042; red: c=L ¼ 0:16 and

q1=ðq0L2Þ ¼ 0:042; green: c=L ¼ 0:20 and q1=ðq0L2Þ ¼ 0:042;

orange: c=L ¼ 0:16 and q1=ðq0L2Þ ¼ 0:014 or 0.125; gray:

c=L ¼ 0:16 and q1=ðq0L2Þ ¼ 0; brown triangles: c=L ¼ 0:16

and q1=ðq0L2Þ ¼ 0:042, passive cases. (Color figure online)
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fibers of different length to obtain the flow velocity

structure functions and estimate the associated scaling

laws. To this end, Fig. 9 shows the second and third-

order longitudinal velocity structure functions SpðrÞ
(with p ¼ 2; 3), proposing a comparison between the

two approaches analogous to what was presented for

the PDF. Notice that the plot abscissa refers to the

time-averaged value of the end-to-end distance and

not to the fiber rest length, this quantity being more

representative of the actual fiber length scale (see

Fig. 6a). For both the reported quantities, the Lagran-

gian and Eulerian measurements reveal a close

resemblance with differences well within the statisti-

cal error. This leads to the conclusion that, in the

under-damped regime, it is possible to measure the

two-point statistics of the flow (e.g., PDF, structure

functions) by means of dispersed flexible fibers

tracked in time, provided that c=cudcrit\1.

4.2 Over-damped regime

We now turn our attention to the case where f[ 1

(over-damped regime), where dissipation becomes

dominant. Once deformed, the fiber response is

characterized by a relaxation timescale that can be

estimated by balancing the elastic and viscous terms,

yielding:

sre �
lc4

c
: ð14Þ

Note that this relaxation process has exponential

behavior, without oscillations. Indeed, the fiber equa-

tion becomes first-order in time.

In this case, a balance condition can be imposed

between the relaxation time and the eddy turnover one,

i.e., sre � sðcÞ, so that the critical value of the bending
rigidity for this regime can be estimated as

(a) (b)

Fig. 8 Probability density function (PDF) of the longitudinal

velocity increments for the subcritical case c=cudcrit ¼ 0:3 (left)

and the supercritical case c=cudcrit ¼ 50 (right) in the under-

damped regime. Comparison between the Lagrangian fiber

measurement (bullets) and the Eulerian one (filled curve)

10−3

10−2

10−1

100

10−2 10−1

−S
3,

S
2

r/L

Fig. 9 Second-order (solid line) and third-order (dashed line)

velocity structure functions computed in the standard Eulerian

way and the same measure obtained by means of Lagrangian

fiber tracking for the subcritical, under-damped case with

c=cudcrit ¼ 0:3 (blue bullets). Lengths and velocities are made

dimensionless with the box size L and with the velocity root

mean square, respectively. (Color figure online)
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codcrit � lc10=3�1=3: ð15Þ

We shall discuss the expected behavior in the two

limits also here. For c=codcrit\1, the relaxation is slower

than the fluid forcing and thus the fiber is slaved to the

turbulence. In the opposite case when c=codcrit [ 1, the

fiber is appreciably deformed only by large strains,

similarly to the under-damped regime. However, here

elastic oscillations are not possible, and the dominant

frequency in this case is expected to be the turbulent

one. The fiber motion in the over-damped regime is

therefore always expected to be slaved to turbulence,

independently of c=codcrit.
To prove this, we resort again to numerical

experiments. When dealing with the subcritical,

over-damped case, however, issues arise since the

fibers are excessively flexible, leading to numerical

instability. Therefore we consider only the zero-mass

case (q1 � 0), corresponding to f 	 1. As done for the

under-damped regime, the time trace of the end-to-end

displacement is acquired and processed, extracting the

peak of the frequency as shown in Fig. 10. These data

are reported in Fig. 7 (gray symbols), to show that for

all computed cases the frequency ratio is approxi-

mately 1, demonstrating that the fiber flapping is

locked-in to the flow.

The comparison in terms of two points turbulent

statistic presented for the under-damped regime is

repeated for this regime as well. First, we consider the

computed velocity structure functions and the results

are shown for one representative case in Fig. 11 (along

with results from the passive cases that will be

introduced in Sect. 5).

Further, Fig. 12 depicts the resulting PDFs for the

same case. Both observables measured by the

Lagrangian fiber are in good agreement with the

Eulerian data.

As shown for the under-damped regime, also the

predictions for the over-damped case are confirmed by

the results from numerical simulations.

5 Passive fiber

In the numerical framework considered so far, the

presence of the fiber modifies locally the flow. In our

phenomenological model, on the other hand, we have

assumed that the former has an essentially passive

behavior. The question that rises is therefore: are our

findings confirmed if the fiber-flow feedback in the

numerical method is deactivated? To address this

point, simulations are performed neglecting the feed-

back to the flow.

The obtained picture is the same of what found for

fibers with active feedback. The spectra from which

the main flapping frequency was extracted are

reported in Fig. 13. The data are added in Fig. 7 with

brown symbols for the subcritical cases, yellow for the
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Fig. 10 Temporal spectrum of the end-to-end distance for the

neutrally-buoyant, over-damped case with c=L ¼ 0:16 (gray

line). The dominant frequency is marked with a circle
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Fig. 11 Second-order and third-order velocity structure func-

tions for the neutrally-buoyant, over-damped case (gray bullets)

and passive, under-damped cases (brown bullets). Lengths and

velocities are made dimensionless with the box size L and with

the velocity root mean square, respectively. (Color

figure online)
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supercritical ones, showing that the fiber dynamics is

consistent with the full model.

Focusing on the subcritical case, we examine also

the velocity structure functions (Fig. 11, brown bul-

lets), for which again a good agreement with the

Eulerian counterpart is found. Lastly, the PDF of the

longitudinal velocity difference for c=L ¼ 0:16 is

presented in Fig. 14, again confirming the conclusions

above. In light of these evidences, it appears that the

action of the fiber on the flow can be neglected when

modeling the dynamics of single fibers in turbulence.

6 Suggestions for possible experiments

In this section we propose some estimations for

planning laboratory experiments. To identify some

possible materials for the fiber, we can refer to Ref.

[21]. For their Silicone I, the resulting bending rigidity

is c ¼ EI ¼ 6:76
 10�7Nm2 and the linear density q1
is 0:86g=m, for their Silicone II c ¼ EI ¼ 1:74

10�6Nm2 and q1 ¼ 0:41g=m, and finally, for their

Nylon (III) c ¼ EI ¼ 2:75
 10�5Nm2 and

q1 ¼ 0:16g=m. We can also refer to the silk flexible

filament used in Ref. [10]: it is a 0:15mm diameter silk

wire (Silk in the following) having c ¼ EI ¼
10�10Nm2 and linear density q1 ¼ 0:02g=m. We can

estimate the critical fiber length ccrit to identify the

threshold between the under-damped (c\ccrit) and the

over-damped regimes (c[ ccrit). Considering water as

the working fluid, we have for Silicone I ccrit � 0:15m,

for Silicone II ccrit � 0:16m, for Nylon III

ccrit � 0:26m, and for Silk ccrit � 0:0067m. For the

first 3 cases, fibers with lengths of a few centimeters

(say, up to 10 cm) thus fall in the under-damped

regime. For the Silk, with a centimeter-size fiber one

falls in the over-damped regime, hence the fiber is

expected to behave as a proxy of turbulence. Finally,

for the first three fibers, we now need to estimate

whether with such mechanical properties of the fiber

we are in the region c\cud. To estimate whether or not

this is the case, we need to know something on the

turbulence field: in Ref. [21], their Kolmogorov scale

ranges between 12 and 91lm. This implies that, in

water, the largest � is approximately 50m2=s3. Assum-

ing c ¼ 13cm (that seems to be within the inertial

range of the experiment) and considering the Silicone I

fibers we get: cud � 9:95
 10�7Nm2 [ 6:76

10�7Nm2, yielding a ratio c=cud � 0:68. In 3D turbu-

lence the under-damped regime is thus accessible.

7 Conclusions

This study concerns the dynamics of flexible fibers

dispersed in homogeneous, isotropic turbulence.

Based on simple resonance conditions between dif-

ferent characteristic timescales, we proposed a phe-

nomenological model able to classify the flapping

regimes experienced by the fiber. The predictions have

been corroborated by fully-coupled direct numerical
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Fig. 12 Probability density function (PDF) of the velocity

increments for the neutrally-buoyant, over-damped case with

c=L ¼ 0:16. Comparison between the Lagrangian fiber mea-

surement (bullets) and the Eulerian one (filled curve)
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Fig. 13 Temporal spectra of the end-to-end distance for

subcritical case c=cudcrit ¼ 0:3 (brown) and supercritical case

c=cudcrit ¼ 50 (yellow) in the under-damped regime, with

deactivation of the fiber-flow feedback (passive cases). The

dominant frequencies are marked with a circle. (Color

figure online)
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simulations employing an immersed boundary tech-

nique for the fluid-structure interaction.

For those regimes fully slaved to the flow, the fiber

may be viewed as a Lagrangian tracker of turbulent

eddies, exploitable for evaluating not only their

characteristic time but also two-point statistical quan-

tities such as, e.g., scaling exponents of velocity

structure functions. We believe that this concept has

potential applications in experimental methods for

turbulence measurement paving the way to a new

experimental strategy, a sort of ‘‘Fiber Image

Velocimetry’’, suitable to study turbulence two-point

statistics or multipoint statistics (once a single fiber is

replaced by more complex elastic structures). A

substantial difference between the principle of ‘‘Par-

ticle Image Velocimetry’’ and the one of the proposed

‘‘Fiber Image Velocimetry’’ is that while the relative

distance between a pair of tracer particles is not

maintained constant in time due to the celebrated

Richardson law (the relative distance between parti-

cles grows in time as t3=2), on the other hand, this

requirement is intrinsically satisfied when considering

an inextensible fiber.

While in this investigation we considered only the

behavior of a single, isolated fiber, the described

strategy can be employed seeding the flow with

several elastic objects, potentially of different lengths

in order to measure eddies of different size. Increasing

the concentration of the dispersed phase, however,

would determine an increase of the importance of the

fiber-flow feedback, so that the assumption leading to

the prediction for the critical values of the bending

rigidity must be modified to account for the modula-

tion of the flow statistics caused by the fiber feed-back.
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