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A B S T R A C T

We perform three-dimensional numerical simulations to investigate the confinement effect on the sedimen-
tation of a single sphere in an otherwise quiescent yield stress fluid, in the presence of finite elasticity and
weak inertia. The carrier fluid is modeled using the elastoviscoplastic constitutive laws proposed by Saramito
(2009). The additional elastic stress tensor is fully coupled with the flow equation, while the rigid particle
is represented by an immersed boundary method. The simulations show the faster relaxation of the fluid
velocity and the progressive translation of the location of the negative wake downstream of the sphere as
the bounding walls are brought closer to the particle. Moreover, the sphere drag decreases by increasing the
particle–wall distance. We show that the confinement ratio (ratio of the gap between rigid confining walls
and the sphere radius) reaches a critical value beyond which the wall-effect on the particle and flow dynamics
becomes negligible. The key finding here is that the critical confinement ratio and the maximum variation of
the Stokes drag with confinement ratio are weakly dependent on the level of material elasticity and plasticity
for a certain range of material parameters. Finally, we propose an expression for the Stokes drag coefficient,
as a function of material plasticity and confinement ratio.
. Introduction

The understanding of suspensions of particles in materials which act
ither as liquids or as solids depending on the level of applied stress,
.e. the called ‘‘yield-stress’’ materials, has numerous applications in our
veryday life [1], in engineering processes, e.g., mineral slurries, food
ransport, drilling muds, microfluidics, fermentation processes; in bio-
ogical systems, e.g., biolocomotion, tissue engineering; and in natural
henomena, e.g., natural muds and debris flows. In all of the mentioned
pplications, the particle transport and the particle sedimentation, due
o any density mismatch between the object and the background yield-
tress fluid, occur in the presence of confining walls and not in an
nfinite medium. Hence, the natural question that arises is how the flow
ynamics and drag laws of a sphere settling in practical yield-stress
luids are affected by the presence of the confining walls.

It has been shown through several experimental measurements that
lasticity plays an important role in the flow dynamics of the yielded
egion or of the liquid phase of yield-stress fluids such as foams, col-
oidal pastes, emulsions, Carbopol solutions, Laponite suspensions, and
ranular suspensions [2–8]. These soft materials, which exhibit elastic,
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viscous, and plastic effects simultaneously, have been characterized as
elastoviscoplastic (EVP) [9,10]. The elasticity of these types of soft
materials manifests itself by breaking the fore-aft symmetry of the
velocity field around a particle and with the appearance of a negative
wake downstream of the settling spheres, as observed in experiments
in Carbopol gels and Laponite suspensions under creeping conditions,
see [3,5]. This result was puzzling as the observed phenomena con-
tradict the previous theoretical and computational results on creeping
flows of spheres in pure viscoplastic fluids, i.e., assuming no elastic
effects [11–13]. Fraggedakis and co-workers [14] explained, for the
first time, this contradiction by incorporating elastic effects in a pure
viscoplastic fluids using the EVP constitutive equations proposed by
Saramito [15] by means of axisymmetric finite-element 2-D compu-
tations of a sphere settling in a large tube. These authors found that
elasticity in the yield-stress fluid is enough to explain the experimental
measurements, with no need to consider the thixotropy of the material.
In addition, they demonstrated how the particle entrapment mechanism
and the particle settling rate are influenced by the presence of elas-
ticity, albeit in the absence of confining walls [14]. This behavior of
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EVP materials was later confirmed in the fully-resolved 3D numerical
simulations of a sphere settling in an otherwise quiescent yield-stress
fluid [16]. Simulations of the sedimentation of a single sphere in the
absence and presence of a simple cross-shear flow in a yield-stress
fluid at creeping flow condition [16] confirms that the elasticity is the
leading mechanism for the previously observed fore-aft asymmetry in
the velocity field around the sphere and the negative wake formation
downstream of the sphere [3,5]. Furthermore, it has been found that
the fore-aft asymmetry in the velocity is less pronounced and the
negative wake disappears when a linear cross-shear flow is imposed
orthogonal to the settling direction [16]. Therefore, it is imperative to
consider elastic effects inevitably present in laboratory yield-stress flu-
ids to quantitatively capture the flow characteristics and the dynamics
of a sphere settling in EVP materials in a numerical simulation.

In the case of particle sedimentation through a viscous Newtonian
fluid with lateral confinement, it is known that the particle terminal
velocity deviates from the theoretical predictions in an unbounded con-
figuration, i.e., Stokes law, following the well-known Faxen law [17].
Faxen [17] employed the method of images to obtain a series expansion
and compute the drag on a sphere for different ratios of the gap
between the walls and the diameter of the sphere. The analyses shows
that the particle velocity dramatically decreases as the confining walls
approach the particle [17]. Later, the steady-state settling velocities
of single solid objects have been experimentally correlated to the
gap/diameter ratio for various geometries, i.e., triangular and square
cylinders between parallel plates [18]. In a viscous Newtonian fluid,
velocity perturbations from a settling sphere extend to the Oseen
length [19] (which scales with the ratio of particle radius and the
particle Reynolds number) which may be larger than the gap between
the bounding walls. When this is the case, the sphere drag is different
than that of an infinite medium (unbounded fluid). Moreover, it has
been observed through experimental measurements and fully-resolved
particle simulations that the confining walls substantially affect the
dynamics of the suspension flows in the Newtonian fluids through the
structuring of the suspension into layers in the vicinity of the confining
walls. [20–23].

Wall-effects on the flow characteristics and the drag laws of a
sphere settling in ideal yield-stress fluids, i.e., in the absence of elastic
effects, have been studied numerically and experimentally. In general,
significant modifications of the shape and extent of the yield surface
boundaries, as well as of the sphere drag, have been reported [12,24,
25]. At fixed confinement ratio, defined as the ratio of the distance
between two walls and the particle radius, the liquid zone surrounding
the sphere shrinks with increasing plasticity, leaving thin viscous layers
around the particle [12,24]. For the case of a settling circular disk, it
has been shown that these thin viscous layers resemble a cross-eyed
owl [26]. Moreover, at fixed Bingham number, defined as the ratio of
the yield stress to viscous stresses, the yielded zone that surrounds the
particle extends to and interacts with the walls when decreasing the
confinement ratio [12,24].

The drag of a sphere settling in pure viscoplastic fluids is a function
of the Bingham number and the confinement ratio: the drag grows by
increasing the Bingham number at fixed confinement ratio [12,25,27,
28] and by decreasing the confinement ratio at fixed Bingham num-
bers [12,24]. Nonetheless, for sufficiently large Bingham numbers, the
drag coefficient becomes an independent function of the confinement
ratio. This is observed when the small liquid layers are surrounded by
a relatively large outer solid/plug region attached to the boundaries.
In this configuration, at this high level of material plasticity, moving
the confining walls closer to the sphere surface does not affect the drag
forces and the flow dynamics significantly [12].

The particle and flow dynamics are influenced by the presence of
the confining walls in the case of viscoelastic fluids. In particular, the
particle settles with smaller steady-state velocity in a confined medium
filled than in an infinite medium [29,30]. This is due to the devel-
2

opment of elastic shear layers on the bounding walls when these are
brought closer to the particle. Consequently, the elastic shear resistance
is enhanced upon the inception of the particle motion which acts in
the opposite direction of the sphere translation and hence resists the
movement induced by the particle sedimentation. Typically, the wall
effects and fluid elasticity are quantified by a drag correction factor
which is a function of the confinement ratio and the elasticity [31].
Indeed, this factor measures the relative change in the sphere drag
compared to the equivalent Stokes drag of the Newtonian fluid at
vanishing particle Reynolds number. It has been found that the drag
correction factor can be computed via a linear extrapolation of the drag
correction factor for the case of the unbounded flow configuration at
low levels of material elasticity [32]. For moderate elasticity levels, the
confinement effects play a minor role in the particle dynamics and thus
its drag can be well-approximated from the Newtonian counterpart at
creeping flow conditions. However, at high levels of material elasticity,
the magnitude of the drag enhancement is a strong function of both
confinement ratio and the fluid elasticity [33]. The interested reader
may consult [32] for further details.

To our knowledge, there is no prior computational or theoretical
work in the literature on the complex interaction between bounding
walls, flow and particle dynamics for a sphere settling in a practical
yield-stress fluid that exhibits simultaneously elastic, plastic, and vis-
cous behaviors. Therefore, the objective of the present work is to fill
this gap by investigating the flow dynamics and the drag laws of a
sphere settling in an EVP material in the presence of rigid confining
walls. To this end, we solve the mobility problem numerically, i.e., the
article is free to move due to the gravity, while the confining walls
nd the surrounding medium remain stationary.

The outline of our paper is as follows. In Section 2, we define the
roblem and state the mechanical and mathematical modeling, justify
he computational matrix, and introduce the boundary conditions and
he numerical method. The results are presented in Section 3 and the
ain conclusions summarized in Section 4.

. Problem definition

We consider a single spherical particle with density 𝜌𝑝 and ra-
ius 𝑅 settling in an incompressible fluid that exhibits simultaneously
lastic, viscous, and plastic behavior, i.e., an elastoviscoplastic (EVP)
luid [9,10,15], at different confinement ratios 𝜁 . This ratio is defined
s the ratio of the distance between two bounding walls 𝐿𝑧, with 𝑧

the wall-normal direction, and the particle radius 𝑅, i.e., 𝜁 = 𝐿𝑧∕𝑅.
The schematic representation of the problem along with the imposed
boundary conditions are shown in Fig. 1. The computational domain
is a rectangular box with length 12𝑅 in the spanwise 𝑥-direction and
24𝑅 in the streamwise (settling) 𝑦-direction, i.e. parallel to gravity,
but with different lengths in the wall-normal 𝑧-direction (Fig. 1). To
come to this choice, we have considered computational domains of size
𝐿𝑥 = 8𝑅, 12𝑅, and 16𝑅 in the spanwise 𝑥 direction and 𝐿𝑦 = 20𝑅,
24𝑅, and 28𝑅 in the settling 𝑦 direction and determined 𝐿𝑥 = 12𝑅 and
𝐿𝑦 = 24𝑅 as the minimum size of the computational domain where the
particle does not interact with the wake of its periodic images while
maintaining a reasonable computational efficiency. To study the wall
effects on particle and fluid dynamics, we consider five confinement
ratios, i.e., 𝜁 = 4, 8, 12, 16, and 24. For all the confinements, the
computational domain size in the spanwise 𝑥 and settling 𝑦 directions
remain unchanged, with imposed periodicity (see below). The particle
is initially placed at the center of the box, translates from the resting
position (zero initial velocity) and falls in an otherwise quiescent EVP
material, and eventually reaches a constant (terminal) velocity 𝑈𝑝.

2.1. Mechanical model of the EVP material

The EVP material that we model here is a class of soft materi-
als [9,10,15] that behaves similarly to a Hookean solid with elastic

modulus 𝐺 under small stresses [34], but flows like a viscoelastic
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Fig. 1. Schematic representation of a sphere settling in the EVP material inside rectangular boxes with different confinement ratios 𝜁 : (a) 𝜁 = 24, (b) 𝜁 = 16, (c) 𝜁 = 12, (d) 𝜁 = 8,
(e) 𝜁 = 4. The boundary conditions are shown in panel (a) and remain the same for all cases. The rigid bounding walls are indicated as transparent gray planes.
fluid with relaxation time 𝜆, above a critical stress, which is known
as material yield-stress 𝜏𝑦. We have resorted to the model proposed
by Saramito [15] to simulate an EVP material which has been con-
sidered and validated in previous numerical simulations and shown to
accurately follow the behavior of laboratory yield-stress fluids [10,14,
16].

This model is composed of a friction element 𝜏𝑦 (material yield-
stress), a spring element 𝐺 (solid elastic modulus), two dashpots for the
viscous stress of the solvent with viscosity 𝜂𝑠 and of the EVP material
with viscosity 𝜂𝑝. In brief, prior to yielding, the friction element remains
rigid, and therefore the whole model predicts a Kelvin–Voigt viscoelas-
tic solid with spring element 𝐺 and dashpot with solvent viscosity
𝜂𝑠. Once the level of elastic strain energy exceeds the threshold value
determined by the von Mises yielding criterion, the friction element
breaks allowing deformation of all the other elements. After yielding,
the material behaves like a viscoelastic fluid and the deformation is
unbounded in time [15]. Hence, the EVP material is a combination
of a viscoelastic solid (before yielding) and a viscoelastic fluid (after
yielding). The interested reader may consult the work by Saramito [15]
for a detailed physical interpretation of the mechanical model of EVP
materials.

2.2. Mathematical formulation and boundary conditions

In this problem, the characteristic length scale is the particle radius
𝑅, the characteristic velocity scale is found by balancing viscous to
buoyancy forces 𝑈0 = 𝛥𝜌𝑔𝑅2∕𝜂0, where 𝛥𝜌 is the density difference
between the bead and the fluid, 𝛥𝜌 = 𝜌𝑝 − 𝜌𝑓 (𝜌𝑓 is the fluid density)
and 𝜂0 is the total material viscosity at zero shear-rate, computed as
𝜂0 = 𝜂𝑠 + 𝜂𝑝 (𝜂𝑝 is the polymer or plastic viscosity). The characteristic
time scale is thus 𝑡0 = 𝑅∕𝑈0 = 𝜂0∕𝛥𝜌𝑔𝑅. The stress and pressure
fields are scaled with 𝜏0 = 𝛥𝜌𝑔𝑅. The characteristic shear rate, which
is the shear rate induced by the particle motion in the fluid is �̇�0 =
1∕𝑡0 = 𝛥𝜌𝑔𝑅∕𝜂0. The plastic viscosity 𝜂𝑝 of the material is found from
𝜂𝑝 = 𝜅�̇�𝑛−10 , where 𝜅 > 0 is the consistency parameter, and 𝑛 > 0 is the
power law index [15] of the yield-stress fluid.

The dimensionless numbers of this problem are the particle
Reynolds number Rep = 𝜌𝑓 �̇�0𝑅2

𝜂0
, which is the ratio of the inertial to

viscous forces, the Archimedes number Ar = 𝛥𝜌2𝑔𝑅3

𝜂20
, that is the ratio of

gravitational forces to viscous forces, the Bingham number Bn = 𝜏𝑦
𝛥𝜌𝑔𝑅 ,

which is the ratio of the yield stress to the characteristic viscous stress
𝜏0, the Deborah number De = 𝜆𝛥𝜌𝑔𝑅

𝜂0
, which is the ratio of the material

relaxation time 𝜆 to the characteristic time scale induced by the motion
of the particle 𝑡0 and is a measure of the material elasticity, the density
ratio 𝜌𝑜 = 𝜌𝑝

𝜌𝑓
, which is the ratio of particle to fluid density, the

retardation parameter 𝛼 = 𝜂𝑝
𝜂0

, which denotes the ratio of the solvent
to the total viscosity, the confinement ratio 𝜁 = 𝐿𝑧∕𝑅, which is the
ratio of wall-to-wall distance and the sphere radius, and the power law
index of the yield-stress fluid 𝑛.
3

The flow dynamics is governed by the continuity and momentum
equations, which read in the dimensionless form for an incompressible
material

∇ ⋅ 𝒖 = 0, (1)

Rep
( 𝜕𝒖
𝜕𝑡

+ 𝒖 ⋅ ∇𝒖
)

= ∇ ⋅
(

−
(

𝑝 + 1
3
tr
(

𝝉 𝑡𝑜𝑡
)

)

𝑰 + 𝝉𝑠 + 𝝉𝑒𝑣𝑝
)

+ 𝒇 , (2)

where 𝒖 is the fluid velocity vector, 𝑝 is the generalized (nominal)
pressure, 𝝉 𝑡𝑜𝑡 is the total material stress, which consists of a solvent
part 𝝉𝑠 and an extra EVP part 𝝉𝑒𝑣𝑝 as 𝝉 𝑡𝑜𝑡 = 𝝉𝑠 + 𝝉𝑒𝑣𝑝, 𝑰 is the identity
tensor, and 𝒇 is an external body or immersed boundary (IB) force used
to model the existence of the particle. The solvent stress tensor 𝝉𝑠 =
2 (1 − 𝛼)𝑫 (𝒖), where 𝑫 (𝒖) is the rate of deformation tensor defined as
𝑫 (𝒖) = 1

2

(

∇𝒖 + ∇𝒖𝑇
)

. Note that, the extra stress tensor is not traceless
in materials that exhibit elasticity, therefore the trace of the total
stress should be considered in the momentum equation, i.e., Eq. (2).
Moreover, the nominal pressure 𝑝 is identical to the pressure generated
by the motion of the particle inside the box since by definition, the
hydrostatic contribution cancels the gravity.

Saramito [15] proposed the following constitutive equation for the
EVP extra stress tensor 𝝉𝑒𝑣𝑝

De
∇
𝝉𝑒𝑣𝑝 + 𝜅𝑛

(

𝝉𝑒𝑣𝑝
)

𝝉𝑒𝑣𝑝 − 2𝛼𝑫(𝒖) = 0, (3)

where
∇
𝝉𝑒𝑣𝑝 is the upper convected derivative of the EVP stress field and

is defined as:
∇
𝝉𝑒𝑣𝑝 =

𝜕𝝉𝑒𝑣𝑝
𝜕𝑡

+ 𝐮 ⋅ ∇𝝉𝑒𝑣𝑝 − (∇𝐮)𝑇 ⋅ 𝝉𝑒𝑣𝑝 − 𝝉𝑒𝑣𝑝 ⋅ ∇𝐮. (4)

In Eq. (3), 𝜅𝑛
(

𝝉𝑒𝑣𝑝
)

is the plasticity criteria function, defined by the
following relation [15]:

𝜅𝑛
(

𝝉𝑒𝑣𝑝
)

= max

(

0,
|𝜏𝑑 | − Bn

(2𝛼)1−𝑛 |𝜏𝑑 |
𝑛

)
1
𝑛

, (5)

where |𝜏𝑑 | denotes the second invariant of the deviatoric part of the
extra EVP stress tensor,

𝝉𝑑 = 𝝉𝑒𝑣𝑝 −
1
3
tr(𝝉𝑒𝑣𝑝)𝑰 . (6)

As regards the settling particle, its translational and rotational
velocities are computed by solving the Newton–Euler equations in the
body-fixed reference frame:

𝜌𝑝𝑉𝑝
𝑑𝑼 𝑝

𝑑𝑡
= ∮𝜕𝛺

(

𝝉 𝑡𝑜𝑡 ⋅ 𝒏
)

𝑑𝐴 + 𝛥𝜌𝑉𝑝𝒈, (7)

I𝑝
𝑑𝝎𝑝

𝑑𝑡
= ∮𝜕𝛺

𝒓 ×
(

𝝉 𝑡𝑜𝑡 ⋅ 𝒏
)

𝑑𝐴. (8)

In Eq. (7), 𝑼 𝑝 is the particle velocity vector, 𝑉𝑝 is the volume of the
sphere, 𝒏 is the unit normal vector at the particle surface 𝜕𝛺, and 𝒈
is the gravitational acceleration vector. In Eq. (8), I𝑝 = 2

5𝜌𝑝𝑉𝑝𝑅
2 is the

moment of inertia of the particle, 𝝎𝑝 is the particle rotational velocity
vector, and 𝒓 represents the position vector relative to the particle
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centroid. The particle translational and angular velocity vectors 𝑼 𝑝 and
𝑝 are computed in an inertial reference frame by adopting the rotation
atrix formulation [35].

As shown in [14], in the context of EVP materials, it is imperative
o consider the transient form of the governing equations, i.e., the

particle sedimenting from its inception until it reaches the steady-
state. Consequently, all of our simulations are performed from zero
initial conditions. In other words, the particle starts settling in an
otherwise quiescent yield-stress fluid from zero translational and ro-
tational velocities. A periodic boundary condition is applied for the
velocity, pressure, and extra stress tensor in the spanwise 𝑥 and set-
tling 𝑦 directions. In the wall-normal 𝑧-direction, we impose a no-slip
boundary condition and homogeneous Neumann condition for pres-
sure at the two bounding walls (𝜕𝑝∕𝜕𝒏 = 0). A no flux condition is
imposed normal to the confinement walls for the extra stress tensor.
The no-slip/no-penetration boundary condition is satisfied at the sphere
surface implicitly by using the multidirect forcing immersed boundary
scheme [36]. Therefore, we simulate a rough particle, meaning that
the slip is considered negligible on its rigid surface. The boundary
conditions are reported in Fig. 1.

2.3. Computational matrix and its justification

We present a series of well-controlled high-fidelity numerical simu-
lations for the problem of a single spherical particle settling through an
EVP fluid at finite and small inertia. Our simulations are conducted at
Rep = 1 and small Archimedes number, i.e., Ar = 0.5 to approximate the
creeping flow conditions, while maintaining reasonable computational
times. The density ratio 𝜌𝑜 is held constant and equal to 1.5 since
the density ratio, the particle Reynolds number, and the Archimedes
number are related via 𝜌𝑜 = 1 + Ar

Rep
. Note that the maximum value of

the particle Reynolds number based on the sphere terminal velocity,
ReUp

= 𝜌𝑓𝑈𝑝𝑅
𝜂0

= 0.2052, which occurs at Bn = 0, De = 1, and 𝜁 = 24
see Fig. 9 and Eq. (10), which show the relation between the Stokes
rag coefficient Cs and the particle terminal velocity 𝑈𝑝). Therefore,
he effect of inertia can be considered negligible. Moreover, we have
reviously shown that the simulation outputs at vanishing particle
eynolds number, i.e., Rep = 0 and at small inertia, i.e., Rep = 1 agree
ell with each other [16]. In this study, we model the EVP material as
yield-stress fluid with constant plastic viscosity 𝜂𝑝. Hence, the power-

aw index is equal to one, i.e., 𝑛 = 1, and the consistency parameter is a
onstant value and equal to seven, i.e., 𝜅 = 7. Therefore, the retardation
arameter is large 𝛼 = 0.9, which is in line with the value found for
aboratory yield-stress fluids, where generally the solvent viscosity is
egligible when compared to the plastic viscosity, i.e., 𝜂𝑝 ≫ 𝜂𝑠 [14].

By performing axisymmetric transient computations in a cylindrical
ube and imposing boundary condition on the tube centerline, it has
een shown that the critical Bingham number, defined as the critical
umber above which the particle entrapment inside the yield-stress
luid occurs, or equivalently gravity number Yg = 1.5Bn, is a function of
he material elasticity, i.e., De number. In creeping flow condition and
= 24, the critical gravity number Yc

g is related to De by the following
quation [14]:
1
Yc
g
= 1.2 + 1.0

0.176 + 0.135De
. (9)

n practical applications 0.5 ≤ De ≤ 2 [14]. Since our focus is
ainly on the wall-effects on the particle and fluid dynamics, and not

n the particle stoppage criterion, we study configurations below the
ritical condition, i.e., Yg < Yc

g. Note that the critical gravity number
c
g presented in Eq. (9) is valid at 𝜁 = 24, and to our knowledge,

here is no prior information in the literature on how this critical
ondition modifies at other confinement ratios for the EVP materials.
onetheless, previous studies on purely viscoplastic fluids past a sphere
ontained in a cylindrical tube [12,24,25] or past a 2-D cylinder in

c

4

duct [37,38] lead us to expect that the critical gravity number Yg c
beyond which the particle would not settle inside the EVP material
is a decreasing function of the confinement ratio 𝜁 at fixed elasticity.
Note also that, at constant confinement ratio 𝜁 and material plasticity,
he critical gravity number Yc

g is an increasing function of the material
elasticity (see Eq. (9)). In other words, at each 𝜁 and Bn, the particle
settles more easily and with faster rate at higher elasticity, i.e., higher
e number [14,16].

The dimensionless parameters employed for the simulations pre-
sented here are reported in Table 1. We present a series of fully-resolved
simulations of a sphere settling in the EVP fluids at five different
confinement ratios, 𝜁 = 4, 8, 12, 16, 24, at three Bingham numbers, Bn =
0.0, 0.0209, 0.0417, and at three Deborah numbers, De = 0.1, 0.5, 1.0.

herefore, we have performed a total of 45 simulations to investigate
he wall effects on fluid and particle dynamics at different levels
f material plasticity and elasticity. Performing the simulations at a
mall Deborah number (De = 0.1) diminishes the problem complexity
nd hence enables us to interpret our predictions more easily as the
lasticity effect can be neglected and the material assumed to behave
ike a pure viscoplastic fluid. The last three columns in Table 1 report
he critical Bingham number Bnc = 2

3 Y
c
g at each level of material

elasticity (derived from Eq. (9)): this is the value beyond which the
particle would stop in a yield-stress fluid. It is noteworthy to mention
that the critical condition presented in Eq. (9) is valid for the cylindrical
tube configuration [14], and may be different for a rectangular box
(our computational domain). Nonetheless, due to the lack of sufficient
information in the literature, we presume that the same condition
applies here and thus designed our computational matrix accordingly,
with some safety margins. Indeed, our simulation results confirm that
for all the cases that are considered in this study, the sphere does not
entrap inside the practical yield-stress fluid.

2.4. Numerical algorithm and code validation

The comprehensive details of the 3-D numerical algorithm, which is
developed to handle transient, three-dimensional simulations of inertial
EVP fluids with a large number of particles are explained in [39]. In
brief, the governing equations of the EVP fluid, i.e., Eqs. (1)–(3) are
integrated in time with a third-order Runge–Kutta (RK3) scheme for
all terms except the pressure gradient for which the Crank–Nicolson
scheme is used instead. RK3 is third-order accurate, low storage, and
improves the numerical stability of the algorithm. These equations are
solved on Cartesian, staggered, continuous, and uniform grids with
the fractional-step method [40] in which all spatial derivatives are
approximated with the second-order central-differencing scheme except
for the advection terms in Eq. (3) where the fifth-order weighted
essentially non-oscillatory (WENO) scheme is adopted [41]. Having the
spatially continuous grid in the interior of the flow domain enables
the use of a fast and highly scalable fast Poisson solver to enforce
the condition of zero divergence for the velocity field. The coupling
of the fluid and particle is performed with the immersed boundary
method (IBM) proposed by Breugem [36]. The IBM allows solving the
fluid governing equations on a Cartesian grid despite the presence of
particles through adding an extra force 𝒇 to the right-hand side of
he momentum equations (see Eq. (2)) and creating virtual boundaries
nside the computational domain to mimic boundary conditions. This
xtra force is added in the vicinity of the solid particle to indirectly
mpose the no-slip/no-penetration (ns/np) boundary condition on the
phere surface [36]. The solid particle governing equations, i.e., Eqs. (7)
nd (8), are advanced in time with the same RK3 method with the
elative position vector 𝒓 independent of time.

We have adopted a grid resolution of 32 Eulerian grid points for
article diameter. Note that we have extensively tested the mesh con-
ergence in our previous work (see [42]). The computational algorithm
s coded in Fortran with the message-passing interface (MPI) extension
or parallel execution on multi-processor machines. The number of

ores and the central processing unit (CPU) hours required to achieve



Journal of Non-Newtonian Fluid Mechanics 303 (2022) 104787M. Sarabian et al.

s
c

a
a
t
c
d

w
p

3

v

Table 1
Computational matrix adopted in the present study.
𝜁 Rep Ar 𝛼 𝑛 𝜅 De Bn Bnc at De = 0.1 Bnc at De = 0.5 Bnc at De = 1.0

24 1.0 0.5 0.9 1.0 7.0 0.1, 0.5, 1.0 0.0, 0.0209, 0.0417 0.103 0.125 0.151
16 1.0 0.5 0.9 1.0 7.0 0.1, 0.5, 1.0 0.0, 0.0209, 0.0417 ≤0.103 ≤0.125 ≤0.151
12 1.0 0.5 0.9 1.0 7.0 0.1, 0.5, 1.0 0.0, 0.0209, 0.0417 ≤0.103 ≤0.125 ≤0.151
8 1.0 0.5 0.9 1.0 7.0 0.1, 0.5, 1.0 0.0, 0.0209, 0.0417 ≤0.103 ≤0.125 ≤0.151
4 1.0 0.5 0.9 1.0 7.0 0.1, 0.5, 1.0 0.0, 0.0209, 0.0417 ≤0.103 ≤0.125 ≤0.151
Table 2
Summary of the computational resources required to complete the simulations. Compute
system details: Processors: 2x AMD EPYC 7642 48-core (Rome), Processor Speed:
2.4 GHz.

Confinement ratio 𝜁 Number of cores CPU hours

24 24 207 360
16 16 138 240
12 24 155 520
8 16 34 560
4 16 17 280

convergence and the steady-state solution at each confinement ratio 𝜁
are reported in Table 2.

The present three-dimensional numerical solver has been utilized
and extensively validated in the past for particulate flows [43–45],
non-Newtonian flows [16,42,46–48] and multiphase problems in non-
Newtonian fluids [49]. The code has also been recently validated
for suspensions of rigid and soft particles and droplets in EVP and
viscoelastic fluids [39].

3. Results and discussion

In this section, we will first show how the confinement and its in-
teraction with material elasticity and plasticity affect the flow features,
together with the extent and shape of the yielded/unyielded zones
around the settling sphere. Then, we will demonstrate the wall effect on
the particle dynamics and how the particle terminal velocity changes
in the presence of the confining walls at different levels of material
plasticity and elasticity. Note that throughout this section, the particle
diameter is denoted by 𝐷 = 2𝑅.

The criterion for the convergence of our simulations is chosen
imilar to the criterion presented in [50]: a particular simulation is
onverged if the L∞ norm of the normal and shear stresses in the 𝑦− 𝑧

(settling) plane, i.e., the 𝜏𝑦𝑦 and 𝜏𝑦𝑧 components of the total stress tensor
𝝉 𝑡𝑜𝑡, change less than 1%. The computational time required to satisfy
this condition is different for each simulation case. Specifically, as the
material elasticity is enhanced, or in other words, as the relaxation
time of the macromolecular chains increases, the fulfillment of the
convergence criterion is delayed and the simulations are longer than
the lower elasticity simulation cases. Consequently, each simulation is
terminated at a different time depending on the L∞ norm of normal
nd shear stresses. Note also that the difference in the particle position
t the steady-state shown in this section is due to the difference in
he exact time that the corresponding simulation is deemed to have
onverged. The vertical distance traveled in the settling direction 𝛥�̂�
uring the dimensionless time 𝑡 = 𝑡∕𝑡0 required by the sphere to reach

the steady state for the different combinations of the dimensionless
parameters (all 45 simulation cases) are reported in Tables 3–7. In these
tables, 𝛥�̂� is defined as: 𝛥�̂� =

(

𝑦𝑠 − 𝑦0
)

∕𝑅, where 𝑦𝑠 is the position at
hich the terminal settling velocity is reached and 𝑦0 the particle initial
osition. i.e., center of the computational domain.

.1. Flow features

First, we will show the variation of the fluid velocity field in the
icinity of the sphere by the confinement ratio 𝜁 and material elasticity,
5

Table 3
Dimensionless computational time 𝑡 and the vertical displacement in the settling
direction 𝛥�̂� required by the particle to reach the steady-state configuration at
confinement 𝜁 = 4.
Bn ↓ De → 0.1 0.5 1 0.1 0.5 1

𝑡 𝑡 𝑡 𝛥�̂� 𝛥�̂� 𝛥�̂�

0 48.3161 53.6872 56.3728 6.0610 6.9404 7.4688
0.0209 59.0583 75.1716 80.5427 4.2996 5.7210 6.4030
0.0417 80.4898 98.4390 112.7692 3.2202 3.3387 5.2406

Table 4
Dimensionless computational time 𝑡 and the vertical displacement in the settling
direction 𝛥�̂� required by the particle to reach the steady-state configuration at 𝜁 = 8.
Bn ↓ De → 0.1 0.5 1 0.1 0.5 1

𝑡 𝑡 𝑡 𝛥�̂� 𝛥�̂� 𝛥�̂�

0 37.5739 40.2595 42.9450 6.0934 6.7368 7.3714
0.0209 53.6872 91.2849 101.1486 4.7208 8.4496 9.8616
0.0417 59.0473 79.2609 91.2849 2.7920 4.1400 5.3594

Table 5
Dimensionless computational time 𝑡 and the vertical displacement in the settling
direction 𝛥�̂� required by the particle to reach the steady-state configuration at 𝜁 = 12.
Bn ↓ De → 0.1 0.5 1 0.1 0.5 1

𝑡 𝑡 𝑡 𝛥�̂� 𝛥�̂� 𝛥�̂�

0 32.2028 48.3161 51.0017 5.5895 8.7177 9.4185
0.0209 64.4294 69.8005 71.1433 5.8081 6.6544 7.2294
0.0417 118.1403 121.3630 123.5114 5.6223 7.3951 7.5230

Table 6
Dimensionless computational time 𝑡 and the vertical displacement in the settling
direction 𝛥�̂� required by the particle to reach the steady-state configuration at 𝜁 = 16.
Bn ↓ De → 0.1 0.5 1 0.1 0.5 1

𝑡 𝑡 𝑡 𝛥�̂� 𝛥�̂� 𝛥�̂�

0 33.5456 37.5739 43.4821 6.4079 7.0147 8.3362
0.0209 59.0583 61.9422 64.4294 5.3386 5.9871 6.6624
0.0417 67.1149 91.4310 101.4338 3.2108 4.9339 6.3303

Table 7
Dimensionless computational time 𝑡 and the vertical displacement in the settling
direction 𝛥�̂� required by the particle to reach the steady-state configuration at 𝜁 = 24.
Bn ↓ De → 0.1 0.5 1 0.1 0.5 1

𝑡 𝑡 𝑡 𝛥�̂� 𝛥�̂� 𝛥�̂�

0 28.2827 34.4681 45.3497 5.3195 6.1829 7.7296
0.0209 69.8005 70.8475 73.0232 6.3297 6.3993 7.6343
0.0417 54.2243 86.1729 89.6244 2.6095 4.6922 5.6876

i.e., De number, when the plasticity, i.e., the Bn number, is held con-
stant and equal to Bn = 0.0417. In other words, the effect of confining
rigid walls and material elasticity at constant plasticity on the steady-
state velocity field distribution around the sphere is shown in Fig. 2.
The fluid velocity field around the sphere for various confinement ratios
𝜁 at De = 0.1 and at De = 1 are displayed in the black and green
box in Fig. 2. Note that due to the flow symmetry with respect to the
𝑥–𝑦 plane, we have only shown the velocity distributions in the half
central 𝑦−𝑧 plane. In this figure, the velocity field is normalized by the
characteristic velocity scale 𝑈0 found by balancing viscous to buoyancy
forces.
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Fig. 2. Normalized velocity magnitude around a sphere settling through an EVP fluid at Bn = 0.0417 in the 𝑦–𝑧 centreplane (𝑥 = 6𝑅) and at various confinement ratios 𝜁 and De
numbers; (a) 𝜁 = 4, De = 0.1, (b) 𝜁 = 8, De = 0.1, (c) 𝜁 = 12, De = 0.1, (d) 𝜁 = 16, De = 0.1, (e) 𝜁 = 24, De = 0.1, (f) 𝜁 = 4, De = 1, (g) 𝜁 = 8, De = 1, (h) 𝜁 = 12, De = 1, (j) 𝜁 = 16,
De = 1, and (k) 𝜁 = 24, De = 1.
Fig. 3. Velocity streamlines in the 𝑦–𝑧 centreplane (𝑥 = 6𝑅) for the flow around a
sphere settling through an EVP fluid at Bn = 0.0417 and De = 1 and at (a) 𝜁 = 4, (b)
𝜁 = 24. The velocity streamlines are the projection of the 3D streamlines on the central
𝑦–𝑧 plane.

First we note that, for all confinement ratios and at a high degree
of material elasticity, i.e., De = 1, the well-known fore–aft asymmetry
of the velocity field around the north and south poles of the sphere
is lost with the formation of a negative wake, as previously observed
in experiments [3,5,8,28]. On the other hand, the loss of the fore-aft
symmetry is less pronounced at low levels of elasticity, i.e., De = 0.1 at
all confinement ratios as the elasticity effect can be neglected and the
EVP material can be well approximated by an ideal yield-stress fluid
or pure viscoplastic fluid. The physical reason of such a behavior has
been revealed by Fraggedakis et al. [14], who showed that the material
elasticity is the primary cause of fore-aft asymmetry of the velocity field
and of the negative wake formation in laboratory yield-stress fluids and
these are not related to the aging of yield stress materials or thixotropy.

Changing the confinement ratio 𝜁 affects the fluid velocity distri-
bution around the particle once it settles in an EVP material at fixed
De and Bn numbers. As depicted in Fig. 3 for the smallest and largest
confinement ratios studied in this work, the velocity contour lines
are visibly more packed when the walls are closer to the sphere. In
particular, as the confining walls are brought closer to the sphere, the
distribution of the velocity streamlines upstream and downstream of
the sphere and in the equatorial plane on either side of the sphere is
significantly affected.

Note that for clarity, only the streamlines that surround the particle
are shown in Fig. 3(b) for the case of large confinement ratio, i.e.,
𝜁 = 24.
6

Fig. 4. Velocity streamlines in the 𝑦–𝑧 centreplane (𝑥 = 6𝑅) for a sphere settling
through an EVP fluid at Bn = 0.0417 and De = 1 and at (a) 𝜁 = 4, (b) 𝜁 = 8, (c)
𝜁 = 12, (d) 𝜁 = 16, (e) 𝜁 = 24.

There are several important observations which can be made in
reference to Fig. 3. First, we observe that the recirculation zones
can be seen in the equatorial plane and on either side of the sphere
for both confinements. This flow behavior, which is a consequence
of assuming a rough particle, i.e., a particle with no-slip boundary
condition, is in line with previous experimental measurements [8] and
computations adopting either an extensive mesh refinement near the
particle surface [14] or Cartesian grids with the immersed boundary
approach [16]. Second, at a smaller confinement ratio, the recirculation
zones interact with and extend to the channel walls, which leads the
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Fig. 5. The evolution of the relative position of the negative wake, �̂�𝑛𝑤, downstream of the particle in the streamwise direction 𝑦 versus the confinement ratio 𝜁 at (a) constant
De = 1 and two different Bn numbers, and (b) constant Bn = 0.0417 and two different De numbers.
flow streamlines upstream and downstream of the sphere to be more
packed and closer to the sphere surface. On the other hand, as the
walls are brought further away from the particle, the recirculation
zones do not extend to the channel walls and the flow streamlines
remain unaffected by the motion of the particle close to the channel
walls. This effect is also seen in Fig. 4 where we display results for
all the confinement ratios studied here. Here, the material elasticity,
and plasticity are held fixed as in Fig. 3, so that the variations of
flow streamlines can be entirely attributed to the rigid wall effects. We
also observe that new recirculation zones are created once the particle
sediments in a less confined configuration as depicted in Fig. 4, where
we show the existence of two and six recirculation regions for 𝜁 = 4
and 𝜁 = 24, respectively.

The effect of changing the confinement ratio 𝜁 on the position of the
negative wake downstream of the sphere at constant elasticity (De = 1)
and two levels of plasticity and at fixed plasticity (Bn = 0.0417) and
two degrees of material elasticity is illustrated in Fig. 5a and b. In this
figure, the negative wake position is measured relative to the particle
center at steady-state, i.e., �̂�𝑛𝑤 = 𝑦𝑐−𝑦𝑛𝑤, where 𝑦𝑐 is the particle center
location and 𝑦𝑛𝑤 is the negative wake location (see sketch in Fig. 5).
By definition, the negative wake position is where the fluid velocity
is opposite the particle velocity, downstream of the north pole of the
sphere [14]. In other words, the negative wake position is defined as the
specific point in the fluid medium where the velocity is approximately
zero, before the direction of the fluid velocity is reversed and becomes
opposite to the particle velocity. This position is also called ‘‘flow
stagnation point’’ (see Fig. 6b).

The interaction between shear and normal stresses downstream of
the sphere is shown to be the primary cause for the negative wake
formation, with the normal stress relaxing faster than the shear stress
away from the particle surface (see [14,16], for more details in the
case of limited confinement). According to Fig. 5a and b, at lower
confinement ratios 𝜁 , when the confining walls are brought closer to
the particle, the negative wake moves closer to the sphere north pole.
This means that the relaxation of the shear stress downstream of the
particle is delayed at lower confinements 𝜁 (see also Fig. 10). This
explains why the sphere drag increases or the particle settling rate
decreases when bringing the channel walls closer to the sphere surface,
as further discussed below in Section 3.2 when considering the effect
of the boundaries on the particle dynamics. According to Fig. 5a and b,
translating the negative wake formation towards the north pole of the
sphere by decreasing the confinement ratio 𝜁 occurs at all combinations
of material plasticity and elasticity studied here. Moreover, the relative
position of the negative wake moves closer to the sphere north pole at
elevated Bn number and at fixed confinement ratio 𝜁 and De number
(Fig. 5a). This is due to the fact that the unyielded region expands
and approaches the surface of the sphere at higher Bn numbers (see
Fig. 7). On the other hand, the negative wake moves further away from
the sphere’s north pole at higher levels of material elasticity and fixed
plasticity and confinement ratio as shown in Fig. 5b. This behavior
can be understood since the elasticity makes the sphere translate faster
in the EVP materials [14,16], and this is the result of increasing the
volume of the yielded region in the medium at higher elasticity.
7

Next, we study how the formation of the negative wake down-
stream of the sphere is affected by changing the material elasticity,
i.e., De number, when the confinement ratio 𝜁 and Bn number are held
constant, see Fig. 6. As previously shown by Fraggedakis et al. [14]
and later by Sarabian et al. [16], the existence of finite elasticity in
the practical yield-stress fluids favors the negative wake formation
downstream of the sphere, associated with the flow stagnation point.
Therefore, at small De numbers, when elasticity becomes negligible and
the EVP material behaves like a pure viscoplastic fluid, the negative
wake disappears. The absence and presence of a negative wake at
De = 0.1 and De = 1 are illustrated in Fig. 6(a) and (b). Since the Bn
number and confinement ratio 𝜁 are kept constant, then the negative
wake formation at higher elasticity, i.e., De = 1, in Fig. 6(b) is solely
due to the elasticity effect. The disappearance of the negative wake is
associated to the recovering of the fore-aft symmetry of the velocity
field around the sphere at lower elasticity as shown in Fig. 1(a) and
(b).

Let us now focus on the evolution of the yield surface that surrounds
the settling particle when changing the confinement ratio 𝜁 and the Bn
number when the De number is held constant. The extent and shape of
the yielded/unyielded zones around the settling sphere are depicted in
Fig. 7 where the red and blue colors in the figure indicate the regions
of the EVP material that behaves as a liquid and solid, respectively.
Note that since we perform 3-D numerical simulations, the yielded
boundaries are 3-D surfaces, and Fig. 7 shows the projection of the
unyielded surfaces onto the 𝑦−𝑧 central plane at different confinements
and Bn numbers. Furthermore, as mentioned previously, the difference
in the sphere positions at different confinements and material plasticity
is due to the difference in the time when the flow reaches the final
steady state.

We observe the existence of two unyielded zones regardless of the
confinement ratio and the degree of material plasticity. The first one
is the unyielded envelope that surrounds the fluid zone and the second
one is the solid island or solid ring in 3-D located in the liquid zone at
the equator and on either side of the sphere. Contrary to the case of 2-D
cylinders, these unyielded rings are not rotating solid islands since these
are the zones in which the second invariant of the deformation rate
tensor is zero. Similarly to pure viscoplastic fluids [11,12,24,26,51], the
outer unyielded envelope grows progressively with increasing plastic
effects at fixed confinement ratio 𝜁 and material elasticity. However,
the particle arrest or stoppage mechanism in the EVP fluid is different
from the pure viscoplastic fluids. Indeed, in the EVP material, the
yield surface approaches the surface of the particle from the equator
plane causing the particle to stop settling [14,16]. Conversely, in
the purely Bingham or Herschel–Bulkley fluids, the fluidization sur-
face approaches the surface of the particle from its north and south
poles [14].

For 𝜁 = 4 and 8, the resulting outer yield envelope extends to the
channel walls for both Bn numbers under consideration, and hence
the particle dynamics is significantly affected by the presence of the
confining walls. A similar behavior has been previously reported for the
case of a particle settling in a tube filled with the Bingham plastic [12]
and Herschel–Bulkley fluids [24]. The yield surface, however, does not
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Fig. 6. Velocity vectors around the sphere settling in an EVP material in the central 𝑦 − 𝑧 plane at Bn = 0.0417 and 𝜁 = 24 at (a) De = 0.1 and (b) De = 1. The dashed and solid
red boxes magnify the flow stagnation points and recirculation zones, respectively.
Fig. 7. Evolution of the yield surface for flow of an EVP material around a rough particle for various confinement ratios 𝜁 and Bn numbers and at constant elasticity De = 1 in
the central 𝑦 − 𝑧 plane. Red and blue color represent the yielded and unyielded regions. (a) Bn = 0.0209, and (b) Bn = 0.0417. In both panels (a) and (b) the figures from left to
right indicate the yielded boundaries at 𝜁 = 4, 𝜁 = 8, 𝜁 = 12, 𝜁 = 16, and 𝜁 = 24.
intersect the channel walls for 𝜁 ≥ 16 and 𝜁 ≥ 12 at Bn = 0.0209
and Bn = 0.0417 respectively. For the case 𝜁 = 16, an interesting
phenomenon occurs near the channel walls for the smallest Bn = 0.0209:
the material is sheared next to the wall (yielded) and then again around
the particle and solid islands, having a plug zone in between, where
the shear rate is zero. For both Bn numbers, the outer yield surface
does not intersect the channel walls for the confinement ratio 𝜁 =
24 even at the smallest Bn number studied here. Consequently, the
effect of the confinement on the particle dynamics is negligible at this
ratio. This is in agreement with previous axisymmetric particle-settling
computations in an EVP material [14]. Moreover, our simulations
show that the yield surface shrinks by decreasing material elasticity
at constant plasticity and confinement ratio. This behavior is however
not discussed here as it was already discussed in detail in [14,16].
Specifically, at higher De numbers, the increased elastic stresses in
the medium enable the material to more easily exceed the von-Mises
yielding criterion. Therefore, elasticity helps the sphere to translate
faster in the EVP material. This is further discussed in Section 3.2.

The fluid velocity distribution upstream of the particle, i.e., the
south pole of the sphere, and how it relaxes far away from the sphere
south pole at various confinement ratios 𝜁 , Bn, and De numbers are
illustrated in Fig. 8. In the different panels, we investigate how the fluid
velocity distribution upstream of the sphere is altered when the particle
settles at various confinement ratios 𝜁 and fixed De and Bn numbers,
8

when it sediments in the EVP fluid with different Bn number at fixed
𝜁 and De number and when it settles in the material with different De
number while 𝜁 and Bn number are kept constant.

Panel (a) of the figure reveals that the fluid velocity on the particle
surface and on the south pole of the sphere decreases at fixed material
plasticity and elasticity as the confining channel walls are brought
closer to the sphere. This was expected from the visualizations above
since at lower confinement ratios the yield surface interacts with the
channel walls and both the flow and particle dynamics are greatly
affected by the presence of the walls. Moreover, the flow streamlines
(shown in Figs. 3 and 4), as well as the location of the negative wake in
the medium (shown in Fig. 5), are modified by the presence of the walls
and hence the sphere settles with a lower rate at lower confinement
ratios. This implies that the velocity of the fluid element attached to
the south pole of the sphere decreases at lower confinement ratio 𝜁
as shown in Fig. 8(a). In addition, we observe that the fluid velocity
relaxes faster at smaller confinements and therefore the change in the
fluid velocity magnitude and of the direction of the streamlines is more
abrupt as the sphere settles in a more confined configuration.

As shown in Fig. 8(b), the fluid behavior when varying the material
plastic effects at fixed confinement ratio 𝜁 and material elasticity is
qualitatively similar to that observed when varying the confinement
ratio and fixing the material plasticity and elasticity. Specifically, the
fluid velocity on the south pole of the sphere decreases with the
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Fig. 8. Distribution of the normalized fluid velocity magnitude upstream of the particle (sphere’s south pole) as a function of the distance in the settling direction 𝑦 at (a) various
onfinement ratio 𝜁 and constant Bn = 0.0417, De = 1.0. (b) Effect of various Bn number at constant 𝜁 = 24 and De = 1.0. (c) Effect of various De numbers at constant 𝜁 = 24 and
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lasticity, i.e., with the Bn number. This behavior is due to the fact that
t a higher degree of material plasticity, the volume of the yielded zone
n the medium shrinks, and the yield boundary approaches the sphere
urface causing the sphere to settle at a smaller rate. Thus, the particle
ettles slower when either fixing the material plasticity and bringing
he channel walls closer to the sphere or fixing the confinement ratio
nd increasing the material plasticity. Nonetheless, contrary to what
as been conjectured before [14], the flow and particle behavior are
ot in quantitative agreement with each other since the change in fluid
elocity is more significant for variations of the material plasticity at
onstant confinement ratio than for a change of the confinement ratio
t constant material plasticity, as can be seen comparing Fig. 8(a) and
b). Moreover, similarly to the results in Fig. 8(a), the fluid velocity
elaxes faster at higher Bn numbers and fixed confinement ratio 𝜁 since
ow the outer yield envelope is closer to particle and the solid zone in
he medium has larger size at a higher Bn number, i.e., the regions of
ero shear rate are larger at higher Bn numbers.

The fluid velocity is an increasing function of material elasticity at
onstant confinement ratio and material plasticity as shown in Fig. 8(c).
he physical reason for such a behavior is that as the elasticity of
he material is increased, the volume of the liquid phase around the
phere increases too, as the increased elastic stresses in the medium
ead to satisfying the yielding criterion more easily. Hence, the outer
ielded envelope gets far away from the sphere surface at higher
lasticity and this contributes to the increase in velocity magnitude
s the elastic effects increase in the medium [14,16]. In other words,
lasticity aids the sphere to translate faster in an EVP material. One of
he consequences of having a larger yielded zone in the medium around
he particle is that the distance in the settling direction 𝑦 between the
phere surface and the location in the medium where the streamlines
emain unaffected in the presence of the particle increases. This is
vident in Fig. 8. For instance, in Fig. 8(b) and (c) the fluid velocity
elaxes at larger distance 𝑦 from the sphere surface at the smallest Bn
umber and constant confinement ratio 𝜁 and De number (solid red
ine in Fig. 8b) or at largest De number and constant confinement ratio
and Bn number (solid red line in Fig. 8c), the volume of the yielded

one being the largest in both conditions, i.e., at Bn = 0, 𝜁 = 24, De = 1.0
Fig. 8b) and De = 1.0, 𝜁 = 24, Bn = 0.0417 (Fig. 8c).

.2. Particle dynamics

For a single sphere settling in an EVP material at constant
rchimedes number Ar = 0.5, the settling rate at steady-state condition
r its terminal velocity, and the Stokes drag coefficient Cs are a function
f confinement ratio, the material plasticity, and elasticity, i.e., 𝑈𝑝 =
𝑝 (𝜁,Bn,De), and Cs = Cs (𝜁,Bn,De). Note also that, at steady-state, the

phere angular velocity 𝝎𝒑 is zero for all the cases. The variation of the
tokes drag coefficient Cs resulting from the present study along with
he comparison with the numerical data from the previous study [14] is
llustrated in Fig. 9 versus the confinement ratio 𝜁 , for the values of Bn
nd De under consideration, which probably represents the main results
f this work. Moreover, the variation of the Stokes drag coefficient

with the confinement ratio 𝜁 and the material plasticity, i.e., Bn
9

s

umber, obtained with the correlation in Eq. (13) is shown as black
otted lines in Fig. 9.

The Stokes drag coefficient Cs classically provides information about
he motion of rigid particles in non-Newtonian fluids. This measures the
eviation of the drag force experienced in an otherwise quiescent EVP
luid from the Stokes drag force, i.e., the drag force exerted on a sphere
oving through a viscous Newtonian fluid at creeping flow condition

nd in an infinite medium (no confining walls) and it is defined as [11]:

Cs =
𝐹𝑑

6𝜋𝜂0𝑈𝑝𝑅
= 2

9
𝑈0
𝑈𝑝

. (10)

The total drag force exerted on the particle by the surrounding fluid,
𝐹𝑑 , is computed by balancing the weight of the sphere at steady state
zero acceleration), i.e., 𝐹𝑑 = 4

3𝜋𝑅
3𝑔𝛥𝜌. It follows from this definition

that Cs = 1 corresponds to the Newtonian fluid case.
According to Fig. 9, at constant Bn and De numbers, the Stokes drag

oefficient increases, or equivalently the particle terminal velocity 𝑈𝑝 is
educed when reducing the confinement ratio 𝜁 . Therefore, the particle
ynamics are significantly affected by the presence of the channel walls.
ur simulations show that, in general, the behavior of the Stokes drag
oefficient Cs and of particle terminal velocity 𝑈𝑝 with the confinement
atio 𝜁 is similar for each Bn and De number studied here. The change

in particle dynamics is more pronounced at 𝜁 = 4 as compared to
other confinements, regardless of the degrees of material plasticity and
elasticity. A similar trend has been observed previously for the particle
settling through Bingham plastic fluids in a tube: in this case, the Stokes
drag coefficient at constant Bn number is substantially higher for the
diameter ratio (ratio of the tube and sphere radius) of 2 than for larger
ratios [12].

In the case of a Newtonian fluid, the well-known Faxen law [17]
shows that the particle settling rate decreases once the confinement
walls approach the particle radius. The same scenario is observed when
the channel is filled with viscoelastic fluids, with the particle terminal
velocity always smaller than that observed when it settles in an infinite
medium [29,30]. Here, we observe that the same behavior arises also
when the sphere settles in EVP fluids.

The Stokes drag coefficient is an increasing function of the material
plasticity at fixed elasticity and confinement ratio as shown in Fig. 9.
At fixed confinement and material elasticity and elevated level of plas-
ticity, the surface of the particle is approached by the yielded surface
(shown in Fig. 7). Consequently, since the outer yield envelop behaves
like an elastic wall in the context of an EVP fluid, increasing the Bn
number is similar to enforcing the sphere to settle in a more confined
channel with elastic walls. Hence, the Stokes drag increases. On the
other hand, the Stokes drag coefficient is a decreasing function of
material elasticity at fixed plasticity and confinement ratio as depicted
in Fig. 9. Our observation is in agreement with previous transient 2-
D axisymmetric finite-element computations [14] or 3-D fully-resolved
computations [16] performed at large confinement ratio 𝜁 = 24. Our
simulations demonstrate that the decrease of the Stokes drag coefficient
with the material elasticity at constant Bn number and confinement
ratio 𝜁 is observed regardless of the value of Bn and 𝜁 . Nonetheless, the

drop in Stokes drag is more significant at a higher Bn when compared
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Fig. 9. Stokes drag coefficient Cs versus confinement ratio 𝜁 for the various Bn and De numbers under investigation, see legend. The value Cs = 1 is indicated by a red dashed
horizontal line. The black dotted lines represent the variation of Cs with confinement ratio 𝜁 and Bn number from correlation (13). The Stokes drag coefficient Cs at 𝜁 = 24 and
various Bn and De numbers resulting from the present work is compared against the same quantity and the same Bn and De numbers from Fraggedakis et al. [14].
Fig. 10. Contour-plots of the shear stress in the mid-𝑦−𝑧 plane 𝜏𝑦𝑧 normalized by the characteristic stress 𝜏0 and the unyielded/yielded boundaries (solid black line) at Bn = 0.0209,
De = 1 and at (a) 𝜁 = 4, (b) 𝜁 = 8, (c) 𝜁 = 12, (d) 𝜁 = 16, (e) 𝜁 = 24.
to smaller or zero Bn number (see Fig. 9). Specifically, the relative
reduction of Cs at constant 𝜁 = 24 and Bn = 0, Bn = 0.0209, Bn = 0.0417
from De = 1 to De = 0.1 is 3.63%, 11.41%, and 22.53%. Note also
that the relative reduction of the Stokes drag coefficient 𝛿 Cs at 𝜁 = 24,
Bn = 0, defined as

𝛿 Cs =
Cs (𝜁 = 24,Bn = 0,De = 0.1) − Cs (𝜁 = 24,Bn = 0,De = 1)

Cs (𝜁 = 24,Bn = 0,De = 0.1)
× 100,

reveals that even in the absence of wall-effects, the modification of the
particle dynamics at higher levels of elasticity is more pronounced as
the plastic effects become more important.

It can be observed from figure Fig. 9 that the smallest drag is
associated with zero Bn number and the largest confinement ratio 𝜁 =
24, where the plastic effect vanishes and the wall-effects are negligible.
The value of the Stokes drag coefficient at Bn = 0 and 𝜁 = 24 is 1.1238,
1.1012, and 1.0829 for De = 0.1, De = 0.5, and De = 1. Consequently,
the EVP material at zero Bn number and 𝜁 = 24 is well approximated as
a Newtonian viscous fluid. On the other hand, the value of Cs deviates
significantly from 1 (Newtonian fluid) at the highest Bn, lowest De
and lowest confinement ratio. Specifically, at 𝜁 = 4, Bn = 0.0417, and
De = 0.1, the Stokes drag coefficient is Cs = 5.5685, which is the largest
value among all our cases. Thus, the sphere settles at lowest rate for
the highest Bn number, smallest confinement ratio 𝜁 , and smallest De
number.

In addition, we compare in Fig. 9 the values of the Stokes drag
coefficient Cs computed here at the largest confinement ratio 𝜁 = 24
and at various degrees of material plasticity and elasticity with the
same quantity and at the same values of the Bn and De with the data
in [14], which were found by performing transient 2D axisymmetric
10
computations. Note that the numerical values of Cs from [14] are only
valid for the largest confinement ratio, i.e., 𝜁 = 24 and for the sphere
settling in an EVP material in a tube configuration. Although we find
reasonable agreement between our numerical data and the data pre-
sented by [14], we speculate that the slight deviation of the Stokes drag
coefficient Cs found in our work from the previous study [14] is due
to the difference in the flow configuration as we perform 3D numerical
simulations in a rectangular box whereas the previous computations
were performed in a tube and assuming an axisymmetric flow [14].

We have shown in Section 3.1 how the distribution of the fluid
velocity around a sphere is affected by the presence of the confining
walls. Specifically, the change in both velocity magnitude and the
direction of the flow streamlines is more abrupt when the channel
walls are brought closer to the particle. This results in a larger shear
resistance at a smaller confinement ratio 𝜁 . To further demonstrate this
effect, we display in Fig. 10 the distribution of the shear stress in the
central 𝑦 − 𝑧 plane, i.e., the 𝜏𝑦𝑧 component of the stress tensor, along
with the yield surface boundaries around the particle at various 𝜁 and
constant Bn and De numbers. By decreasing the wall–particle distance,
shear layers develop on the wall of the channel and the magnitude
of the shear stress is enhanced around and on the particle surface.
The shear layers on the confining walls, as well as the shear stress
enhancement on the surface of the sphere, cause the sudden decrease
of the particle terminal velocity with decreasing confinement ratio 𝜁 . A
similar mechanism has been suggested previously as the primary reason
for the sudden decrease of the terminal velocity of a particle settling in
a tube filled with an EVP fluid when increasing the Bn number when
wall effects are negligible [14].
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Based on the results in Fig. 9, we also note that the sphere settling
elocity through an EVP fluid at constant elasticity and confinement ra-
io 𝜁 and various Bn numbers is qualitatively the same as if it sediments

at constant elasticity and Bn number and various confinement ratio 𝜁 .
Indeed, the Stokes drag coefficient increases by either increasing the
Bn number at fixed De number and 𝜁 or by decreasing 𝜁 at fixed De
nd Bn numbers. However, the change in particle dynamics in these
wo scenarios is quantitatively different. We have shown this difference
ore clearly in Fig. 11. The Stokes drag enhancement is more abrupt by

ncreasing Bn and fixing De and the particle–wall distance (1∕𝜁 = 0.0417
n this figure) as compared to increasing 1∕𝜁 and fixing the De, Bn
umbers. In Fig. 11, when the Bn and De numbers are constant, e.g.,
n = 0, De = 0.1 (dark blue circular markers), the confinement ratio

s varying according to the right vertical axis (1∕𝜁) and the Stokes
rag coefficient Cs is shown on the horizontal axis. For a fixed value
f the confinement ratio (1∕𝜁 = 0.0417 in this figure) and different
e numbers, the Bn number varies according to the left vertical axis
Bn), and the Stokes drag coefficient Cs variation is again shown on the
orizontal axis. Contrary to previous suggestions [14], our simulations
how that for a single sphere settling in an EVP fluid, the wall and
lastic effects on the particle and flow dynamics is quantitatively
istinct, and the plasticity has a larger impact than the confinement.

To provide a more quantitative analysis on the effect of confining
alls, we investigate the particle dynamics by fitting an exponential

elaxation to the evolution of the Stokes drag coefficient Cs as function
f the confinement ratio 𝜁 (see Fig. 12):

Cs (Bn,De, 𝜁) = Cmax
s (Bn,De) − 𝛥Cs (Bn,De)

(

1 − exp
(

−𝜁∕𝜁𝑐 (Bn,De)
))

,

(11)

where Cmax
s denotes the maximum Stokes drag coefficient at each

Bn and De numbers which is the sphere Stokes drag at the smallest
confinement ratio, i.e., 𝜁 = 4. 𝛥Cs corresponds to the maximum
variation of Cs by the confinement ratio which is a function of Bn and
e. 𝜁𝑐 is the critical confinement ratio above which the Stokes drag

coefficient or equivalently the particle terminal velocity saturates and
does not significantly change by further moving the confining walls
away from the sphere. In general, this critical value of the particle–
wall distance is a function of material plasticity and elasticity. Fig. 12
displays examples of the exponential relaxation functions for the Stokes
drag coefficients, obtained employing the least square fitting for three
values of Bn and De numbers. It can be seen that the exponential decay
perfectly follows the simulation data with the R2 values (a statistical
measure that quantifies the accuracy of the fit) around 0.99 for all the
cases. Note that a similar trend holds for all of our simulation cases,
not shown here for the sake of brevity.

The critical confinement ratios 𝜁𝑐 and the maximum variations
of the Stokes drag coefficient with the confinement ratio, 𝛥Cs, are
depicted in the Bn−De plane in Fig. 13. The data show that although
the critical confinement ratio 𝜁 and the maximum change of Stokes
11

𝑐 r
drag coefficient 𝛥Cs are functions of Bn and De numbers, they are
weakly dependent of the level of material elasticity and plasticity.
The critical confinement averaged over all the Bn and De numbers
is 𝜁𝑐 = 𝜁𝑐±�̂�𝜁𝑐 = 6.6944 ± 1.007 and the average value of 𝛥Cs is
𝛥Cs = 𝛥Cs±�̂�𝛥Cs

= 0.6406 ± 0.0564, where �̂�𝜁𝑐 and �̂�𝛥Cs
denote the

standard deviation of 𝜁𝑐 and 𝛥Cs. These average values are found by
fitting our data points using the least square method.

Because the maximum variation of Cs with the confinement ratio,
i.e., 𝛥Cs and the critical confinement ratio 𝜁𝑐 are almost constant for
the range of Bn and De numbers studied here, Eq. (11) can be re-written
as:

Cs (Bn,De, 𝜁) = Cmax
s (Bn,De) − 𝛥Cs

(

1 − exp
(

−𝜁∕𝜁𝑐
))

. (12)

The variation of the maximum Stokes drag coefficient Cmax
s by the

material plasticity and elasticity is displayed in Fig. 14a. Clearly, Cmax
s

s a strong function of the Bingham number, and a weak function of
he Deborah number for the range studied here. In other words, Cmax

s
s almost independent of the material elasticity when 0.1 ≤ De ≤ 1.0.
n particular, the maximum relative change of Cmax

s at the highest
n number (Bn = 0.0417) is around 10%. Therefore, we consider

he average of Cmax
s over the De number at each value of Bn. The

variation of the average of the maximum Stokes drag coefficient Cmax
s

ith Bn is depicted in Fig. 14b with yellow circular markers. Fitting a
uadratic function to the simulation data, we obtain Cmax

s (Bn) = 1.25 ×
10−3 Bn2 +32.8Bn+1.71 (see Fig. 14b). Assuming the maximum Stokes
drag coefficient Cmax

s (Bn,De) can be well-approximated by Cmax
s (Bn),

the Stokes drag coefficient Cs can be finally written as:

Cs (Bn, 𝜁) =
(

1.25 × 10−3 Bn2 +32.8Bn+1.71
)

− 0.6405 (1 − exp (−𝜁∕6.6938)) . (13)

We show in Fig. 9 that the proposed correlation, i.e., Eq. (13), fits well
ith the high-fidelity numerical data points obtained in this study. Note

hat the above correlation is valid for 0 ≤ Bn ≤ 0.0417, 0.1 ≤ De ≤ 1.0,
nd 4 ≤ 𝜁 ≤ 24. Nevertheless, we expect that the average values of
he critical confinement and of the maximum change of Stokes drag
oefficient remain almost unchanged until the particle stoppage criteria
xpressed in Eq. (9) and derived in [14] is satisfied. However, further
vidence is required to validate our assumption.

. Conclusion

High-fidelity numerical simulations are performed to study the role
f confinement on the sedimentation of a single sphere through an
therwise quiescent yield stress fluid with finite elasticity in the limit
f negligible inertia. The carrying EVP fluid exhibits elastic, viscous,
nd plastic behavior simultaneously and are modeled via the Saramito’s
onstitutive equations [15]. We investigate the combined and simulta-
eous effects of confinement, elasticity, and plasticity on the particle
nd flow dynamics by performing a total number of 45 interface-
esolved simulations. In all of the simulations, the Archimedes number
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Fig. 12. Stokes drag coefficient Cs versus the confinement ratio 𝜁 and the empirical exponential relaxation function (dashed blue line) of the form Cs = Cmax
s −𝛥Cs

(

1 − exp
(

−𝜁∕𝜁𝑐
))

at (a) Bn = 0, De = 0.1, (b) Bn = 0.0209, De = 0.5, (c) Bn = 0.0417, De = 1.0. The corresponding R2 values are shown in each panel.
Fig. 13. Colormaps of (a) the critical confinement ratio 𝜁𝑐 and (b) the maximum change of Stokes drag coefficient, 𝛥Cs, with the confinement ratio in the Bn−De plane.
Fig. 14. (a) Variation of the maximum Stokes drag coefficient Cmax
s with the Bn and De numbers. (b) Variation of the maximum Stokes drag coefficient averaged over the De

number, i.e., Cmax
s , versus the Bingham number Bn with the best fit of the form Cmax

s (Bn) = 1.25 × 10−3 Bn2 +32.8Bn+1.71. The R2 value for the fitted curve is 0.9995.
Ar is held low and constant, Ar = 0.5 and find that the maximum
value of the particle Reynolds number based on the sphere terminal
velocity is ReUp

= 0.2052, which implies that our simulations are
indeed performed at creeping flow condition. Since our main focus is
on the wall-effect on the particle and flow dynamics, a wide range
of confinement ratios 4 ≤ 𝜁 ≤ 24 is examined. The computational
matrix is designed such that the simulations are conducted below the
critical condition beyond which the particle is entrapped inside an EVP
fluid [14]. Hence the Bingham and Deborah number are set in the range
0 ≤ Bn ≤ 0.0417, and 0.1 ≤ De ≤ 1.0.

As concerns the flow dynamics, the velocity distribution is greatly
affected by the presence of the confining walls. In particular, the
streamlines are more packed and the size and extent of the recirculation
zones in the equatorial plane and on either side of the sphere are
significantly altered as the channel walls are brought closer to the
sphere surface: the size of the recirculation regions reduces while they
interact with and extend to the confining walls as the confinement
ratio is decreased. Moreover, the symmetry in the wall-normal direction
breaks due to the large wall effects at the lowest level of confinement.
We find that the location of the negative wake moves towards the
north pole of the sphere as the particle settles in a more confined
configuration, which results in a lower particle settling rate.

Similarly to the case of Bingham plastic [12] and Herschel–Bulkley
fluids [24], the outer yield envelope extends to the channel walls
12
at small confinement ratios (𝜁 = 4, 8) for the range of Bn number
considered here. Consequently, the fluid velocity relaxes faster at these
confinement ratios, and the direction of the streamlines is changed
more abruptly as compared to larger confinements. One of the con-
sequences of the sudden change of velocity magnitude and direction
is the sudden increase of the shear stress around the sphere once it
sediments in a more confined configuration. In other words, by bringing
the channel walls closer to the sphere, the shear resistance increases
and shear layers develop on the channel walls and on the yield surface.
This phenomenon, i.e., shear layer development on the confining walls
when the particle settles through viscoelastic fluid, has been reported
before for the case of a particle settling in a tube [29,30]. Further, we
find that the interaction between the yield surface and the confining
walls disappears for 𝜁 ≥ 16 and 𝜁 ≥ 12 at Bn = 0.0209 and Bn = 0.0417,
and thus the confinement effects become weak.

Our computations show that the sphere Stokes drag increases at
smaller confinement ratios, with a similar trend at each level of mate-
rial plasticity and elasticity under investigation here. Also, the largest
Stokes drag coefficient occurs at the smallest confinement ratio 𝜁 ,
largest Bn number, and smallest De number.

Moreover, we find that the settling behavior at fixed Bn number and
different confinement ratios follows the same trends as the settling at
fixed confinement ratio and various Bn numbers. Although the Stokes
drag increases in both cases as mentioned previously in [14], the
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drag enhancement is more significant for the latter case. One possible
explanation for the quantitative difference between these two scenarios
is that the yield surface that surrounds the particle acts as an elastic
boundary while the confining channel walls are rigid.

By performing a more quantitative analysis on the Stokes drag
coefficients, we could fit an exponential relaxation function to the
simulation data and identify two parameters: the critical confinement
ratio 𝜁𝑐 and the maximum change of Stokes drag with the confinement
atio 𝛥Cs for each Bn and De number. Interestingly, although 𝜁𝑐 and
𝛥Cs are in general functions of Bn and De, they remain approximately
constant in the range of the dimensionless numbers investigated here.

We have presented a correlation (Eq. (13)) for the Stokes drag
coefficient Cs of a single spherical particle settling in a laboratory
yield-stress fluid as a function of material plasticity (Bn number), and
confinement ratio 𝜁 ; this is obtained with a non-linear regression of
our simulation data. This expression can be considered as the main
achievement of this study. The proposed correlation is valid for 0 ≤
Bn ≤ 0.0417, 0.1 ≤ De ≤ 1.0, and 4 ≤ 𝜁 ≤ 24 and Ar = 0.5. Although the
Stokes drag Cs is also a function of the material elasticity (see Fig. 9),
we find that this dependency is weak and thus can be neglected for
0.1 ≤ De ≤ 1.0. Therefore, the suggested correlation is independent of
De number.

We hope this study may open an avenue to answer many fun-
damental questions on the particle dynamics in practical yield stress
fluids, e. g., concerning the effect of confining walls, elasticity, and
plasticity on the sphere drag, the drag laws when interactions be-
tween particles and walls are present, and particle migration when
inertia becomes more important. Moreover, this study provides useful
quantitative information about the minimum requirements of the di-
mensions of an experimental apparatus (rectangular box in this case)
to address the particle dynamics in laboratory yield-stress fluids such
that confinement effects can be neglected. Furthermore, we present the
vertical distance traveled in the settling direction and the time required
to reach the steady state for various combinations of dimensionless
numbers, which can further help to design the experimental apparatus.
We present estimates for the sphere drag before the particle entrap-
ment occurs which can be helpful to test the validity of existing EVP
models and to modify the particle stoppage criteria when confinement
is important. Finally, particle–particle and particle–wall interactions in
a dense suspension rather than a dilute one are also interest topics for
future studies.
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