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The dynamics and control of two-dimensional disturbances in the spatially evolving
boundary layer on a flat plate are investigated from an input–output viewpoint. A
set-up of spatially localized inputs (external disturbances and actuators) and outputs
(objective functions and sensors) is introduced for the control design of convectively
unstable flow configurations. From the linearized Navier–Stokes equations with
the inputs and outputs, controllable, observable and balanced modes are extracted
using the snapshot method. A balanced reduced-order model (ROM) is constructed
and shown to capture the input–output behaviour of the linearized Navier–Stokes
equations. This model is finally used to design a H2-feedback controller to suppress
the growth of two-dimensional perturbations inside the boundary layer.

1. Introduction
Many powerful linear systems and control theoretical tools have been out of reach

for the fluid mechanics community due to the complexity of the Navier–Stokes
equations. Two elements that have enabled a systematic approach to flow control are
the availability of increasingly powerful computer resources and the recent advances of
matrix-free methods. In this paper, the linearized Navier–Stokes equations including
inputs and outputs are analysed using systematic tools from linear systems and
control theory. The techniques do not rely on physical insight into the specific flow
configuration and can in principle be applied to any geometry.

We will focus on the flat-plate geometry, which still poses a computational challenge.
The two-dimensional Blasius boundary layer is non-parallel, i.e. spatially evolving,
and therefore has two inhomogeneous spatial directions. Many tools in both stability
analysis and control theory rely on the linearized stability operator, which even
for two-dimensional flows becomes very large when discretized. As an example, a
moderate grid resolution with 200 points in two directions leads to a system matrix
with a memory demand of 10 gigabytes, whereas storing a flow field requires only
3 megabytes. It is therefore essential to either approximate or develop algorithms in
which large matrices are avoided, and the storage demands are of the order of few flow
fields. Matrix-free methods employ the ‘timestepper approach’ in which, given a flow
field, a Navier–Stokes code is used to provide a field at a later time. The timestepper
technique has become increasingly popular in stability analysis, for both computing
the largest transient growth (Blackburn, Barkley & Sherwin 2008) and performing
asymptotic analysis (Barkley, Gomes & Henderson 2002). Another example of a
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Figure 1. Conceptual figure of the input–output configuration used for the control of per-
turbations in a two-dimensional flat-plate geometry. The computational domain Ω = (0, Lx)×
(0, Ly), shown by the grey region, extends from x = 0 to x = 1000 with the fringe region starting
at x =800. The first input B1, located at (xw, yw) = (35, 1), models the initial receptivity
phase, where disturbances are induced by free stream turbulence, acoustic waves or wall
roughness. The actuator B2 provides a means to manipulate the flow, in this case by a
localized volume forcing, and is centred at (xu, yu) = (400, 1). Two sensors C1 and C2 are
located at (xv, yv) = (300, 1) and (xz, yz) = (750, 1) respectively. The upstream measurements
are used to estimate the incoming perturbations, while the downstream sensor quantifies the
effect of the control. Note that in this work all the inputs and outputs are Gaussian functions
given by (2.14).

matrix-free method is the snapshot method introduced by Sirovich (1987), which
allows the proper orthogonal decomposition (POD) of flow fields without solving
large eigenvalue problems.

The starting point of modern optimal and robust control design, also denoted as
H2- and H∞-control, is an input–output formulation referred to as the standard state-
space formulation (Zhou, Salomon & Wu 1999). The well-known stochastic approach
to optimal control referred to as linear quadratic Gaussian (LQG) is an example
of an H2 controller. In this work, we consider three inputs and two outputs; the
inputs represent external disturbances, measurement noise and the actuator, whereas
the outputs represent measurements for estimation and of the objective functional to
be minimized (see figure 1). The control problem is to supply the actuator with an
optimal signal based on the measurements taken from the first sensor, such that the
effect of external disturbances and measurement noise on the disturbance energy is
minimized at the location of the second sensor. Given the physical distribution of
the inputs and outputs, the control design process amounts to the determination of
input signals when output signals are given. Therefore, for successful control design
it is sufficient to capture only a fraction of the dynamics, namely the relationships
between input and output signals.

The aim of this study is to build a model of low dimension that captures the input–
output behaviour of the flat-plate boundary layer and use this model for optimal
feedback control design. With the help of the adjoint Navier–Stokes equations two
fundamental dynamical structures are identified: (i) the flow structures that are
influenced by the inputs; (ii) the flow structures that the outputs are sensitive to.
These controllable and observable structures determine the input–output behaviour
completely for linear systems. It is well known in systems theory that these two
sets of modes can be balanced and represented by one set of modes, called the
balanced modes. In this way, the flow structures that capture most of the input–
output behaviour are extracted and used as the projection basis for model reduction.
The method employed in this work to compute the balanced modes is called
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snapshot-based balanced truncation (Willcox & Peraire 2002; Rowley 2005). This
method has been applied to the channel flow (Ilak & Rowley 2008) and the flow
around a pitching airfoil (Ahuja et al. 2007). Unlike previous work, we do not combine
the snapshot-based balanced truncation with an output projection approach in order
to describe the flow dynamics. Our control design and performance evaluation is based
on input and output signals rather than on the space–time evolution of the entire flow.

Previous work in flow control involving model reduction and control design has
typically relied on physical insight into the specific flow situation rather than a
systematic approach detached from the application (see Kim & Bewley 2007, for a
recent review). For parallel flows, for instance it is possible to decouple the linear
equations in Fourier space. Control, estimation and other types of optimization can
then be performed independently for each wavenumber and transformed back to
physical space. This approach has been adopted for channel flow in Högberg, Bewley
& Henningson (2003) and even extended to weakly nonparallel flows by Chevalier
et al. (2007a). Another example is the projection of the linearized Navier–Stokes
equations on a set of modes such as global eigenmodes of the stability operator or
POD modes. Although these methods have been applied with considerable success to
various flows (Gillies 1998; Åkervik et al. 2007) their success is strongly dependent
on the dynamics of the specific flow situation. For many open shear flows the
global eigenmodes and their associated adjoint modes can become widely separated
in the streamwise direction (Chomaz 2005) and gradually move away from the
locations of the inputs and outputs (Lauga & Bewley 2003). As a consequence
controllability and observability of the global eigenmodes is gradually diminished. If
controllability/observability is lost for any unstable eigenmode, no control scheme
will be able to stabilize the system. The POD basis also has limitations for describing
the input–output behaviour. Although it is optimal for capturing the energy of
the response to an input, it does not always capture the input itself and takes no
consideration of the output. However, examples of successful adaptations of POD
modes can be found in Noack et al. (2003) and Siegel et al. (2008) for the globally
unstable flow past a circular cylinder.

The paper is organized as follows: We start with describing the flow domain, the
inputs, the outputs and the control problem in § 2. In this section the mathematical
framework is presented with evolution, controllability and observability operators
and their associated adjoint operators. These operators are used to introduce the
Gramians and balanced modes in § 3, where we also investigate the input–output
behaviour of our linear system and discuss the controllable, observable and balanced
modes. In § 4 the impulse and harmonic response of the balanced reduced-order model
(ROM) are compared to the full Navier–Stokes equations, and the model reduction
error is quantified. Section 5 deals with the control design. We briefly introduce the
H2 framework and evaluate the closed-loop performance. Concluding remarks and
a summary of the presented material are offered in the last section. Finally, in the
appendices we derive the adjoint operators and describe the snapshot method, the
solution of the H2 problem and our timestepper.

2. Problem formulation
2.1. Governing equations

We consider the linear spatio-temporal evolution of two-dimensional disturbances in
a viscous, incompressible flow over a flat plate. The geometry of the problem and
the physical domain Ω = (0, Lx) × (0, Ly) are shown in figure 1. The disturbance
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behaviour is governed by the Navier–Stokes equations linearized about a spatially
evolving zero-pressure-gradient boundary layer:

∂u
∂t

= −(U · ∇)u − (u · ∇)U − ∇p + Re−1∇2u + λ(x)u, (2.1a)

0 = ∇ · u, (2.1b)

u = u0 at t = 0. (2.1c)

The disturbance velocity and pressure field at position x = (x, y) and time t are
represented by u(x, t) = (u, v)T and p(x, t), respectively. The divergence operator is
denoted by ∇ =(∂x, ∂y)T . The Reynolds number is defined as Re =U∞δ

∗
0/ν, where U∞

is the free stream velocity and δ∗0 the displacement thickness at the computational
inflow x0 = 0. All the simulations were performed at Re =1000 which corresponds to
a distance of 341δ∗0 from the leading edge to the inlet of the computational domain.
The base flow U = (U, V )T (x, y) is a solution to the steady, nonlinear Navier–Stokes
equations.

The term λ(x) is used to enforce periodicity of the physical flow in the streamwise
direction, so that a spectral Fourier expansion technique can be employed for our
numerical solution. This function is non-zero only in a fringe region at the end of
the domain (see figure 1) in which it forces the outgoing perturbation amplitude to
zero (see Appendix C and Nordström Nordin & Henningson 1999 for further details).
As discussed in Åkervik et al. (2008) the growth rate of individual eigenvalues in
the spectrum of the linearized Navier–Stokes equations depends on the outflow
boundary conditions. However, the perturbation dynamics remain unaltered for
different boundary conditions, including the fringe method.

The solutions to (2.1) satisfy no-slip condition at the plate and vanish at the upper
boundary Ly =30δ∗0 which is chosen to be well outside the boundary layer. The
boundary conditions hence are

u(0, y) = u(Lx, y), (2.2a)

u(x, 0) = u(x, Ly) = 0. (2.2b)

2.2. Standard state-space formulation and the H2 problem

The Navier–Stokes equations may be written in the ‘standard state-space form’ (Zhou,
Doyle & Glover 2002) useful for applying tools from systems theory and for H2/H∞
control design.

In the state-space framework, any divergence-free, smooth disturbance field u(x)
that satisfies the boundary conditions (2.2) is an element of the (Hilbert) state space

! = {u(x) ∈ L2(Ω) | ∇ · u(x) = 0, u(0, y) = u(Lx, y), u(x, 0) = u(x, Ly) = 0}. (2.3)

A state is a velocity field u(x, t) at time t or equivalently a point on a trajectory in
!. Let us introduce a bounded linear solution operator T(t) : ! → ! for the state
variable u as

u(x, t + s) = T(t)u(x, s). (2.4)

Given a perturbation field at time s, T(t) provides the velocity field at a later time
t + s by solving (2.1) with u0 = u(x, s) and (2.2). The operator satisfies the properties
T(t + s) = T(t)T(s), T(0) = I and can be considered a semi-group (see, e.g. Pazy
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1983; Trefethen & Embree 2005) of the form exp(At)† with the infinitesimal generator

Au = lim
δt→0

T(δt)u − u
δt

. (2.5)

The linearized Navier–Stokes equations (2.1) with boundary conditions (2.2) can be
cast as an initial-value problem in state-space form

u̇ = Au, (2.6)

u = u0 at t = 0. (2.7)

Note that the action of A on u corresponds to evaluating the right-hand side of
the Navier–Stokes equations and enforcing the boundary conditions. The pressure
term can be obtained from the velocity field by solving a Poisson equation (Kreiss,
Lundbladh & Henningson 1993). Alternatively, the state-space form can be obtained
by defining a projection operator that projects the equations onto ! (Chorin &
Marsden 1990; Bewley, Temam & Ziane 2000).

In this work, the action of the operator A is approximated numerically:
T(t)u(x, s) is obtained by solving the partial differential equation (2.1) using a
timestepper, i.e. a Navier–Stokes solver (Barkley et al. 2002), with u(x, s) as initial
condition. In its simplest form, a timestepper sets up a grid in space and time and
computes approximate solutions on this grid by marching in time. This approach is
computationally feasible also for very large systems, since matrices are not stored.
The timestepper used and the corresponding numerical method are described in
Appendix C.

We introduce the forcing f (x, t), which is also referred to as the input. The forcing
f is decomposed into external disturbances B1w and a control B2u, i.e.

f = B1w + B2u, (2.8)

where the input signals w(t), u(t) are functions of time and B1, B2 are bounded linear
mappings from " → !. The first mapping, B1, represents the spatial distribution of
the sources of external disturbances acting on the flow (see figure 1). In our model, the
input forcing B1 is located at the upstream end of the domain to model the upstream
receptivity phase, when disturbances are introduced into the boundary layer by, e.g.
roughness and free stream perturbations. The actuator used for control is defined by
the mapping B2, which represents a localized volume force, mimicking blowing and
suction at the wall. Finally, u(t) represents the control signal we wish to apply and is
based on the sensor measurements.

Information about the disturbance behaviour is given by two outputs:

z = C1u + lu, (2.9)

v = C2u + αg, (2.10)

where the output signals z, v are functions of time and C1, C2 are bounded linear
functionals from ! → ". The sensor defined by C1 is located far downstream, and
it is used to evaluate the level of the disturbance amplitude. Therefore it reveals
whether the ‘objective’ of our control has been met. In particular, the objective is to
find a control signal u(t) such that the perturbation energy in the flow is minimized
downstream at the location defined by C1. To design an efficient controller, however,

† This is only true if A is a bounded operator. In general, for a closed operator A with a dense
domain, the relation between T and A is T(t)u = limn→∞(I − t/nA)−nu (see, e.g. Pazy 1983).
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the energy input expended in the actuation should be limited; thus, the control effort
is penalized with a scalar l. For large values of l the control effort is considered to
be expensive, whereas small values indicate cheap control. This results in an objective
functional of the form

‖z‖ = ‖C1u‖+ l‖u‖ (2.11)

and explains why the control signal is added to the sensor signal when defining the
output signal z. The norms in (2.11) are associated with the inner products defined in
the next section. In the definition of z we have assumed 〈lu, C1u〉=0, so that there is
no cross-weighting between the flow energy and control input (Zhou et al. 1999).

The second output signal v(t) is the measurement signal extracted from the sensor
C2. This signal is the only information delivered to the controller in order to provide
a control signal such that the above objective is met. The additional term g(t)
accounts for noise contaminating the measurements. This term can be considered
as a third forcing, but rather than forcing the Navier–Stokes equations it forces the
measurements. Large values of the scalar α indicate high level of noise corruption in
the output signal, whereas for low values of α the measurement v reflects information
about the flow field with high fidelity.

The choice of the relative position of the sensor C2 and actuator B2 used in
the control design process and reported in figure 1 is based on the knowledge
of the behaviour of boundary layer instabilities. For convectively unstable flows,
disturbances eventually leave the control domain; therefore there exists only a window
of opportunity in time to reduce the growth of these disturbances, while they are
convected downstream. As a consequence, the sensor placement in the streamwise
direction is a trade-off. For a good estimation performance it should be placed
downstream, so that the disturbance energy has amplified, but for a good controller
performance, it should be placed upstream to provide the actuator an estimate of the
flow dynamics as soon as possible. Similarly, there is a trade-off when choosing the
location of the actuator, since its effects on the disturbance behaviour is limited to
the nearby region. It is rather inefficient to place it either far downstream, where the
disturbances have already experienced a substantial growth, or far upstream, where
the disturbances will again have the opportunity to grow.

A completely different choice of sensor and actuator placement is appropriate in
the case of globally unstable flows (see Bagheri et al. 2008), when the whole flow
beats at a specific frequency. Since the disturbances never leave the laboratory frame,
one can place the measurement sensor at the place at which the disturbance energy is
the largest and the actuator at the place at which the sensitivity of the disturbances
to forcing is the largest. In many open shear flows these locations are, respectively,
far downstream, where the global eigenmodes of the linearized operator are located,
and far upstream, where the adjoint global eigenmodes reveal high flow sensitivity.
See, for example Åkervik et al. (2007) for the case in which feedback control applied
to flow separation over a long shallow cavity.

The Navier–Stokes equations (2.1) with input vector f= (w, g, u)T as an element
in the input space # = "3 and output vector y = (z, v)T as an element in the output
space $ ="2 may now be written in the standard state-space form

u̇ = Au + Bf, (2.12a)

y = Cu + Df, (2.12b)

u = u0 at t = 0, (2.12c)
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Figure 2. The operators used to examine the system input-output behaviour. The
controllability operator Lc relates past inputs to the present state, while the observability
mapping Lo relates the present state to the future outputs. Their combined action is expressed
by the Hankel operator H.

where A has been defined in (2.5). Furthermore, we have C =(C1, C2)T , B =
(B1, 0, B2) and

D =

(
0 0 l

0 α 0

)
. (2.13)

The system (2.12) is asymptotically stable; i.e. in the global framework all the
eigenmodes of the linearized Navier–Stokes system for a spatial boundary layer
represent perturbations decaying in time.

Finally, we define the spatial distribution of the sensors and actuators introduced
above. Here, the input and output operators are modelled with the Gaussian function
h(x, x0), defined as

h(x; x0) =

(
σxγy

−σyγx

)
exp

(
−γ 2

x − γ 2
y

)
, (2.14)

where

γx =
x − x0

σx

, γy =
y − y0

σy

. (2.15)

The scalar quantities σx =4, σy = 1/4 and x0, y0 (the latter two being given in the
caption of figure 1) determine, respectively, the size and location of the inputs and
outputs. They are all of the same size but located at different streamwise locations,
as shown schematically in figure 1. With these definitions we have

B = (h(x; xw), 0, h(x; xu)) (2.16)

and

Cu =

∫

Ω

(
h(x; xz)T u

h(x; xv)T u

)
dx dy. (2.17)

The particular shape of sensor and actuators implies that the inputs amount to
localized volume forcing, whereas the flow measurements are obtained by averaging
the velocity field over small domains, using the Gaussian function as weights.

2.3. Controllability and observability operators

When performing model reduction for control design, one wishes to retain the
relationship between the inputs and the outputs in the low-order system. Following
linear systems theory, the properties of the input-output system (2.12) can be described
by the two operators introduced in this section. In the framework presented next we
assume that sufficient regularity exists, so that all operators are bounded in the chosen
metrics. See figure 2 and table 1 for an overview of the operators.
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Operator Mapping Definition Adjoint operator

Evolution !→! T(t)u(s) = u(t + s) T∗(t)u(s)= u(s − t)

Controllability #((−∞, 0])→! Lcf(t)=
∫ 0

−∞ T(−t)Bf(t) dt L∗
cu0 = B∗T∗(−t)u0

Observability !→$([0,∞)) Lo(t)u0 = CT(t)u0 L∗
o(t)f =

∫ ∞
0 T∗(t)C∗f dt

Hankel #((−∞, 0])→$([0,∞)) y= Lo(t)Lcf f= L∗
c(t)L∗

oy

Table 1. The linear operators used in this work. See Appendix A for further details and
derivations of the adjoint operators.

The operators needed to describe the input–output behaviour can be related to the
formal solution of the system of (2.12), which is

y(t) = CT(t)u0 + C
∫ t

0

T(t − τ )Bf(τ ) dτ + Df(t). (2.18)

In this expression, we identify the first term on the right-hand side with the
homogeneous solution and the second term with the particular solution stemming
from the forcing f. Note that in our case the forcing term B is an element in !;
i.e. it is divergence-free and satisfies the boundary conditions. For a more general
forcing f , only the divergence-free part of the forcing f̂ will affect the output signal.
The difference f̂ − f can be written as the gradient of a scalar and thus will only
modify the pressure (Bewley et al. 2000). The third part of (2.18) relates the input
to the output through the matrix D without any operators involved. Without loss of
generality, we will neglect this term for now and consider it again in § 5 for control
design.

In systems theory, the quantitative investigation of the input-output properties of
a linear system is commonly performed through the mappings sketched in figure 2.
We begin by introducing the controllability operator Lc : #((−∞, 0])→!:

u0 = Lcf(t) =

∫ 0

−∞
T(−τ )Bf(τ ) dτ. (2.19)

This operator describes the mapping of any input f(t) with t ∈ (−∞, 0] onto the
state vector u at the reference time t = 0. The input space #((−∞, 0]) contains input
trajectories in the past time t ∈ (−∞, 0]. The associated inner product is given in § A.1
of Appendix A. The action of Lc can be numerically computed by a timestepper.
It amounts to solving the linearized Navier–Stokes equations for the velocity field u
with forcing term f(t) and zero initial conditions.

The observability operator Lo : !→$([0,∞)) is defined as

y(t) = Lo(t)u0 = CT(t)u0. (2.20)

This operator describes the mapping of any initial velocity field u0 to the output
signal y(t) with t ! 0. The output space $([0,∞)) contains output trajectories in the
future time t ∈ [0,∞). The action of Lo(t) can also be numerically computed and
it amounts to extracting the output signal while solving the linearized Navier–Stokes
equations with the initial condition u0 at the reference time t = 0 and zero forcing.

A direct mapping between input and output can be obtained as the combination
of the operators just introduced (see figure 2):

y(t) = LoLcf(t) =

∫ 0

−∞
CT(t − τ )Bf(τ ) dτ. (2.21)
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This expression can be interpreted as a mapping from past inputs to future outputs.
It can be shown that (2.21) is the formal solution for a system which is forced by f(t)
in the time interval t ∈ (−∞, 0], resulting in the flow field u0 at t = 0. The output is
extracted for t ! 0, corresponding to the signal y(t) produced by the initial condition
u0. The expression (2.21) is also the starting point for the input-output analysis,
leading to systematically finding reduced-order approximations. The mapping from
the inputs to the outputs given by (2.21) in terms of Lc and Lo is called Hankel
operator H : #((−∞, 0])→$([0,∞)), i.e.

y(t) = Lo(t)Lcf(t) = (Hf)(t). (2.22)

We have two different representations of the input-output behaviour of the flow
system: (i) the state-space representation (2.12) and (ii) the Hankel operator H
defined in (2.22). Note that in the latter case it is assumed that the inputs and outputs
are not active at the same time.

2.4. Adjoint equations and operators

Before issues related to controllability, observability and model reduction can be
considered the adjoint linear operators corresponding to (T, Lc, Lo) must be
introduced. The adjoint variables provide information about how variations in
the velocity field affect the system output. We show that the adjoint operators
can be associated with the adjoint linearized Navier–Stokes equations in state-
space form, where the role of the inputs and outputs is reversed. The operators
(T∗, L∗

c, L∗
o, C∗, B∗) and adjoint Navier–Stokes equations are derived in Appendix A.

The inner products associated with the Hilbert spaces !, #, $, #((−∞, 0]) and
$([0,∞)) are also given in § A.1 of Appendix A. The adjoint of the linearized
Navier–Stokes equations (2.1) associated with inner product (A 2a) is

− ṗ = (U · ∇) p− (∇U)T p + ∇σ + Re−1∇2 + λ(x) p(x), (2.23a)

0 = ∇ · p, (2.23b)

p = pT at t = T , (2.23c)

This system of equations describes the evolution of adjoint flow field p(x, t) = (u∗, v∗)T

backwards in time. The term σ denotes the adjoint pressure field. The boundary
conditions for p are given in § A.1 of Appendix A.

The evolution operator associated with (2.23) is

p(x, s − t) = T∗(t) p(x, s), (2.24)

so that given an adjoint field at time s the adjoint evolution operator provides
a solution at an earlier time s − t . Again, the above operator is approximated
numerically using a timestepper solving (2.23). In § A.1 of Appendix A it is shown
that T∗ is in fact the adjoint of T under the inner product (A 2a). Furthermore, the
infinitesimal generator A∗ of T∗ is the adjoint of A given in (2.5) (Pazy 1983).

The adjoint linearized Navier–Stokes equations and their corresponding evolution
operator form the basis of the adjoint input-output system dual to (2.12). This can
be obtained in three steps: (i) derive the adjoint input and output operators B∗ and
C∗; (ii) use B∗, C∗ and T∗ to derive the adjoint controllability and observability
operator L∗

c and L∗
o; and (iii) identify the adjoint state space with the system which

is associated with L∗
c and L∗

o.
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The adjoint of the input and output operators B and C associated with the inner
products (A 2b) and (A 2c) are

C∗ = (C∗
1, C∗

2) = (h(x; xz), h(x; xv)) (2.25)

and

B∗ p =




B∗

1 p
0

B∗
2 p



 =

∫

Ω




h(x; xw)T p

0

h(x; xu)T p



 dx dy, (2.26)

respectively.
The adjoint controllability and observability operators L∗

c : ! → #((−∞, 0]) and
L∗

o : $([0,∞)) → ! associated with the inner products (A 2b) and (A 2c) (derived
in § A.2 of Appendix A) are given by

L∗
c(−t) p(x, 0) = B∗T∗(−t) p(x, 0), (2.27a)

L∗
ot(t) =

∫ ∞

0

T∗(τ )C∗t(τ ) dτ, (2.27b)

where t ∈ $ and p ∈ !. The first mapping, L∗
c , is from the adjoint state at time

t = 0 onto a signal in # at time −t . The mapping L∗
o is from an output signal in $

in t ∈ [0,∞) to a state in ! at t = 0. In analogy to the case of the forward problem
defined by (2.12), it can be seen that these two mappings are the observability and
controllability operators of the following state-space system:

− ṗ = A∗ p + C∗t, (2.28a)

e = B∗ p. (2.28b)

This system has two inputs contained in the vector t =(z∗, v∗) with t ∈ $ and
three outputs contained in the vector e =(w∗, u∗, g∗) ∈ #. Comparing the above
adjoint equations with (2.12) we observe that the outputs and inputs have exchanged
places. In the dual system (2.28), the adjoint flow field is forced by the outputs;
the adjoint problem is then used to identify flow fields yielding the largest output
response (Dullerud & Paganini 1999).

3. Input–output analysis
In this section, the main input-output characteristics of our problem are analysed in

order to identify the modes to retain in a low-order model. We introduce the concepts
of Gramians and balancing, using the operators defined in the previous section.
For a more detailed presentation of systems theory please refer to Kailath (1980)
and Curtain & Zwart (1995). The analysis amounts to computing the eigenmodes of
three operators: LcL∗

c , L∗
oLo and LcL∗

cL∗
oLo. The three sets of modes correspond

to the flow structures that are the most easily influenced by the input (controllable
modes), the states that produce the largest output energy (observable modes) and the
most relevant states for the input-output behaviour (balanced modes). For the sake
of clarity, we will show numerical results obtained using only the first input B1 and
the first output C1, i.e. single-input and single-output system (SISO). We will return
to the multi-input multi-output (MIMO) state-space system with input vector f and
output vector y in § 4. The three sets of eigenmodes mentioned above can be computed
numerically for systems with many degrees of freedom by using the following two
approximations:
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(i) ‘The timestepper’: As mentioned above, solutions of Navier–Stokes system (2.12)
in input–output form are obtained numerically, using a forward timestepper, which
approximates the action of evolution operator T. An adjoint timestepper is used
for computing solutions of the associated adjoint system (2.28) and the action of
the adjoint evolution operator T∗. The numerical code employed is described in
Appendix C. In the simulations presented, we have used 768 collocation points
in the streamwise direction x and 101 points in the wall normal direction y, with a
computational box of dimensions Lx =1000 and Ly =30 (see figure 1). The discretized
system has thus m≈ 105 degrees of freedom.

(ii) ‘The snapshot method’: The controllable and observable modes introduced next
are computed using the snapshot method introduced by Sirovich (1987). Recently
Rowley (2005) extended this method to obtain balanced modes. The snapshot
technique is described in Appendix B. For the results presented, the flow structures
are computed by collecting 1600 snapshots of the forward simulation, using each
input as initial condition, and 1600 snapshots of the adjoint simulation, using each
output as initial condition. The snapshots were taken with equal spacing in the time
interval (0, 4000).

3.1. Controllable modes

We begin our input–output analysis by searching for flow states that are most easily
triggered by a given input. This issue is related to the concept of controllability, which,
in general, quantifies the possibility of steering the flow between two arbitrary states.
A state u is controllable if it belongs to the range of Lc; that is u = Lcf(t) exists for
some f(t)†. A commonly adopted interpretation of controllability is illustrated by the
following optimal control problem: what is the minimum input energy ‖f‖2

#((−∞,0]) in
the time span t ∈ (−∞, 0] required to bring the state (if possible) from zero to the
given initial condition u(x, 0) = u0?

Assuming that u0(x) has a unit norm and that it is controllable, it can be shown‡
that the optimal input is given by

f = L∗
cP−1u0, (3.1)

where P is the controllability Gramian defined as

P = LcL∗
c =

∫ 0

−∞
T(−t)BB∗T∗(−t) dt =

∫ ∞

0

T(t)BB∗T∗(t) dt. (3.2)

In the first equality (2.19) and (2.27a) have been used. Using (3.1) the minimum input
energy is given by

‖f‖2
#((−∞,0]) =

∫

Ω

uT
0 P−1u0 dx dy. (3.3)

The controllability Gramian P provides a means to rank different states according
to how easily they can be influenced by an input. In particular, the most easily
influenced, or the most controllable, flow structures are the eigenfunctions of P

† The system (2.12) is called exactly controllable if all states u ∈! can be reached for some input.
This is rarely the case for elliptic/parabolic PDEs, and a less restrictive condition is approximate
controllability, where any state u ∈ ! can be approximated arbitrary closely by controllable
elements (Curtain & Zwart 1995).

‡ For the finite-dimensional case see Lewis & Syrmos (1995) and Dullerud & Paganini (1999).
In the general case P−1 is well defined on any finite-dimensional subspace of !.
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Figure 3. Instantaneous snapshots of the streamwise disturbance component at
t = 120, 600, 1200 and 1800 triggered by an impulse in B1.

associated with the largest eigenvalues of

Pφc
i = λc

i φ
c
i . (3.4)

The superscript c stands for controllable modes. Note that P is a self-adjoint
and positive semi-definite operator whose eigenvalues are real and positive and
the eigenfunctions mutually orthogonal. If λc

i - 1, the corresponding eigenfunction
φc

i requires very large energy to be excited by the input, since (λc
i )
−1 is proportional

to ‖f‖#((−∞,0]). The mode is then referred to as (nearly) uncontrollable.
For linear systems the controllability Gramian corresponds to the covariance of

the state response to an impulse in time. Therefore, the controllable modes can be
regarded as POD modes (Ilak & Rowley 2008; Bagheri et al. 2008). Traditionally,
the interpretation of these modes is that they represent decorrelated energy-ranked
flow states. For example the first POD mode φc

1 is the most energetic structure in the
flow, containing λc

1/
∑∞

i=1 λ
c
i × 100 % of the total flow energy. These modes can be

conveniently obtained by collecting r snapshots of the flow at discrete times t1, . . . , tr
and solving an r × r eigenvalue problem (Sirovich 1987).

The controllable modes can thus be computed from the response of the flow to an
impulse, δ(0):

u(x, tj ) = T(tj )B1. (3.5)

The impulse response can be used to build the Gramian and compute the most
controllable modes as shown in Appendix B. Figure 3 shows the streamwise velocity
component of the instantaneous velocity field after an impulse from B1 at four
different times. The generation and convection of a wavepacket with a dominant
spatial wavenumber and a propagation speed of about 0.4U∞ can be observed. The
wavepacket grows in amplitude and size in the x direction, until it reaches the
beginning of the fringe region at x = 800. As it enters this region, the disturbance is
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Figure 5. (a) The normalized eigenvalues λc
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lable modes and observable modes respectively. (b) The Hankel singular values σi cor-
responding to the balanced modes.

eventually damped by the fringe forcing, reproducing the effect of an outflow. The
input–output system (2.12) is thus asymptotically stable.

The u component of the four most controllable modes φc
i with respect to B1 are

shown in figure 4, while the corresponding eigenvalues λc
i are displayed in figure 5(a)

with square symbols. The first 20 controllable modes contain 99 % of the flow
energy, meaning that a significant part of the controllable subspace is spanned by
20 modes. Note that the flow structures that are the most easily influenced by the
input B1 are located downstream in the domain, where the energy of the response to
forcing is the largest. In other words, low energy is needed at location B1 to force
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large structures downstream owing to the amplification provided by the intrinsic
flow dynamics. Moreover, the eigenvalues shown in figure 5 come in pairs. The
corresponding velocity fields (see the first and the second modes in figure 4) have
the same wavepacket structure 90◦ out of phase. These modes represent travelling
structures (see also Rempfer & Fasel 1994).

3.2. Observable modes

For a given sensor it is important to determine whether the relevant flow instabilities
can be detected, and if so, to which accuracy. The flow fields which can be most easily
detected are called the most observable modes†. As in the case of the controllability
Gramian, the observability problem can also be cast as an optimization problem. We
wish to find the initial conditions that produce the largest output energy. The output
energy generated by the initial condition u0, assumed to be of unit norm, is given by

‖y‖2
$([0,∞)) = 〈Lou0, Lou0〉$([0,∞)) = 〈u0, L∗

oLou0〉! =

∫

Ω

uT
0 L∗

oLo︸ ︷︷ ︸
Q

u0 dx dy, (3.6)

where Q is called the observability Gramian. Using (2.20) and (2.27b) we obtain the
following expression for Q:

Q = L∗
oLo =

∫ ∞

0

T∗(t)C∗CT(t) dt. (3.7)

The observability Gramian provides a means to rank states according to their
contribution to the output. The most observable state φo

1 is given by the eigenfunction
of the operator Q corresponding to the largest eigenvalue of

Qφo
i = λo

i φ
o
i . (3.8)

The superscript o stands for observable modes. Note that Q is a self-adjoint and
positive semi-definite operator so that its eigenvalues are real and positive and
its eigenfunctions mutually orthogonal. The most observable mode φo

1 contributes
λo

1/
∑∞

j=0 λ
o
j × 100 % to the total sensor energy; the second most observable mode φo

2

contributes λo
2/
∑∞

j=0 λ
o
j×100 %; and so on. In particular, if λo

i - 1, the corresponding
mode φo

i does not make a contribution to sensor output and is called a (nearly)
unobservable mode. Note that the observable modes can be regarded as POD modes
of the adjoint system.

From the definition of Q in (3.7) it follows that the observable modes pertaining to a
given output can be determined from the impulse response of one adjoint simulation
(see Appendix B). The results of this simulation, T∗(t)C∗, can then be used to build
the second-order correlation of the flow field, T∗(t)C∗CT(t), and thus the Gramian.
The eigenvalue problem (3.8) is solved by using the snapshot method as explained
earlier for the case of the controllable modes. Here we present results for the first
output C1 only. Figure 6 shows the instantaneous adjoint field at four different times

p(x,−tj ) = T∗(tj )C∗
1, (3.9)

after an impulse from the first output, i.e. C∗
1δ(0). The triggered wavepacket travels

backward in time in the upstream direction with upstream-tilted structures. The
adjoint solution can be regarded as the sensitivity of the output C1 with respect to
linear perturbations to the underlying base flow. In other words, the flow structures

† The system (2.12) is approximately observable if Lou = 0 occurs only when u = 0, i.e. if the
knowledge of the output determines the initial state uniquely (Curtain & Zwart 1995).
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Figure 6. Instantaneous snapshots of the streamwise disturbance component at
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Figure 7. The streamwise velocity component of the four most observable modes φo
i .

excited by C∗
1 and shown in figure 6 are also the structures to which the sensor C1 is

the most sensitive. In this context, the negative time can be interpreted as the delay
between the time these structures are present and the instant they can be measured.

The u component of the four most observable modes φo
i with respect to C1 is shown

in figure 7, while the associated eigenvalues are reported as circles in figure 5(a). From
the latter figure, we observe that the leading 20 modes are responsible for nearly
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the entire output energy. The flow structures in figure 7 are initial conditions that
contribute with the most energy to the sensor output. These modes are real-valued
functions, and therefore two of them are needed to describe travelling flow structures,
which explains the appearance of pairs of eigenvalues in figure 5(a). There are two
further noteworthy remarks:

(i) The spatial support of the observable modes is far upstream, where the
sensitivity of the flow is the largest. Hence, the most observable structures are
spatially disconnected from the most controllable modes. This spatial separation
is also observed between the global eigenmodes of the linearized Navier–Stokes
equations and eigenmodes of the adjoint Navier–Stokes, where it is associated with
streamwise non-normality of the system (Chomaz 2005).

(ii) The most observable structures are tilted in the upstream direction, ‘leaning’
against the shear layer, and are similar to the linear optimal disturbances computed
by Åkervik et al. (2008). The optimal disturbance is the initial condition maximizing
the perturbation energy over the entire domain Ω at a fixed time t = T . On the other
hand, observable modes maximize the time integral of the perturbation energy in the
region defined by the output C1. Choosing the sensor location in correspondence to
the largest flow response leads therefore to the similarity between linear optimals and
observable modes. As noticed by Butler & Farrell (1992), the upstream tilting of the
optimal initial conditions can be attributed to the wall normal non-normality of the
governing operator; perturbations extract energy from the mean shear by transporting
momentum down the mean velocity gradient (the so-called Orr mechanism).

3.3. Balanced modes

So far we have identified modes that characterize either the response to forcing or
the sensitivity of an output. In this section we present the balanced modes (Moore
1981), which take into account both the response behaviour and the output sensitivity.
Similar to the previous section, we wish to excite the largest output energy. However,
rather than identifying dangerous initial conditions, using the mapping Lo as in (3.6),
we look directly for input signals which produce the largest output energy via the
input-output mapping LoLc given in (2.22).

The output energy generated by the past input f, assumed to be of unit norm, is
given at time t by

‖y‖2
$([0,∞)) = 〈Hf, Hf〉$([0,∞)) = 〈f, H∗Hf〉#((−∞,0]) =

∫ 0

−∞
fT H∗Hf dt. (3.10)

If we let the sequence of input vectors fi with unit norm represent the eigenfunctions
of H∗H, i.e.

H∗Hfi = σ 2
i fi , (3.11)

then the output energy will be given by the square of the so-called Hankel singular
values (HSV) σi . The most dangerous input vector f1 with ‖f1‖#((−∞,0]) = 1 thus results
in an output signal which has been amplified by σ 2

1 . Note that σ1 ! σ2 ! . . . , so the
eigenmodes of the input-output map are ranked according to how much the input
signal is amplified, as it is filtered by the linear system and the output.

Using the controllability operator Lc we obtain the flow structure associated with
the forcing fi:

φoc
i =

1
√
σi

Lcfi . (3.12)
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Notice that σ−1/2 is a convenient normalization factor. The modes are denoted by the
superscript oc, which indicates that these modes are both observable and controllable.
The sequence of functions φoc

i are called the balanced modes, and as we show next,
they diagonalize the observability Gramian. Computing the output energy for fi and
using (3.12), we obtain

∫ 0

−∞
fTi H∗Hfidt =

√
σi〈fi , L∗

cQφoc
i 〉#((−∞,0]) = σi〈φoc

i , Qφoc
i 〉! = σ 2

i , (3.13)

where the definitions H = LoLc, H∗ = L∗
cL∗

o and Q = L∗
oLo are used. A diagonal

observability Gramian implies that these modes can be regarded as orthogonal if
this Gramian is used as inner-product weight matrix. With respect to inner product
defined in (A 2a), however, these modes are not orthogonal.

A sequence of functions ψoc
i , referred to as the adjoint balanced modes, which is

bi-orthogonal to φoc
i according to

〈
ψoc

i , φoc
j

〉
!

= δi,j , (3.14)

is needed to project our system on the basis given by the balanced modes. The
derivation is analogous to φoc

i , but now we consider instead the left eigenvectors si

of the input-output map H∗H, i.e.

HH∗si = siσ
2
i . (3.15)

The adjoint balanced modes are then given by

ψoc
i =

1
√
σi

L∗
osi . (3.16)

It is possible to show by the same procedure used in (3.13) that these modes diagonalize
the controllability Gramian:

〈ψoc
i , Pψoc

i 〉! = σi. (3.17)

Furthermore, the diagonal elements are also equal to the Hankel singular values.
The term balancing now becomes clear; using φoc

i and ψoc
i the controllability and

observability Gramians become diagonal and equal to the HSV. In other words, the
observability and controllability properties are balanced. This is useful for performing
model reduction, as it allows us to discard the modes which are both difficult to
measure and difficult to excite by the inputs.

To compute these modes, it is convenient to show that φoc
i are the eigenmodes of

PQ; multiplying (3.11) with Lc yields

LcH∗Hfi = PQφoc
i = σ 2

i φoc
i . (3.18)

The computation of the balanced modes and their associated adjoints can again be
accomplished using a timestepper and the snapshot method described in Appendix B.
In this case one combines the sequence of snapshots collected from the solution of
the forward problem (2.12) with a sequence of snapshots collected from the adjoint
system (2.28). In this way we can approximate the eigenvalue problem (3.18) to obtain
the balanced modes (Rowley 2005). The u component of the first four balanced modes
φoc

i with respect to B1 and C1 are shown in figure 8 and the corresponding adjoint
modes ψoc

i in figure 9. The HSV σi are shown in figure 5(b). As in the case of the
observability and controllability eigenvalues λc

i and λo
i , the singular values come in

pairs, indicating that the leading balanced modes are travelling structures. The same
observation was made by Ilak & Rowley (2008) for channel flow.
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From figures 8 and 9 we observe that the leading balanced modes appear also as
wavepackets, but they are somewhat more spatially extended than the controllable
POD modes (figure 4). Similarly, the adjoint balanced modes have a larger spatial
support than the observable modes (figure 7). As noticed by Ahuja et al. (2007)
and Ilak & Rowley (2008), we can account for both controllability and observability
through the non-orthogonality of the balanced modes. In the two previous sections we
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observed that for an input B1 located upstream and an output C1 located downstream,
the associated controllable and observable modes are spatially located in different
parts of the domain. The controllable subspace and the observable subspace are thus
separated in the streamwise direction. This is a consequence of the convective nature
of the instabilities arising in the Blasius flow in which disturbances grow in amplitude,
as they are convected in the downstream direction. Essentially, this separation implies
that the distribution of both the input and the output cannot be captured by an
orthogonal projection onto the leading modes of only one subspace. Conversely, in a
bi-orthogonal projection the adjoint balanced modes account for the output sensitivity
and the direct balanced modes for the most energetic structures.

4. Model reduction
Since the disturbances are represented by an input, and the objective consists of

minimizing an output signal, capturing the input–output behaviour of the system –
described by the mapping LoLc – is sufficient for the design of optimal and robust
control schemes. The flow structures that are neither controllable nor observable
are redundant for the input-output behaviour. Moreover, the states that are nearly
uncontrollable and nearly unobservable can be discarded, since they have a very weak
influence on the input-output behaviour. A systematic approach of approximating
the system given by (2.1) with a finite-dimensional model, which preserves the main
input-output behaviour, is called balanced truncation (Moore 1981). As we show
next, balanced truncation amounts to a projection of state-space system (2.12) on the
leading balanced modes.

We now return to the MIMO state-space system with input vector f and output
vector y. The measurement noise acts on the output signal and affects the perturbation
dynamics only in the closed-loop system and is hence not included in the analysis.

4.1. Galerkin projection

Any flow field can be approximated as a linear combination of the leading r balanced
modes:

ur (x, t) =
r∑

j=1

qj (t)φ
oc
j (x), (4.1)

where qj = 〈u, ψoc
j 〉! is the expansion coefficient. Inserting the above expansion

into (2.12) and taking the inner product with the adjoint balanced modes ψoc
i ,

the following r-dimensional state-space form is obtained:

q̇ = Aq + B1w + B2u, (4.2a)

v = C1q + lu, (4.2b)

z = C2q + αg . (4.2c)

This system is referred to as the ROM. The column vector q contains qj , and the
entries of the matrix A, column vector B1 and row vector C1 are

Ai,j =
〈
ψoc

i , Aφoc
j

〉
!

, (4.3a)

B1,j =
〈
ψoc

j , B1

〉
!

, (4.3b)

C1,j = C1φ
oc
j (4.3c)
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Figure 10. (a) The Hankel singular values (black symbols) are compared to the diagonal
entries of the controllability (red) and observability (blue) Gramians associated with the
balanced reduced-order system. (b) The H∞ model reduction error. The upper and lower
theoretical bounds are depicted with grey lines, and the actual model reduction error is shown
with black symbols.

for i, j =1, . . . , r . The components of the vectors C2 and B2 are obtained in the same
manner as those of B1 and C1. The evolution operator associated with (4.2) is

T (t) = eAt =
∞∑

j=0

(At)j

j!
. (4.4)

Notice that the balanced modes are computed accounting for all the inputs (except
the measurement noise) and outputs, and the Galerkin projection (4.2) is performed
only once. The projection of A on the balanced modes can be approximated by the
finite-difference method, using the timestepper and (2.5). For the results presented, δt
was chosen to be 10−4 after a convergence study.

To validate the properties of the snapshot-based balanced truncation, we
constructed the reduced model (4.2) and computed its controllability and observability
Gramians. The projected system is internally balanced only if its Gramians are
diagonal and equal to the HSV. We found that the first 70 × 70 elements of both
Gramians were diagonal. In figure 10 we compare the leading 100 diagonal elements
with the HSV. The first 70 modes are observed to be bi-orthogonal to each other
down to numerical accuracy. However, for higher modes, as the numerical round-off
errors increase, the bi-orthogonality is gradually lost, and off-diagonal elements are
observed in both Gramians. By increasing the numerical resolution and the number
of snapshots it is possible to increase the number of balanced modes. However, – as
noticed by (Moore 1981) – the ratio σ1/σi serves as a condition number for φoc

i , and
therefore the balanced modes corresponding to very small HSV can be ill conditioned
independent of the numerical approximations.

4.1.1. Performance of the ROM

In this section the input-output behaviour of the ROM (4.2) is compared to the full
Navier–Stokes system (2.12). We begin by comparing the impulse response from all
inputs to all outputs. In figure 11 three signals B1 → C1, B1 → C2 and B2 → C1 are
shown with black lines. The response of C2 to forcing in B2 is zero, since disturbances
travelling upstream are quickly damped. These impulse responses were obtained by
using the timestepper with ∼105 degrees of freedom. The impulse responses of the
ROM (4.2) with r = 50 given by y(t) = CeAtB are shown with red dashed lines. We
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Figure 11. The impulse response from B1 → C2 (a), B2 → C1 (b) and B1 → C1 (c). The
black solid line represents direct numerical simulations with 105 degrees of freedom and the
red dashed line the balanced reduced-model with 50 degrees of freedom.

observe that reduced model registers the same signal as the full model from all
inputs to all outputs. The wavepacket triggered by the impulse of B1 reaches the
first sensor C2 after 600 time units and the second sensor C1 after 1500 time units.
The wavepacket triggered from the actuator reaches the second sensor after 600 time
units.

The frequency response of the full system and the ROM are compared next.
The frequency response is related to the Laplace transform of the impulse response
(B →C ) (see, e.g. Skogestad & Postlethwaite 2005), which in our case results in the
2× 3 transfer function matrix (TFM):

G(s) = C(s −A)−1B (4.5)

with s ∈ %. The element Gi,j contains the response from Bj → Ci . The TFM of size
2× 3 of the reduced model is similarly defined as

Gr (s) = C(sI − A)−1B (4.6)

with I as identity matrix of size r .
Due to the linear nature of the equations, a sinusoidal input signal eiωt with

constant frequency ω will generate an output with the same frequency but with a
phase shift Arg{G(iω)} and a different amplitude |G(iω)|. The frequency response
gain is usually measured by the largest singular value of the TFM (Skogestad &
Postlethwaite 2005). For the full model we do not have an explicit expression of the
TFM. Therefore, we make use of our timestepper and apply a sinusoidal signal with
a constant frequency ω in each input and extract the periodic signal from the outputs
once the initial transients have died out. Note that computing the frequency response
with the timestepper in this way does not take into account the interaction of input
signals, since only one input is active at a time.
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outputs computed using the timestepper is shown with red symbols. The largest response is for
ω=0.06 with a peak value of 144.6. For ω ∈ [0, 0.03] the frequency response from the actuator
to objective function (B2 → C1) dominates. The frequencies with the largest gain are obtained
from disturbances to objective function (B1 → C1) in the range ω ∈ [0.03, 0.07], and finally
for higher frequencies the response from disturbances to measurement sensor (B1 → C2) are
amplified the most. The frequencies in the grey domain are amplified. Also shown are the
frequency response (the envelope) of the reduced model TFM Gr (iω) with ranks 2 (green), 50
(blue) and 100 (black).

In figure 12 the envelope of the TFM amplitudes – the largest amplification of all
the frequency responses from B1 → C1, B1 → C2 and B2 → C1 at each ω – for the
full model of order 105 is shown with red filled circles. In the same figure the TFM
amplitudes of ROMs of order r = 2, 50 and 100 are shown. We observe that the ROM
of order 2 captures the most important aspect of the input-output behaviour, which is
the response of the most dangerous frequency, i.e. the peak response of the full model.
The model with 50 modes is able to estimate the gains of all the amplified frequencies
but fails to capture the damped low and high frequencies. Adding 50 additional
modes results in a model that preserves the input-output behaviour correctly for
all frequencies. Note that there are no isolated eigenvalues in the spectrum of the
spatially developing Blasius flow (Ehrenstein & Gallaire 2005; Åkervik et al. 2008),
and therefore the frequency response is rather smooth with no peaks. Low-pass filters
of this form cannot be represented with only a few degrees of freedom.

Finally, the model reduction error is computed and compared to the theoretical
bounds given by the Hankel singular values. An attractive feature of balanced
truncation is the existence of error bounds (which are obtained a priori to Galerkin
projection):

σr+1 < ‖G−Gr‖∞ " 2
n∑

j=r+1

σj . (4.7)

The infinity norm of the transfer function equals the peak value of the frequency
response gain based on the largest singular value, i.e.

‖G(s)‖∞ = max
ω

σ1(G(iω)). (4.8)

Estimating the model reduction error (4.7) amounts to the calculation of the difference
of the peak values of frequency response of the reduced-order and the Navier–Stokes
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Figure 13. The closed-loop system. The plant represents the input-output system given
by (2.12) subject to external disturbances w. The controller of the order 50 forces the
Navier–Stokes equations with the input signal u based on the noisy measurements v, so
that the effect of w on the output signal z is minimized.

systems. For the latter system, we use the peak value of the amplitude envelope as
shown in figure 12 instead of the largest singular value. The error norm for the
balanced truncation model is shown in figure 10(b) with black symbols. The error
norm is close to the lower bound given by the HSV for the first 50 modes. The peak
value for the Navier–Stokes system is 144.6 which is gradually approached by the
ROM, until it saturates at a peak value of 144.5 due to numerical round-off errors.
Note that the error is somewhat lower than the theoretical bounds for the reduced
systems of orders 2 and 4. This is because the frequency response of the full system
is obtained numerically using our timestepper and because ‖G‖∞ is based on the
maximum of the envelope of the TFM instead of its largest singular value.

A thorough comparison between the ROMs obtained with POD modes and
balanced modes can be found in Ilak & Rowley (2008) for the case of channel
flow and Bagheri et al. (2008) for the linear Ginzburg–Landau equation. The latter
work also includes global eigenmodes of the linearized operator for comparison.

5. Feedback control
We will now develop a reduced-order feedback controller, which will have the same

dimension as the ROM (e.g. r = 50). The closed-loop behaviour and the objective func-
tion z will be investigated and compared to the uncontrolled flat-plate boundary layer.

5.1. H2-framework

The main idea of linear feedback control is shown in figure 13. As stated in the
introduction our objective is to find a control signal u(t), such that in the presence
of disturbances w(t), g(t) the perturbation energy represented by the state variable
u(x, t) is minimized downstream at the location defined by the sensor C1. This is the
H2 control problem.

In the previous section we showed that our reduced model (4.2) is able to capture
the input-output behaviour of the Navier–Stokes system (2.12). During the control
design process we can assume that the reduced model is the plant that we wish to
control. Once we have determined the control law for this approximating model, we
will apply it to the full Navier–Stokes system. Please refer to Anderson & Moore
(1990), Zhou et al. (2002) and Bagheri et al. (2008) for further details of the H2

control algorithm, as we will only outline the main steps.
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Following the notation introduced for the reduced model (4.2), the objective
function (2.11) becomes

‖z‖2
$([0,∞)) =

∫ ∞

0

qT CT
1 C1q + l2uT u dτ. (5.1)

The determination of the control signal is based only on the measurements from
the sensor C2. However, for linear systems – due to the separation principle (Zhou
et al. 2002) – the feedback control law can be determined assuming that the complete
velocity field is known. The forcing needed to reproduce the flow only from wall
measurements can be computed independently. Hence, the control design of the H2

control is performed in the following three steps:
(i) Compute the control feedback gain K by solving a Riccati equation (see

Appendix D), so that the control signal is of feedback type, i.e.

u(t) = Kq(t). (5.2)

This leads to a new system (compared to (4.2)):

q̇ = (A + B2K)q + B1w, (5.3a)

z = C1q. (5.3b)

It is expected that the above perturbated operator A + B2K has dynamics that result
in a smaller amplitude of the output signal z than for the unperturbated operator A
in (4.2).

(ii) Compute the estimation feedback gain L also by solving a Riccati equation (see
Appendix D), so that the observer

˙̂q = (A + LC2)q̂ + Lv (5.4a)

is asymptotically stable, i.e. ‖q − q̂‖ → 0 as t → ∞. This implies that the estimated
state q̂ based on the measurements v approaches the true state q exponentially fast.

(iii) The compensator (controller in figure 13) is finally obtained as

˙̂q = (A + B2K + LC2)q̂ − Lv, (5.5a)

u = Kq̂. (5.5b)

Given the measurements signal v from the physical flow, the reduced-order controller
provides an optimal control signal u proportional to the estimated flow q̂ .

To apply feedback control in the numerical simulations, an augmented state-space
system with state (u, q̂)T is considered: its dynamics are given by (2.12) and (5.5),
inputs (w, g) and with the single output z:

(
u̇
˙̂q

)
=

(
A B2K

−LC2 A + B2K + LC2

)(
u

q̂

)
+

(
B1 0

0 −L

)(
w

g

)
, (5.6a)

z = C1u. (5.6b)

This system is referred to as the closed-loop system. Note that the feedback gain K
and estimation gain L have the dimension of the reduced model, resulting in a fast
online controller.

The spatio-temporal evolution of the perturbations governed by the closed-loop
system is obtained by solving (5.6) numerically using the timestepper described in
Appendix C and the small reduced system in (5.5) simultaneously. The latter system
is solved using a standard Crank–Nicholson scheme.



Input–output analysis, model reduction and control of flat-plate boundary layer 287

–5

0

5

w
 (

no
is

e)

–20

0

20

v 
(s

en
so

r)

–5

0

5

u 
(c

on
tr

ol
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10 000
–100

0

100

t

 z
 (

ob
je

ct
iv

e)

(a)

(b)

(c)

(d)

Figure 14. Input and output signals of the closed-loop system. The (a) random forcing w,
(b) measurements signal v, (c) control signal u and (d ) objective function z are shown. The
cheap controller is active between t ∈ [2500, 7500], represented by the grey area.

5.2. Performance of closed-loop system

We will now investigate the performance of the closed-loop system (5.6). In particular,
the output z of the closed-loop – with optimal control signal u – and of the linearized
Navier–Stokes equations without control are considered in the case of stochastic and
harmonic forcings in w.

Three controllers are investigated: (i) cheap control/low noise contamination with
l = 0.1 and α= 0.1; (ii) expensive control/high noise contamination with l =10 and
α= 10; and (iii) an intermediate case with l = 2 and α= 0.1.

Note that the purpose of the measurement noise g is to account for uncertainties in
the sensor measurements during the control design. When evaluating the closed-loop
performance – solving the controlled Navier–Stokes equations – the system is only
forced with w and not with g .

The performance of the control in case (i) is examined first. In figure 14 the
input and output signals are shown. The grey region indicates the time at which the
control is active. As disturbance signal w(t) we choose white noise; the corresponding
response of the sensor v(t) in figure 14(b) confirms the amplification and filtering
of the signal as it traverses the unstable domain. The disturbances reach the second
sensor (figure 14d ) after about 1500 time units, where they are amplified by one order
of magnitude. The control is activated at time t =2500; the actuator immediately
begins to force the system with a control signal (figure 14c) based on the output v,
and after a delay of another 1500 time units, the stabilizing effect of the control signal
on the output z is clear. When the control is deactivated (at t = 7500) the disturbances
start to grow again.

The wall normal maximum of the root mean square (r.m.s.) values of the streamwise
velocity component in cases with and without control are shown in figure 15. The
r.m.s. value grows exponentially downstream in the uncontrolled case until the fringe
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Figure 15. The r.m.s. values of the uncontrolled system (red line), cheap controller (solid
black), intermediate controller (dashed–dotted line) and expensive controller (dashed line).
The grey bar represent the size (defined as 99 % of the spatial support) and the location of
the two inputs, whereas the red bars correspond to the two outputs.
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Figure 16. Comparison of the frequency response from disturbances to objective function
(B1 → C1) of open-loop (red) and three closed-loop systems. The cheap, intermediate and
expensive controllers are represented by the solid black, dashed–dotted and dashed lines
respectively. The infinity norm of the open loop is ‖G‖∞ is 140.7, whereas for the closed-loop
systems ‖Gc‖∞ it is 6.4 (cheap), 9.4 (intermediate) and 101.9 (expensive).

region at x = 800. The r.m.s. of the controlled perturbation grows only until it reaches
the actuator position at which it immediately begins to decay. At the location of the
objective function C1 (x = 750), the amplitude of the perturbations is one order of
magnitude smaller than in the uncontrolled case for the cheapest controller.

The r.m.s. values in the case of the expensive (case ii) and intermediate (case iii)
controls are shown with dashed and dashed–dotted lines respectively. The expen-
sive control is very conservative, as the measurement signals are highly corrupted
and the control effort limited; it results only in a small damping of the disturbances.
The intermediate controller (case iii) is more cautious in reducing the perturbation
energy just downstream of the actuator when compared to the cheap controller.
However, it is interesting to note that at the location at which the objective function
is measured, the disturbance amplitude has decreased nearly as much as with the
cheap controller, although the total perturbation energy is much larger over the entire
domain.

In figure 16 the frequency response from w→ z of the uncontrolled Navier–Stokes
equations (2.12) (shown in red) is compared to that pertaining to the three controllers
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under consideration. The solid black line corresponds to cheap control, dashed–
dotted line to intermediate control and dashed line to expensive control. The first two
controllers suppress the most dangerous frequencies close to ω= 0.6 significantly. Note
that compared to the uncontrolled model, the highly damped frequencies ω> 0.11
have larger gain in amplitudes. This behaviour is often observed in closed-loop
physical systems and is related to the ‘waterbed’ effect; i.e. when certain frequencies
are suppressed, the response at other frequencies is amplified.

6. Conclusions
Model-based feedback control of the instabilities arising in a spatially inhomo-

geneous boundary layer flow is studied. To build a reduced-order model of the
problem, where the application of standard tools from control theory become
computationally feasible also for fluid flow systems, the main features of the flow
behaviour are investigated in an input-output framework. The observable, controllable
and balanced modes of the system have been identified. The location and structure of
these modes reflect the location of sensors/actuators and the perturbation dynamics;
i.e the observable modes are located upstream, where the sensitivity to initial
conditions is the largest. The controllable modes, conversely, are located downstream,
where the response to the forcing is the largest. The analysis presented here can be
closely related to stability analysis, using global modes and optimal disturbances,
except that inputs and outputs are taken into account. The quantity one wishes to
optimize for is now defined by a sensor output, while perturbations are introduced by
the inputs considered in the model. Furthermore, in view of the control application,
the formulation of the control objective function as an output is particularly
attractive in this input-output setting, since this behaviour is well captured by the
ROM.

Model reduction is achieved by projecting the governing equations on the leading
balanced modes of the system. We show that the input-output behaviour of the
flat-plate boundary layer can be captured accurately with an ROM based on these
modes. Finally, the model is used to apply feedback control based on measurements
from one upstream sensor and an actuator further downstream. The perturbations
growth could be reduced efficiently using the H2 optimal feedback controller.

It is also important to note that the approach followed here requires only
the use of a timestepper, a numerical code solving the Navier–Stokes equations,
and avoids the use of the large matrices defining the operators governing the
input-output behaviour. In addition, the present formulation accounts naturally for
localized sensors and actuators, and therefore, it can be directly applied to different
flow configurations. We are currently extending the analysis to three-dimensional
disturbances and also incorporating more realistic actuators (blowing/suction) and
sensors (wall measurements). These computations are now feasible and will take us a
step closer to using the controller in actual experiments.

The authors would like to thank Professor Martin Berggren, Professor Gunilla
Kreiss, Espen Åkervik, Milos Ilak, Antonios Monokrousos and Jonas Keissling
for many interesting discussions. This work was partially sponsored by the Air
Force Office of Scientific Research, through the European Office EOARD, under
grant/contract number FA8655-07-1-3053. The authors also acknowledge the financial
support from the Swedish Research Council (VR).
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Appendix A. Derivation of adjoint operators
A.1. The adjoint operators A∗, B∗ and C∗

For a bounded linear operator between two Hilbert spaces, L : !1 →!2, the adjoint
operator L∗ satisfies

〈Lq, p〉!2
= 〈q, L∗ p〉!1

for all q ∈!1, p ∈!2. (A 1)

The derivations make use of the following definitions of inner products:

〈u, p〉! =

∫

Ω

u(x)T p(x) dx dy, ∀u, p ∈!,

〈f, g〉# = fT g, ∀f, g ∈ #,

〈z, y〉$ =zT y, ∀z, y ∈$,

〈f, g〉#((−∞,0]) =

∫ 0

−∞
fT g dt, ∀f, g ∈ #((−∞, 0]),

〈z, y〉$([0,∞)) =

∫ ∞

0

zT y dt, ∀z, y ∈$([0,∞)).






(A 2)

Note that the kinetic energy of a perturbation u at time t is measured by ‖u‖2
! =

〈u, u〉!. We begin by deriving the adjoint operator of B : #→!, using the identity

〈Bf, u〉! = 〈f, B∗u〉#. (A 3)

The left-hand side is equivalent to
∫

Ω

(Bf)T u dx dy = fT
∫

Ω

BT u dx dy = 〈f,
∫

Ω

BT u dx dy〉#; (A 4)

using (A 3) we identify B∗ : !→ #

B∗u =

∫

Ω

BT u dx dy. (A 5)

The adjoint of the output operator C : ! → $ can be derived in an analogous
manner by using the identity

〈Cu, y〉$ = 〈u, C∗y〉!. (A 6)

The left-hand side can be written as

(Cu)T y =

∫

Ω

uT ĈT y = 〈u, ĈT y〉!, (A 7)

where Ĉ is the integrand in (2.17). We can now identify the adjoint output operator
C∗ : $→! as

C∗y = ĈT y. (A 8)

The evolution operator T : ! → ! has been defined in (2.4). The adjoint of T
satisfies

〈Tu, p〉! = 〈u, T∗ p〉!. (A 9)

We begin with taking the inner product of p and σ with the Navier–Stokes
equations (2.1a) and (2.1b), respectively. By integrating over the time domain and
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applying integration by parts we obtain

0 =

∫ t

0

∫

Ω

(
pT

[
∂u
∂t
− (−(U · ∇)− (∇UT )T +Re−1∇2 + λ(x))u − ∇p

]
+σ (∇ · u)

)
dx dy dt

=

∫ t

0

∫

Ω

(
−uT

(
∂ p
∂t

+ ((U · ∇)− (∇U)T +Re−1∇2 + λ(x)) p + ∇σ
)
− p(∇ · p)

)
dx dy dt

︸ ︷︷ ︸
1

+

∫ t

0

[B.C.]Ω dt

︸ ︷︷ ︸
2

+

∫

Ω

u(t)T p(t) dx dy −
∫

Ω

u(0)T p(0) dx dy

︸ ︷︷ ︸
3

(A 10)

By requiring the first two terms to be zero we obtain the adjoint Navier–Stokes
equations with boundary conditions. They will be considered after the boundary terms
in time denoted by 3 in (A 10). We thus require that

∫

Ω

u(t)T p(t) dx dy =

∫

Ω

u(0)T p(0) dx dy. (A 11)

The left-hand side can be rewritten as
∫

Ω

(T(t)u(0))T p(t) dx dy = 〈T(t)u(0), p(t)〉!

= 〈u(0), T∗(t) p(t)〉! =

∫

Ω

u(0)T T∗(t) p(t) ,

where we can identify the action of the adjoint evolution operator T∗ : !→! as

T∗(t) p(t) = p(0). (A 12)

Now we proceed with deriving the adjoint equations associated with T∗. The spatial
boundary terms given by the second term in (A 10) are

∫ t

0

[B.C.]Ω dt =

∫ t

0

[
σu + u∗p + UuT p− Re−1 pT ∂u

∂x
+ Re−1uT ∂ p

∂x

]Lx

0

+

[
σv + v∗p + V uT p− Re−1 pT ∂u

∂y
+ Re−1uT ∂ p

∂y

]Ly

0

dt = 0.

If boundary conditions (2.2) on u are used and if we demand that p = (u∗, v∗), σ ∗

and that p satisfy

(σ, p)(0, y) = (σ, p)(Lx, y), (A 13a)

p(0, y) = p(Lx, y), (A 13b)

p(x, 0) = p(x, Ly) = 0, (A 13c)

we observe that the boundary terms vanish.
Finally, the first term in (A 10) defines the adjoint Navier–Stokes equations if we

demand that p satisfy (2.23). Together with boundary conditions (A 13b) and (A 13c),
(2.23) determine the behaviour of adjoint flow field p.

A.2. The adjoint operators L∗
c and L∗

o

The adjoint of the controllability operator Lc : #((−∞, 0]) →! is derived using the
identity

〈Lcf, u0〉! = 〈f, L∗
cu0〉#((−∞,0]). (A 14)
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We expand the left-hand side:

〈Lcf, u0〉! =

∫

Ω

∫ 0

−∞
(T(−t)Bf(t))T u0 dt dx dy

=

∫ 0

−∞
fT (t)(B∗T∗(−t))u0 dt

= 〈f(t), B∗T∗(−t)u0〉#((−∞,0]).

In the first equality the definitions of B∗ and T∗ from (A 5) and (A 9) were used. We
can now identify L∗

c : !→ #((−∞, 0])

L∗
c(−t)u0 = B∗T∗(−t)u0. (A 15)

In a similar fashion the adjoint of the observability operator Lo : ! → $([0,∞))
is defined by

〈Lou, y〉$([0,∞)) = 〈u, L∗
oy〉!. (A 16)

Expanding the left-hand side results in

〈Lou, y〉$([0,∞)) =

∫ ∞

0

(CT(t)u(t))T y dt

=

∫ ∞

0

∫

Ω

(ĈT(t)u(t))T y dx dy dt

=

∫ ∞

0

∫

Ω

uT (T∗(t)C∗y(t))T dx dy dt

=

〈
u,

∫ ∞

0

T∗C∗y dt

〉

!

,

where Ĉ is the integrand in (2.17). We can identify the adjoint observability operator
L∗

o : $([0,∞))→! as

L∗
oy(t) =

∫ ∞

0

T∗(t)C∗y(t) dt. (A 17)

Appendix B. The snapshot method
We will show how to approximate the eigenvalue problems (3.8), (3.4) and (3.18) in

order to compute the observable, controllable and balanced modes.

B.1. Approximate Gramians

We begin with considering the eigenvalue problem

Pφc
i = λc

i φ
c
i , (B 1)

where

Pφc
i =

∫ ∞

0

T(t)BB∗T∗(t)φc
i dt. (B 2)

The first step is to rewrite the action of the controllability Gramian P on φc
i in terms

of impulse responses of the state. Recall that the flow field triggered by an impulse
δ(0) applied to the input B1 is given by TB1. Let us define the vector ū containing
the impulse responses of all inputs (except the measurement noise) as columns, i.e.

ū = TB = (TB1(x), TB2(x)) = (u1(x, t), u2(x, t)). (B 3)
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Moreover, from the expression of B∗ and T∗ given by (A 5) and (A 9) respectively,
we can rewrite the action of B∗T∗ on φc

i as

B∗T∗φc
i =

∫

Ω

(TB)T φc
i dx dy =

∫

Ω

ūT φc
i dx dy. (B 4)

The controllability Gramian becomes

Pφc
i =

(∫ ∞

0

T(t)BB∗T∗(t) dt

)
φc

i =

∫ ∞

0

ū
(∫

Ω

ūT φc
i dx dy

)
dt. (B 5)

This expression is approximated by discretization in space and time. Suppose that
x =(x1, . . . , xn/2) is a grid in Ω with n/2 points. We construct an n × 2 matrix by
evaluating ū at the grid points, i.e.

û =




u1(x1, t) u2(x1, t)

...,
...

u1(xn/2, t) u2(xn/2, t)



 . (B 6)

The size of this matrix is n×2 because it has two velocity components, e.g. u1(xj , t) =

(u1,1, (xj , t), u1,2(xj , t))T . Similarly we define φ̂i as the following n× 1 column vector:

φ̂i =
(
φc

i (x1), . . . ,φ
c
i (xn/2)

)T
. (B 7)

The integral in Ω in (B 5) can now be approximated by
∫

Ω

ūT φc
i dx dy ≈ ûT Wφ̂i, (B 8)

where the n × n positive-definite matrix W contains the spatial integration weights
δxj

. The quadrature weights δxj
depend on the chosen quadrature rule. For instance

in our case, δxj
consist of the Chebyshev integral weight functions (Hanifi, Schmid

& Henningson 1996) in the wall normal direction and a trapezoidal rule in the
streamwise direction.

The expression given by (B 5) becomes

Pφc
i ≈

(∫ ∞

0

ûûT dt

)
Wφ̂i, (B 9)

where we recognize the term in the parenthesis as the state-covariance matrix. If
the flow fields are given as snapshots at discrete times t1, . . . , tm, we can further
approximate (B 9) with

(∫ ∞

0

ûûT dt

)
Wφ̂i ≈ XXT Wφ̂i. (B 10)

The n× 2m matrix X contains û(tj ) in column j , multiplied with the square root of
the quadrature coefficients δtj in time, i.e.

X = (û(t1)
√
δt1, . . . , û(tm)

√
δtm), (B 11)

where each column of X is referred to as a snapshot.
The eigenvalue problem given by (B 1) can now be approximated with the following

n× n eigenvalue problem:

XXT Wφ̂i = λc
i φ̂i , i = 1, . . . , n. (B 12)



294 S. Bagheri, L. Brandt and D. S. Henningson

It is prohibitively expensive to diagonalize the matrix XXT W when n ! 105. In
the method of snapshots (Sirovich 1987), the modes φ̂i can be approximated by
diagonalizing the 2m× 2m matrix XT WX instead. This is efficient when the product
of the number of snapshots and the number of inputs is much smaller than the
number of spatial grid points.

In the method of snapshots the modes φ̂i are expanded in snapshots, i.e. the columns
of matrix X. This can be formulated in matrix form as

φc
i = Xai , i = 1, . . . , 2m, (B 13)

with the column vector ai containing the expansion coefficients.
The above expansion is inserted into the large eigenvalue problem (B 12), which

results in the 2m× 2m eigenvalue problem

XT WXai = λc
i ai , i = 1, . . . , 2m. (B 14)

The eigenvalues λc
i are the same as the original eigenvalue problem, and the con-

trollable modes are recovered from (B 13). The orthonormal set of controllable modes
are given by

φ̂i =
1√
λi

Xai , φ̂T
i φ̂j = δij . (B 15)

There are some important computational issues which should now be commented
at: (i) The Gramian 3.2 is defined as an infinite integral, which means that in order
for the ‘approximate’ Gramian XXT W to be a sufficiently good approximation, we
should take snapshots for a long time. There are no restrictions on how to distribute
the snapshots in time, and it is prudent to store many snapshots when the flow energy
is large. (ii) Due to numerical round-off errors, often not all modes are orthogonal.
In our case with 2m =3200, the first 150 modes were orthogonal down to numerical
accuracy (i.e (φc

i )
T φc

i ≈ 10−15), whereas for higher modes the orthogonality condition
was gradually lost due to rounding errors. The ratio µi = λ1/λi can be used as a
condition number of the corresponding mode φc

i . Very large values of µi indicate
poor orthogonality due to numerical inaccuracy.

The observable modes are computed in a similar manner, but now the snapshots
are taken from impulse responses of the adjoint equations for each output, i.e.
p̄ =( p1, p2) = (T∗ĈT

1 , T∗ĈT
2 ) with Ĉ as the integrand in (2.17). The approximate

observability Gramian is

Qφo
i =

∫ ∞

0

T∗C∗CTφo
i dt =

∫ ∞

0

p̄
(∫

Ω

p̄T φo
i dx dy

)
dt ≈ YY T Wφ̂i, (B 16)

where Y is the n× 2m matrix:

Y =




p1(x1, t1)

√
δt1 . . . p1(x1, t1)

√
δt1 . . . p2(x1, tm)

√
δtm

...
...

...
p1(xn/2, t1)

√
δt1 . . . p1(xn/2, t1)

√
δt1 . . . p2(xn/2, tm)

√
δtm



 . (B 17)

The observable modes are computed in an analogous manner as the controllable
modes with Y , replacing X in (B 13)–(B 15).

B.2. Snapshot-based balanced truncation

To obtain the balanced modes, we must diagonalize the matrix PQ, which can be
approximated using the matrices X and Y , i.e.

PQφoc
i ≈ XXT WYY T Wφ̂oc

i = σ 2
i φ̂

oc
i . (B 18)
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We expand the balanced modes as linear combinations of the columns of X, with
ai = (a1, . . . , am)T as the expansion coefficients. Inserting this expansion in (B 18), we
get

0 = XXT WYY T WXai −Xaiσ
2
i = X

(
XT WYY T WXai − aiσ

2
i

)
. (B 19)

To solve this problem we can equivalently diagonalize XT WYY T WX or form the
singular value decomposition (SVD) of Y T WX. The latter decomposition is preferred,
since it is numerically more stable, i.e.

Y T WXbi = σi ai , i = 1, . . . , 2m. (B 20)

The normalized balanced modes and the associated adjoint balanced modes are
recovered from

φ̂oc
i =

1
√
σi

Xbi , ψ̂oc
i =

1
√
σi

Y ai , (B 21)

where (ψ̂oc
i )T φ̂oc

j = δji .
The method can be summarized in three steps: (i) Compute the impulse response

of each input; collect snapshots of the response; and construct X (B 11). (ii) Compute
the adjoint impulse response of each output; collect snapshots of the response; and
construct Y (B 17). (iii) Form the matrix Y T WX; compute its SVD; and recover the
balanced modes from (B 21). See Rowley (2005) for further details on the method.

Appendix C. Timestepper
The timestepper used in this work for both the forward and the adjoint equations

is a spectral code described in detail in Chevalier et al. (2007b).
If f (x, y, t) is a velocity component, then the discrete approximation is the

Chebyshev-Fourier series

f(t) =

ny∑

l=0

Tl(y)

nx/2∑

m=−nx/2

eiαmxûlm + c.c., (C 1)

where Tl is the lth Chebyshev polynomial, αm =2mπ/Lx , and nx = 768 and ny = 101
the numbers of collocation points in each direction. The coefficients ûlm are complex
functions. The associated collocation grid is defined by yl =(Ly/2)(1−cos(πl/ny)) and
xm =Lx(1/2+m/nx) with Lx = 1000 and Ly = 30. The discretized system of equations
is projected onto a divergence-free space by transforming to v–η formulation and
integrated in time using a third-order semi-implicit scheme.

To retain periodic boundary conditions, which is necessary for the Fourier
discretization, a fringe region is added at the end of the physical domain in which a
forcing is applied so that the flow smoothly changes from the outflow velocity of the
physical domain to the desired inflow velocity. For the linearized equation the desired
inflow condition is zero; so the fringe forcing is of the form F = λ(x)u, where

λ(x) = −λmax

[
S

(
x − xstart

-rise

)
− S

(
x − xend

-fall

)]
. (C 2)

Here λmax is the maximum strength of the damping, xstart = 800 to xend = 1000 the
spatial extent of the region in which the damping function is non-zero and -rise = 120
and -fall =60 the rise and fall distances of the damping function. The smooth ‘step’
function S(x) rises from zero for negative x to one for x ! 1. We have used the
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following form for S, which has the advantage of having continuous derivatives of
all orders:

S(x) =






0 , x " 0 ,
1/
(
1 + e(1/(x−1)+1/x)

)
, 0 < x < 1 ,

1 , x ! 1 .
(C 3)

Appendix D. Riccati equations
We briefly outline the full-information control and estimation problems and their

solutions. The reader is directed to Anderson & Moore (1990), Lewis & Syrmos
(1995) and Bagheri et al. (2008) for derivations of the solutions.

The first step in the design of an H2 compensator involves the solution of an
optimal control state-feedback problem. The full-information problem is to find a
control u(t) as a linear function of the flow state q(t) that minimizes the deterministic
cost functional

J =
1

2

∫ ∞

0

qT CT
1 C1q + l2uT u dt (D 1)

while satisfying the initial value problem

q̇ = Aq + B2u, q(t = 0) = q0. (D 2)

The optimal control signal is given by

u(t) = − 1

l2
BT

2 X
︸ ︷︷ ︸

K

q(t), (D 3)

where X is a solution of the Riccati equation

0 = AT X + XA− 1

l2
XB2B

T
2 X + CT

1 C1. (D 4)

The solution to this equation provides the optimal steady feedback gain via the
relation (D 3).

The second step in the design of an H2 compensator involves the minimization of
the estimation error qe = q − q̂ given by the estimator

q̇e = Aqe + B1w + L(v− v̂), q̂(t = 0) = 0, (D 5)

v̂ = C1q̂, (D 6)

v = C1q + g , (D 7)

where w and g are temporal white noise signals. The solution is the feedback gain L
that minimizes the objective functional

J =

∫ ∞

0

qT
e (t)qe(t) dt. (D 8)

The functional (D 8) can be minimized if L is chosen as

L = − 1

α2
PCT

2 , (D 9)

where P is a solution of the Riccati equation

0 = AP + PAT − 1

α2
PCT

2 C2P + B1B
T
1 . (D 10)
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