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Outline

e Stability of fluid systems

— modal limit

— short time dynamics, matrix exponential
* Receptivity

— resolvent norm

— Resonance limit
— Adjoint modes

* Sensitivity
— Structural sensitivity
— Base-flow sensitivity



an example of instability and transition that is going to disappear...



Numerical simulation of a jet combustor: mixing of fuel and air
(Stanford University/NASA Ames)



Cirrus clouds developing in a jet stream over Saudi Arabia and the Red
Sea. The picture was taken from the Space Shuttle (NASA)
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An example of Kelvin-Helmoltz shear instability



Transition to turbulence

Reynolds pipe flow experime

nt (1883)

Transition is a complex physical
process

critically depends on the
disturbance environment

iS parameter-dependent

is important for the design of
fluid systems
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Transition to turbulence

Transition on a swept wing
Simulations by Hosseini (2013)

Transition is a compex physical
process

critically depends on the
disturbance environment

IS parameter-dependent

is important for the design of
fluid systems



Classical Transition

_ Outfloy,

turbulent boundary layer

Low levels of free-
stream turbulence
(<1%) > exponential
growth of TS and
secondary instability

secondary 3D
instability

Branch II turbulent spots

exponential
growth of 2D
TS waves

Branch I

flat plate
\A

high velocity A-vortices

low velocity :
contours of A, Nfloy

hairpin vortices




Bypass Transition

High levels of free- turbulent boundary layer__goutloV

stream turbulence
(>1%)-> exponential
growth of TS waves is
“bypassed”

(decaying)
freestream turbulence

turbulent spots

(laminar) streaks

high velocity
low velocity
contours of A,



Oscillators vs. noise amplifiers

Open flows: global instability and transient growth

Rotating cylinder

Hydrodymam::a‘ oscillabors:

Global instability
Intrinsic frequency
Local absolute instability (WKB)

Boundary layer under
free-stream turbulence

Noise ampléﬁe rs:

Globally stable
Broad-band frequency spectrum
Local convective instability (WKB)

Globally transient growth of perturbations!

t=7150.0



Two concepts of stability

* Linear stability: we are interested in the minimum
critical parameter above which a specific initial
condition of infinitesimal amplitude grows
exponentially

* Energy stability: we are interested in the maximum
critical parameter below which a general initial
condition of finite amplitude decays monotonically



Stability analysis



Hydrodynamic stability

* Solutions of Navier-Stokes: Couette, Poiseuille, boundary layer, Jet...

P

e (Can we observe them in the lab?

Couette flow, Re=400

Boundary layer

Turbulent chaotic motions



Stability

*

Stable Neutral
Unstable Conditionally

(nonlinearly) stable

We will talk about linear stability mostly



Overview

Stability analysis
— Baseflow and disturbances
— Linearised equations
— Normal modes, waves

Thermal instability
— Benard’s problem, natural convection
— Analytical solution

Instability of shear flows (jet, wake, channel, boudnary layers)
— Parallel flow assumption
— Viscous and inviscid instability
— Non-modal stability and transient growth
— Sensitivity analysis

Laminar-turbulent transition



1.

2.

3.

4.

5.

Stability analysis

Linear stability: steady base flow, solution of Navier-Stokes ekv.

Uu=UV,W), T=T(x;)

Disturbances u(x;,t), T'(x;,t)

Derive ekv for the disturabnce evolution % = F(u; U)
Assume small amplitudes, linear ekv. % — A(U)u

Assume u(x;,t) = e !

egienvalue problem —iwu = A(U)u



Linear stability: normal modes

Uy
:h 1
; X
Uy

e Homogeneous baseflowinxochz U = (U(y), 0, 0) , 1'= T(y)

+ Perturbations u(z;,t) = a(y)eF*Tima it

Wave-vector (k,m,)
W = w, + 1w; Complex frequency

k Wavenumber in x-direction

m Vavenumber in z-direction
w; >0 w; =0 w; < 0
Unstable Neutral Stable

' e ./



Thermal instability: Benard’s problem

Success story of linear stability

d \ >xory

Steady solution with linear temperature profile and
zero velocity

Warmer lighter particle below

Cold heavier particles above



Termiskt instabilitet: Benards problem

Triumf av linjar stabilitetsteori

A2

Destabilising force: Buoyancy

Restoring force: viscous forces and thermal diffusion



Termiskt instabilitet: Benards problem

Triumf av linjar stabilitetsteori

Destabilising force: Buoyancy

Restoring force: viscous forces and thermal diffusion
4
Rayleigh’s number Ra — M
KUV

(' Thermal expansion coefficient
K Diffusivity
UV  Viscosity
I’ Temperature gradient



Rayleigh-Benard instability
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Rayleigh-Benard instability

Rayleigh number: ratio between buoyancy forces (temperature
gradient) and viscous forces the governing parameter

Linear stability theory: above a critical Rayleigh number of
1708 the conductive state becomes unstable to infinitesimal
perturbations

Energy stability theory: below a critical Rayleigh number of

1708 finite-amplitude perturbations superimposed on the
conductive state decay monotonically in energy



Rayleigh-Benard instability

Rayleigh number: ratio between buoyancy forces (temperature
gradient) and viscous forces the governing parameter

Linear stability theory: above a critical Rayleigh number of
1708 the conductive state becomes unstable to infinitesimal
perturbations

Energy stability theory: below a critical Rayleigh number of
1708 finite-amplitude perturbations superimposed on the
conductive state decay monotonically in energy

Experiments show the onset of convective instabilities at a
critical Rayleigh number of about 1710 !!!



Plane Poiseuille flow

Reynolds number: ratio between inertial forces and viscous forces the
governing parameter

2b
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Plane Poiseuille flow

¥4
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Reynolds number: ratio between inertial forces and viscous forces the
governing parameter

Linear stability theory: above a critical Reynolds number of

5772 the parabolic profile becomes unstable to infinitesimal
perturbations

Energy stability theory: below a critical Reynolds number of

49.6 finite-amplitude perturbations superimposed on the
parabolic profile decay monotonically in energy
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Plane Poiseuille flow
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Reynolds number: ratio between inertial forces and viscous forces the
governing parameter

Linear stability theory: above a critical Reynolds number of
5772 the parabolic profile becomes unstable to infinitesimal
perturbations

Energy stability theory: below a critical Reynolds number of

49.6 finite-amplitude perturbations superimposed on the
parabolic profile decay monotonically in energy

Experiments show turbulent patches at a critical Reynolds
number of about 1000 !!!



Two opposite behaviors

Linear stability theory, energy stability theory and experiments
are in excellent agreement for Rayleigh-Bénard problem

Linear stability theory, energy stability theory and experiments
show significant discrepancies for plane Poiseuille flow

Questions

Can we explain the success and failure of stability theory for
the two examples?

Is there a better way to investigate the stability of plane
Poiseuille flow (and many other wall-bounded shear flows)?
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Subcritical transition

* The nonlinear terms of the Navier-Stokes equations conserve
energy

* During transition to turbulence we observe a substantial

increase in kinetic perturbation energy, even for Reynolds
numbers below the critical one.
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increase in kinetic perturbation energy, even for Reynolds
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» The increase in energy for subcritical Reynolds numbers is
related to a linear process, without relying on an
exponential instability;



Subcritical transition

* The nonlinear terms of the Navier-Stokes equations conserve
energy

* During transition to turbulence we observe a substantial

increase in kinetic perturbation energy, even for Reynolds
numbers below the critical one.

» The increase in energy for subcritical Reynolds numbers is
related to a linear process, without relying on an
exponential instability;

linear instability without an unstable eigenvalue!



Non-modal approach



Linear stability problem

e Start from linearised Navier-Stokes about base flow U

written as initial value problem

e

With solution in the form of matrix exponential




Norm of matrix exponential
q = exp(tL)qo

* Input output analysis:
maximum possible amplification at time t over
all initial conditions

’ tL)qol|?
(1) = max JIE — oy [9PCEL 0]

o |lg|* o0l




Norm of matrix exponential

q = exp(tL)qo

* Input output analysis:
maximum possible amplification at time t over
all initial conditions

2
G(t) = max il 5 || exp(tL)]||?
a0 ||qol

Definition of the norm of a matrix



Matrix norm ||G|| = max ||Gw|
|wl|=1

Euclidean scalar product ||”LUH§ = ’LUJHUJJ' H’wH2 = (w, w)

Matrix as transformation with associated amplification

|Guwlls [wHGHGw]1/2

wH w

Figenvalues of GE G orsingularvaluesof G:  GHGu, = \v;

Largest amplification for the largest singular value: A1, v

G
VA = max ||Guw|s = [Goul: Guy = uy

|w]j2=1 o2

Input and output basis v;, u;: G = UAVH



Eigenvalues vs Propagator Norm

:z — exm tL mo

* Matrix exponential difficult to compute
System eigenvalues used

; S: Column eigenvector
L =5S5AS5" Eigenvalue decomposition
A: Diagonal eigenvalues

|exp(tL)|]* = || exp(tSAS™H)|]* = HSengtAzﬁ_l\!Q

Traditional stability analysis:
Behavior deduced by system eigenvalues




Eigenvalues vs Propagator Norm

* Upper and lower bounds of G(t)

Lower bound e2tAmaz < | eXP(tL)HQ

The energy cannot decay at a faster rate than that given by
the least stable eigenvalue Arnaz

Upper bound | exp(tL)||* = [|exp(tSAS™H)||?
< [ISI]2[|S 1 |[PeAmeas




Bounds of the matrix exponential

e mar < lexp(tL)||* < ||S|P|| S [Pe* e

Condition number: k(S) = ||S||2||S_l||2

Two distinct cases:

upper and lower bound coincide:
/ﬁ:(S ) =N the energy amplification is governed by the least stable
eigenvalue



Bounds of the matrix exponential

e mar < lexp(tL)||* < ||S|P|| S [Pe* e

Condition number: x(S) = I1SII211.S~ 12

Two distinct cases:

upper and lower bound can differ significantly:
/43(5 ) > 1 the energy amplification is governed by the least stable
eigenvalue only at large times



Non-normality

k(S) = ISIFIISTHI* =1

k(S) = [ISIFISTHI* > 1

Normal stability problem:

orthogonal eigenvectors
Eigenvalues capture the dynamics

Non-Normal stability problem:

non-orthogonal eigenvectors
Eigenvalues capture the asymptotic
dynamics, not the transient behavior



Non-modal transient growth

 The non-normality of the system can give rise to transient
energy amplification

time

Although we observe exponential decay for large times, the non-orthogonal
superposition of eigenvectors can lead to short-time growth of energy.



Short time dynamics

* Taylor expansion of matrix exponential at t=0

E(t) = [|S]]* = (g,q) =
(exp(tL)qo,exp(tL)qo)

~ (({ +tL)go, I +tL)qo)

~ (g0, qo) + t{qo, (L + L™ )qo)

H
L Adjoint matrix defined by the norm used (Energy)



Short time dynamics

* I|nitial energy growth rate

1 dE| . = <(]0, (L + LH)qO>
E dt " (90, q0)

(L—|—LH) Hermitian matrix: numerical abscissa of L




The numerical range

e Generalization of the numerical abscissa

d d
-— @q, q) + (q, %fﬁ =

(Lq,q) + (q, Lq) =

Definition of numerical range:
Rayleigh quotient of L




The numerical range

Properties of the numerical range

1. The numerical range is convex
The numerical range contains the spectrum of L

If L is normal, the numerical range is the convex hull of the
spectrum

QOV

convex Non-normal system Normal system




The numerical range

* |t can substantially larger than the convex hull of the spectrum:
positive energy growth even if stable eigenvalues!

d 2

:
)/

Normal system Non-normal system

-8



Non-normal stability problems

The numerical abscissa (numerical range) governs the
short-time behavior. The sign determines the initial
energy growth or decay

The least stable eigenvalue governs the long-time
behavior. The sign of the real part of A, determines
the initial energy growth or decay




Rayleigh-Benard convection

Normal stability problem
The numerical range is the convex hull of the spectrum

The numerical range and the spectrum cross into the unstable
half-plane at the same Rayleigh number

Energy growth and instability occur at the Rayleigh number

The spectrum governs the flow behavior at all times

Rayip, = Rae, = 1708
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Plane Poiseuille flow

2b

¥4

Non-Normal S‘fablllfy PrOblem [T,

The numerical range is larger than the convex hull of the
spectrum

The numerical range crosses into the unstable half-plane
before the spectrum

Initial Energy growth occur before asymptotic instability

The spectrum governs the flow behavior only at long times

Reen = 49.6 < Reyyy = 5772

T T



Non-modal analysis

Short-time: numerical abscissa

Any time: matrix exponential

Long time: eigenvalues



Results for Poiseuille flow

* G(t) envelope over many individual growth curves
* for each point, a specific initial condition reaches its
maximum energy amplification at this point in time

Re =1000,a =1

Solid line: envelope G(t)

Dashed lines: evolution of
selected initial conditions



Results for Poiseuille flow

* G(t) envelope over many individual growth curves

* Potential for strong amplification of spanwise periodic
disturbances

G(1)
G(1)

40 50 60 70 80 0 50 100 150 200 250 300 350 400 450 500
1 1

Re =2500,aa=1,8=1 Re = 2500,a=0,8 = 2



Bypass transition

e Supercritical Poiseuille flow, Re = 10000

4

Over short time horizon,
streamwise independent sfreaks
are favored

35

3t

Streak
transient « .

growth Over long time horizon, waves

with weak or no streamwise
dependence are favored

1.5

1

05

(91
Modal growth
of Tollmien-Schlichting waves



Classical Transition

_ Outfloy,

turbulent boundary layer

Low levels of free-
stream turbulence
(<1%) > exponential
growth of TS and
secondary instability

secondary 3D
instability

Branch II turbulent spots

exponential
growth of 2D
TS waves

Branch I

flat plate
\A

high velocity A-vortices

low velocity :
contours of A, Nfloy

hairpin vortices




Bypass Transition

High levels of free- turbulent boundary layer__goutloV

stream turbulence
(>1%)-> exponential
growth of TS waves is
“bypassed”

(decaying)
freestream turbulence

turbulent spots

(laminar) streaks

high velocity
low velocity
contours of A,



Optimal initial condition

Initial condition that results in the maximum energy
amplification at a given time

q(t*) = exp(t"L)qo

la()II* = llaol* =1

propagator input amplification output



Optimal initial condition

propagator input amplification output

Singular value decomposition of a matrix




Optimal initial condition

propagator input amplification output

Singular value decomposition of a matrix

svd(exp(t*L)) UZVH

*) = || exp(t*L)|



Optimal initial condition

propagator input amplification output
Singular value decomposition of a matrix

svd(exp(t*L)) = UEVH

*) = || exp(t*L)|

Optimal initial condition Optimal final condition
left principal right principal
singular vector singular vector



Optimal disturbance: Poiseuille flow
Re =5000;a=0,8 =2

Optimal initial condition:
Counter-rotating streamwise vortices

1-‘_3.:.:.::\: IR A A L

meatat Nt NNINE I I S P N S s

—— N 7/ 7 e JTTTENNNN | S e

Cross-stream _\‘\\\‘\1 ’;’7,,‘3\\\\\\\H ok
. o N .
perturbation > o 11| Proo i 1“
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velocity A N A R R R NN LA
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0 2 4 6

Z
Optimal final condition:
streamwise streaks

Streamwise
perturbation > O

velocity

'10 2 4 6



Non-Modal Growth

Lift-up mechanism in shear layers
(Ellingsen & Palm 1975, Landahl 1980)

Streamwise Particle displaced in the

vortices wall-normal direction
retain their horizontal
momentum
- | |

Streamwise vortices
induce streamwise
streaks

- Streamwise

streaks
In boundary layers: wall-normal shear is O(Re)
——> streak growth O(Re)



Outline

* Receptivity
— resolvent norm

— Resonance limit
— Adjoint modes

* Sensitivity
— Structural sensitivity
— Base-flow sensitivity



Receptivity

* Interested in the response of a fluid system to external excitations (free-
stream turbulence, roughness, acoustic waves...)

d
“a=1T
- q+f

External forces

General solution for zero initial condition: convolution integral
t

0 — / exp((7 — H)L) f(r)dr

0



Optimal response

* Linear problem: consider the case of harmonic forcing  f = feim

Regime solution given by the resolvent |G, — (tw — s
Written as an input-output
problem: optimal response

A~ . o L -1 o
R(W)ZmaXHqPH ma,XH(M ) fH _ S —1

Ol s /1]



Bounds of resolvent norm

* Diagonalize the system matrix L

1
< ' —L_l —

S: Column eigenvector

Eigenvalue decomposition
A: Diagonal eigenvalues




Bounds of resolvent norm

* Diagonalize the system matrix L

S: Column eigenvector
Eigenvalue decomposition
A: Diagonal eigenvalues

1
dist{iw, A}

< |l(iw — L)Y =

Normal system: upper and lower bound coincide:
/ﬁ)(S ) =1 the classical resonance conditions holds
minimum distance from the spectrum



Bounds of resolvent norm

* Diagonalize the system matrix L

S: Column eigenvector
Eigenvalue decomposition
A: Diagonal eigenvalues

1
dist{iw, A}

< |l(iw — L)Y =

Non-Normal system: upper and lower bound differ
,{( S ) > 1 we can have a pseudo-resonance
Strong amplification also far from system eigenfrequency



Optimal forcing

* Singular value decomposition svd of the resolvent norm

(i = L)~ ] = || = L)7]| g,
Transfer function Input Amplification Output

@l =11f1l =1

(lw* — 1||

Optimal harmonic forcing Optimal harmonic response
left principal right principal
singular vector singular vector




Results for Poiseuille flow

Largest possible amplification versus forcing frequency

10° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
01 008 0 0.05 DVI(DOJS 02 02 023 038 04 0 02 04 06 08 1 12

a=0,0=2 a=1,0=1



Results for Poiseuille flow

Resolvent norm in the «tom[ote.x Ptame

Rw) //@\ (€7

ol @ & 00

Re =2500,aa=0,8=2 Re=2500,a=1,6=1



Component-wise energy transfer

* Define transfer function with input/output matrices
A . —17
Gp = (iw—L)" " f

H(w) = Ciw— L) 'B

Take the worst case amplification over all frequencies

| H||loo = max  opmaez(H)

— o< W< OO



Component-wise input-output analysis
fo

alysis

— ot —AA‘ ol

Jovanovic & BGMieh, JFM, 2004 0001  0.0° :;gO_T, “7‘1;:‘7”0001 ’?: : I 1 0001 001




Adjoint system

Inner Prodma& (p,q) = qu
Adjoint system (o) = ¢ Lp = (L" )" p = (L% p,q)
Elgenmodes/values Aiqi = La;; )\;C];-_ =" q;-L

Bi“OrEkOSOV\Qqu <q;;, 0n) = Omn



Adjoint system
Elgenmodes/values Aiqi = Lag;; )\;q;'r — LHq;'r

Bi-—-or&hogonaii&w <( LA _ )\Zl)qu‘w Qn> — (0

<Q7_7|_7,7 (L — )‘m)Qn> — <q;§, (L — Am — L+ )\n)Qn> =0

(An — Am)@qu Gn) =0

<qT—|r_),7 Qn> — 5mn



Expansion using eigenmodes

Bi~orthogonality (Grms Gn) = Omn
Expand solution q(t) = Z ki et

Griven nitial condition Qo

compute coefficients Kn
usiing bLmorEhogomauEv

(ool = > (il 1) ={tind




Use of adjoint field for receptivity

C Ou )
— + L(U,Re)u+Vp=0
Linearized Navier-Stokes 0t
(u, p) \_ Vou=0 )
Differentioble fields (fT,m™)

Sum and mul.&pi.v

K% + L(U, Re)u + W) T (Vwmt

Integrate by parts over
Eie and space



Use of adjoint field for receptivity

Integrate bj P&r&s over ktime and space

//[(—+LUReu+Vp) f++(v.u)m+]

:-/Ot/D[u (8§++L+(URe)f++Vm )+p(v-f+)]+/0 a“étf++/pv-J

where

U, Re)u = — —Vu
L( eyu=U-Vu+u-VU Rev

LY (U Re)ft =U-Vft —-VU - ft + —v2f+

Re

1
—(VfTu—Vu-fH)+mTu+pf"

= Ulu- f7) + 7=



Use of adjoint field for receptivity

Integrate by parts over time and space

//[(——I—LUReu—|—Vp) f++(v-u)m+]
//[ o (V) +/0 auétf++/DV.J

Definition of adjoint problem

Assume volume forcing, mass source and integrate in time

0
a—?%—L(URe)u%—Vp f V-u=0Q




Use of adjoint field for receptivity

Assume initial condition for adjoint system fH(t) = u(t)

u(t).u(t)=u(0)-f+(0)+/0t/D(f-f++Qm+)+/FDJ.n



Use of adjoint field for receptivity

Assume initial condition for adjoint system fH(t) = u(t)

u(t).u(t)=-+/Ot/D-+Qm+)+/FDJ.n

Adjoint velocity gives sensitivity to initial condition and forcing



Use of adjoint field for receptivity

Assume initial condition for adjoint system fH(t) = u(t)

u(t).u(t):u(O).f+(0)+/Ot/D(f-f++-)+/FDJ.n

Adjoint pressure gives semsitivity to mass source




Use of adjoint field for receptivity

Assume initial condition for adjoint system fH(t) = u(t)

u(t) - u(t) =u(0)-f+(0)+/0t/D(f°f++Qm+) +/FD-

Gradient of adjoint field gives sensitivity to boundary
o _




Outline

e Stability of fluid systems

— modal limit

— short time dynamics, matrix exponential
* Receptivity

— resolvent norm

— Resonance limit
— Adjoint modes

* Sensitivity
— Structural sensitivity
— Base-flow sensitivity



Structural sensitivity

e Sensitivity to internal changes

A(p)q — )\Bq P Governing parameter:

Reynolds number, base
flow, wavenumber

Perturbation expansion

(A+5A)(g+ 6q) = (A4 6N B(q + dq)



Structural sensitivity

e Sensitivity to internal changes

A(p)q — )\Bq P Governing parameter:

Reynolds number, base
flow, wavenumber

Perturbation expansion

(A+5A)(g+ 6q) = (A4 6N B(q + dq)

(A=B)g + (A — AB)oq+ (5A — 0N B)g + (64 ~9nR)ig — 0

Higher order



Structural sensitivity

* Sensitivity to internal changes

A (p) q — )\Bq P Governing parameter:

Reynolds number, base
flow, wavenumber

Perturbation expansion

(A4 8A)(q+ 6q) = (A + 0N B(g+ q)

AR A B0




Structural sensitivity

* Sensitivity to internal changes

Use adjoint, left eigenvector

¢ (A—AB) =0 €—> (AT — \*BT)g" =0

¢ A=\B)5q + g (6A — A B)q ~ 0



Structural sensitivity

* Sensitivity to internal changes

A(p)q = A\Bg

Perturbation expansion,
linearize and use adjoint

Gradient: constraint
optimization (C. Cossu)



Sensitivity to a scalar parameter

Complex Ginzburg-Landau Ut = (@x =+ ’Yag;x + ,u(x))u

v=U +1¢,

Eigenvalue semsi&ivi&v

_|_
q"VpAq
V) =
£ i ¢+ Bg } V,A=—0,

V,o = R{V,\} V,w = 3{V,\}

Sensitivity of growth rate Sensitivity of frequency



Sensitivity to base flow modifications

1
Linearized Navier-Stokes ur + UVu +uVU = R—Vzu
€

Elgenvalue sensitivity

[5)\ _ aad } 6A = —(6U)Va — aV(sU)

Relate mean flow modification to passive control: small control forcing



Flow chart for sensitivity/receptivity

IC and response
Same for optimal \ / \
IC and response
Localized forcing forcing, boundary
base flow modifications conditions, mass sources




Flow around a cylinder

e 1. base flow




Flow around a cylinder

* 1. base flow
* 2. global modes

i v



Flow around a cylinder

* 1. base flow
* 2. global modes
* 3.adjoint modes and receptiviby

'51 [
o r."?

5 10 15
a' oT

. D




Flow around a cylinder

1. base flow
2. global modes

3. adjoint modes and re«ﬁep&ivi&v

4. sensitivity, wavenaleer

Uwavemaker

Vwavemaker



Flow around a cylinder

1. base flow

2. global modes

3. adjoint modes and re&&yﬁv&v
4. sensitivity, wavernwaleer

Spatial feedback



Flow around a cylinder

1. base flow

2. global modes

3. adjoint modes and re&ep&vi&j
4. sensitivity, wavenwaleer

5. sensitivity to base flow modifications




Oscillators vs. noise amplifiers

Open flows: global instability and transient growth

Rotating cylinder

Hydrodymam::a‘ oscillabors:

Global instability
Intrinsic frequency
Local absolute instability (WKB)

Boundary layer under
free-stream turbulence

Noise ampléﬁe rs:

Globally stable
Broad-band frequency spectrum
Local convective instability (WKB)

Globally transient growth of perturbations!

t=7150.0



Stability analysis

e (scillakors > Modal amatfjsis

- Largest Eigenvalue gives the asymptotic behavior

e Noise o\mpwfie.rs > Non-modal analysis

Optimal initial condition
— Initial condition that gives the maximum energy
growth at a fixed final time.
Optimal forcing (pseudo-spectra)

— Forcing function the gives the maximum
energy of the regime response when the
forcing is applied with a fixed frequency



Instability mechanisms:
Globally unstable flows

The flow fields behave like an oscillator

Huerre & Monkewitz, Annu. Rev. Fluid Mech., 1990

In weakly parallel flows the WKBJ approach identifies a
specific spatial position in the absolutely unstable
region which acts as a wavemaker.

Chomaz, Annu. Rev. Fluid Mech., 2005

A concept similar to that of wavemaker can be
introduced by investigating where in space a
modification in the structure of the problem produces
the largest drift of the eigenvalue:

determine the region where feedback from velocity to
force is most effective
Giannetti & Luchini, Journal of Fluid Mech., 2007, Pralits et al, 2010



Lagrange identity and
adjoint equations

* Using differentiation by parts

0 A
[(a—l: + L{U,, Re}u + Vp)- ff+v- um+]

aft ou- ft
+ ["' (% +L*{Uy, Re} f+ +Vm+> +p V-f*] = % +V-J(q.87).

Introduce the adjoint fields f# and m*, and
the adjoint linearised Navier-Stokes L*



Structural sensitivity w.r.t.
perturbations

Perturbed eigenvalue problem
ou’ 4+ L{Uy, Re}t' + V' = JH(Q',p)

Structural perturbation: local force related to local
velocity

SH(U ., p") = dM(z,y) -0 =d(x — 20,y —yo) IMp - 1

Linear variation of eigenvalue-eigenfunction expressed as
oou + L{Uy, Re}ou+ Viop = —dou + oM -t

Using Lagrange identity for perturbation field
f+.0M, -1

D

v’ The sensitivity is a spatial map given by the product above

— SZ(SMO

00(xo,Yyo) =

v'Different norms can be displayed (Spectral norm=worst case here)



Production of perturbation kinetic
energy

* Classic approach in stability analysis

d 1 oU, 1
o §fu u; | dr; = e 7,1(111 ~ T . W;0;dx;

Work of Reynolds stresses against the base flow shear

Wavemaker: where in space a modification in the structure of the
problem produces the largest drift of the eigenvalue:

determine the region where feedback from velocity to
force is most effective



Comparison with kinetic energy production

* Shedding mode I: wavemaker vs. energy growth

- 1
Structural sensitivity

Production

0.6
0.4

-0.2

0 ) 10 15
Mode generated in region of absolute instability

Pralits et al, JFM, 2010



Comparison with kinetic energy production

* Shedding mode I: wavemaker vs. energy growth

-2 0 2 -

Structural sensitivity Production

v’ Same region identified

Pralits et al, JFM, 2010



Structural sensitivity w.r.t.
base flow variations

Consider variations of the eigenvalue due to structural
variations of the base flow.

Assume arbitrary variations of the base flow

oot + L{U;, Re}dt + Viép = —[dot + §C(6U,, )]

0C(0Up,u) =0U, - Vu+u-VoU,

OC bilinear operator expressing variations of Lw.r.t. 0U,

/ ft.5C(0U,. 0)dS
D

[ it -aas
D

Eigenvalue drift do = *



Structural sensitivity w.r.t.
base flow variations

Consider variations of the eigenvalue due to structural
variations of the base flow.

Assume arbitrary variations of the base flow

oot + L{Uy, Re}da + Vép = —[6ot+ 6 C(6U,, 0)]

0C(0Up,u) =0U,-Vu+u-VoU,

OC bilinear operator expressing variations of L w.r.t. §U,

Eigenvalue drift

/ SU, - 6C(fH.0)dS + % (0Uy, - f+)(1 -ndl
JD JT.

/'f* .adS
JD

0o =



Structural sensitivity w.r.t.
base flow variations

Structural variations of the base flow:
linearized steady Navier-Stokes equations

L{Uy, Re}oUy + VP, = M - Uy
Using Lagrange identity

/5Ub-5C(f+,il)d.5'=/fb+-5M-Ubd.5'=f;'(;r.3,y0)-(5M0-Ub(;170,y0)

with LT{U,, Re}fb+ + V‘m,jL = c5C(f+. u)

Structural sensitivity

/ £7.6M-U,dS

£t .0M,-U, i
do = * D — = h. ( 0 : =5, :0Mp
/ f+ . ljl dAS' / f+ . il dAS'
JD JD



Passive control

Wake control by means of small obstacles in the flow

Small control cylinder as localized structural perturbation:
First term of Lamb-Oseen expansion for drag at low Re

47

7.4
Re 1
: n<R€C>

Structural perturbation is reacting force, aligned with local
velocity and acting at perturbation and base-flow level

0A =

doy = dop +doc =5, : Mg +S:0My =5; : dM,

DNS of passive control



Structural sensitivity for Shedding
Mode |

Real part Imaginary part

a=1.8
Sensitivity w.r.t. perturbations (spectral norm)

Pralits et al, JFM, 2010



Structural sensitivity for Shedding
Mode |

Real part Imaginary part

a=1.8
Sensitivity w.r.t. base flow (spectral norm)
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Structural sensitivity for Shedding
Mode |

Real part Imaginary part

a=1.8

Total Sensitivity (spectral norm)

Pralits et al, JFM, 2010



Structural sensitivity for Shedding
Mode Il

Real part Imaginary part

A

2 0 2

-1 —2
a = 4.85

Sensitivity w.r.t. perturbations (spectral norm)

Pralits et al, JFM, 2010



Structural sensitivity for Shedding
Mode Il

Real part Imaginary part

20

-

a = 4.85

Sensitivity w.r.t. base flow (spectral norm)

Pralits et al, JFM, 2010



Structural sensitivity for Shedding
Mode Il

Real part Imaginary part

a = 4.85

Total Sensitivity (spectral norm)

Pralits et al, JFM, 2010



Passive control based on
sensitivity analysis

Simulations of a secondary small cylinder
positioned as indicated by sensitivity maps

1 . . : 1

oz §? Time traces in the wake
| N :% AR AR AR AN
> os AVAVAVARAUANAVANARARANAYAY
3 oo I\I\I\\I\HI\ I\I\I\\\II\I
L VT

0 20 40 60 80 100 120 140 160 180

"™ pralits et al, JFM, 2010



Instability mechanisms:
Noise amplifiers

The aim of the present work is to extend the sensitivity
analysis to flow behaving as noise amplifiers

Huerre & Monkewitz, Annu. Rev. Fluid Mech., 1990

The target of the analysis is the largest singular value of
the system. We consider the resolvent norm in frequency
domain.

Schmid & Henningson, Stability and Transition of shear flows, 2001

A concept similar to that of wavemaker can be introduced
by investigating where in space a modification of the base
flow produces the largest drift of the optimal response:
wave-amplifier

Brandt et al., Journal of Fluid Mech., 2011



Gradient of the resolvent norm

We assume

u=Rw,U)f, R= Sw, U, S=—iwM+ L(U)

Optimal forcing and response

a0 o (u,u) (Rf,Rf) (RRf, )
- . (f, 1)

Sensitivity to base-flow modifications:
Overlap of optimal forcing and response

Vuy 0 = 20°R{(Vf) u* — (Vu") f}

Constrained optimization

K=o0* — (uT,S(U)u—f)—(aT,ST(U)a—u)—(fT,sz—a)

Brandt et al, JFM, 2011
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Boundary layer over flat plate
Optimal forcing: Lift-Up effect

(c)

v’ Streamwise vortices induce streamwise streaks:
component-wise non-normality, zero frequency and p=1

v’ Forcing active upstream (x<0) and above the flat plate

Brandt et al, JFM, 2011



ylé

ylé

Boundary layer over flat plate
Optimal forcing: TS-waves

NN

L ADALE

v’ Convective non-normality, 2D forcing at frequency F=100.

v’ Forcing active between branch | and I

Brandt et al, JFM, 2011



Sensitivity to base-flow modifications
streamwise velocity component
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v Largest sensitivity for TS-instability

v’ Streak amplification: very robust mechanism
Brandt et al, JFM, 2011



Outline

e Stability of fluid systems

— modal limit

— short time dynamics, matrix exponential
* Receptivity

— resolvent norm

— Resonance limit
— Adjoint modes

* Sensitivity

— Structural sensitivity S'QME: MQQE v e

— Base-flow sensitivity



Time-dependent flows

* Generalize to time-periodic and time-dependent flows
* Relate non-modal analysis to optimization problems

d
== L(t)q
With solution
q(t) = A(t)qo._
l \ f::::é?:ion

Propagator



Input-output analysis

* Seek optimal energy amplification

Glt) = max <<<IZ’ Z>>



Input-output analysis

* Seek optimal energy amplification

Glt) = max <;Z’ Z>>

— max (A(t)g0, A(t)qo)
40 (0, qo0)




Input-output analysis

* Seek optimal energy amplification

() =m0

— max (A(t)g0, A(t)qo)
40 (0, qo0)

— max (A" (1) A()q0, q0)
40 (90, q0)




Input-output analysis
for time-dependent system

A (1) A
G(t) — max < (t) (t)QO7QO>
40 <QO7QO>
A" A is a normal matrix

Maximum amplification for largest eigenvector of A A

Principal eingenvector and eigenvalue can be
found by power iterations

q(()n-l-l) _ p(n) AHA q(()n)



Input-output analysis
for time-dependent system

updating (n)
o = w——>

" Agg™

e [ —




Input-output analysis
for time-dependent system

dati "
;;(”“) _ ,(n) 4H 4 (n)] o) Aq
\ ] .
scaling™ A Agg") €= W /

» This technique (adjoint looping) can be applied to any general
time-dependent stability problem

» Propagation of initial condition forward in time and of adjoint
initial condition backward in time






Variational formulation of the problem

* Variational formulation of the optimal growth problem
more general

2
We wish to maximize J = HQH 5 > Inax
qo]
ith th traint d L(t)
wi e constrain —0 =
dtq q

Listen Carlo Cossu on friday!



Global modes: how to

Most problems with inhomogeneous directions,
complex geometry

Cannot use Fourier transform in two directions

Eigenfunctions and optimals depend on more than
one direction 4" (x,y)



Computational issues

* One vs two inhomogeneous directions:
state vector, matrix, operation count

() m
q2 q1,2
q — . State vector q =

\av/ o

L e CV*N ~ O(N?) Matrix size L e CN XN L O(NY)

~ O(N3) Operation count ~ O(N6>



Computational issues

* One vs two inhomogeneous directions:
state vector, matrix, operation count

L e CN*N" L O(NY) ~ O(NY)

storage CPU time
> Direct eigenvalue algorithms become too expensive

> Iterative algorithms, Arnoldi technique



Arnoldi algorithm

e Action of the linear operator within an orthonormal basis V

~ Hessenberg
matrix

System matrix

Orthogonal Orthogonal
basis basis

System matrix: | L,exp(tL), LL" , exp(tL) exp(tL")

USE THIS APPROACH TO COMPUTE MODAL AND NON-MODAL STABILITY



Arnoldi algorithm

e Action of the linear operator within an orthonormal basis V

* Represent stability matrix by a low-order approximation
based on V

Hessenberg
matrix

Q

System matrix

Orthogonal
basis



Hessenberg matrix

* Only multiplication by L are necessary

qr = L qr_1
for ] — 1 : k’ — 1 System eigenvalues approximated
by eigenvalues of H
Hj,k:—l — <Qja Qk>
gk = qr — Hj -1 q; Eig(L) = Big(H)
end
Hik—1 = || gk

qr = qk/H 1.—1




Example in 2D: flow in X-junction

Base flow

-4 -2 0 2 4 6 8 10 12 14

Lashgari et al, in preparation



Example in 2D: flow in X-junction

TV
— X
=1 ,
M Spect
(a) (b)
03 0.2
m
0.2r n] ol
0.1_;
+ -0.2
P
o o
01} z -04
g; a;
02 -06
-03 oo
-08
.{
-0.4 +
-1r o o
05} 2 ® | g00000°° " ®ogoo00,
o [+]
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0 05 1 15 2 =) -2 — 0 1 2 3
5} Or

» Steady two-dimensional bifurcation

Lashgari et al, in preparation



Example in 2D: flow in X-junction

Eigenfunction

4 I I I I I I I

(@) T 1 ™o.02

0 0

—2r 1 hg-0.02

_4 | 1 | | 1 | |

0 5 10 15 20 25 30 35 40

x 10"
4
2
0
-2
4

0 5 10 15 20 25 30 35 40
> Steady two-dimensional bifurcation

Lashgari et al, in preparation



Example in 2D: flow in X-junction

New asymmetric state

O R R TR —

> Steady two-dimensional bifurcation

Lashgari et al, in preparation



X-junction: Example in 2,5D...

Asymmetric state unstable to 3D periodic disturbances

@ (

Snapshot method based on linear DNS

Lashgari et al, in preparation



Example in 3D: Jet in cross flow

Use DNS and compute spectrum of matrix exponential 4 = eXPStLZQO

snapshot global mode

Arnoldi
algorithm’

Bagheri et al, JFM, 2011, Schlatter et al.



Summary

 Stability of fluid systems

— non-normal operators are ubiquitous in fluid flow problems
— non-modal (multi-modal) effects therefore dominant

— non-modal analysis computationally more costly, many
extensions possible though

 Receptivity and sensitivity
— Use of adjoint modes
— Structural sensitivity, wavemaker

— Base-flow sensitivity, passive control



Tutorials
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e Consider Poiseuille or Couette flow

2b

LT T iy

* Orr-Sommerfeld and Squire system for o
3D disturbances



Parallel shear flows U; = U(y)d1;

du ou op 1 _»
—+U—+wU = —= \Y% y I
ot T Ox T or + Re “ ' uey)
ov ov op 1 _»
— 4+ U— = —+ Vv
ot T ox Ay T Re
ow ow dp 1 2 77 v
— 4+ U— - \Y
ot t ox z T R N <
Quy Qv dw _ o
dr Ody 0z
: . . ) ,0v
divergence of the momentum equations gives V<p = —2U 8_
T

elliminate pressure in v-equation =

0 0 0 1
[(— | U—) V2_U"— - —vV4v=0
ot ox Or Re



Parallel shear flows, cont

normal vorticity describes horizontal flow

ou Ow
g _
'~ %2 o
where 7 satisfies
9, 2, 1 O
U - VR = U
ot dr Re 0z

with the boundary conditions

v=v=n=0 at a solid wall and in the far field



Orr-Sommerfeld and Squire equations

i(ar+pz—wt)

Assume wavelike solutions: v(z,y,2,t) = 0(y) e =
1
[(—’iw + iaU)(D? — k?) — iaU" — R—e(D2 — k:2)2] 7 = 0
1
l(—m + iaU) — —(D? — A:Q)] 7= —ipU's
Re
, N :
Orr-Sommerfeld modes: {’Zin, ﬁfi,w,,-l}f - /~ l ~
n= = ﬁ(ozDv — bBn)
Squire modes: {v = 0,’;}"777,5(«0771}.;1{:1 _ L(ﬁp@ + 0477)




Tutorials

Consider Poiseuille or Couette flow ;

TransientGrowth.m
G(t) for selected o,3; Re and given max time

Resolvent.m
R(omega) for selected o,p; Re

NumRange.m
Numerical range for selected o,f3; Re



Tutorials

AVEUEUEREREAATERALUURUEUREAARRRARTA

Consider Poiseuille or Couette flow

2b

¥4

LT i g

Neutral a Re.m
Eigenvalues and G(t) for selected p and given max time,
for a range of o and Re

Neutral_alpha beta.m

Eigenvalues and G(t) for given Re and max time, for a
range of o,f

OptimalDisturbance.m
Optimal disturbance and response for selected o,f; Re



Tutorials

LA SARANARAAARANAL LA RARDARRARANA LY

e Consider Poiseuille or Couette flow

2b

yr

LT i g

« Sens_OptDist.m —
Structural sensitivity of least stable mode and

T5A
5/\:(15(1

of optimal disturbance to base flow modification
for selected o,3; Re

Vu A2 = 22 2R{(Vu;,) u,, — (Vaew)"” win )

Brandt et al, JFM, 2011



Exkra slides



Stability

*

Stable Neutral
Unstable Nonlinearly

unstable



Stability definitions

1
2 %4

E(t
Stable: lim (1) > ()

5 B(0)
Conditionally stable: 34 - E(()) < ) = Stable
Globally stable: Conditionally Stable with 0 — o0
Linearly unstable: 0 — 0
Monotonically stable: d_E <0 V t>0

dt



Critical Reynolds numbers

Flow monotonically stable

Flow globally stable

Flow linearly unstable

Critical values for shear flows

Re < Reg
Re < Reg

Re > Rej,

‘ Flow ” ReE l Re(-,- y Re-,- \ ReL

' Hagen-Poiseuille | 81.5| — | 2000 o0 |

' Plane Poiseuille || 49.6 | — | 1000 5772
Plane Couette 20.7 | 125 | 360 o0

IT

Re E ROG

IV

RCL

Re



Stability analysis
* Search for Re. monotonically stable flows

* Linear analysis: Re,

* Amplitude 0 ? Re;?



ou;
ot
ou;
ox;

ui(z;,0)
wi(x;,t)

Re

u;

0’(14
ot
ou,;
E};;;

Disturbance equations

) ) 1
-qﬁfu'—f7)+- V2m

dr; Oz; Re
0

4 u(y)
u?(wi)
O on solid boundaries
T 00
Z

U"xé*/l/
U; + ?L;
P+p drop primes

D ; oU; ). 1 D;
—Ujg — Uj, ‘- — ‘(p + V2u.,j — u‘]-_(u"

().’I,‘j ():TJ ().'E,j Re : ()’I‘J

0



Energy equation

au; oU; 1 Owu; Ou;
Ins = —Uuj— — — -
ot dr; Redx;ox;
0 1 1 - 1 a’u,,,'
+ — |—zuwwUj — —ujuuy —u;pdiy + ——ui—
dr; L 2 2 Re Ox;
=
dEy, ' oU; 1 1 Ou; Ou;
V. — _ / ?_1,‘2#1,1,]-—de — —dV
dt % )x Re Jv Oz 0z

Theorem: Linear mechanisms required for energy growth

Proof: %%L independent of disturbance amplitude



Linear growth mechanisms

1 dby _ d
Ey dt — di In By
In E
nonlinear

/\Iinean Iinear2/—'\




Energy theory: Re,

1 — fv UiUj a crdv
= INnax
. ou; au@
RGE i fV Ox ; 8:133

Variational problem: very conservative estimate,
need for constraints!



Stability analysis
* Search for Re. monotonically stable flows

* Linear analysis: Re,

* Amplitude 0 ? Re;?



ou;
ot
ou;

a.’l,',j

Linear analysis

_ Ou; ou; Op

= U — U — ——
Oz dr; OJdx; R
= 0
u;( s, = u; (x;
0 0
u;(z;,t) = 0 on solid boundaries

Departure from equilibrium: slope
|Identify relevant mechanisms

Examine receptivity and sensitivity



Linear analysis

ou
i L(U,t; Re)u

* Time-independent problem: eigenvalue problem in time. Ex?

u(z;,t) = R(a(x;)e’), ou= L{U;Re)u

* Classic 1d problem:
Orr-Sommerfeld, Squire system for parallel flows



Parallel shear flows U; = U(y)d1;

du ou op 1 _»
—+U—+wU = —= \Y% y I
ot T Ox T or + Re “ ' uey)
ov ov op 1 _»
— 4+ U— = —+ Vv
ot T ox Ay T Re
ow ow dp 1 2 77 v
— 4+ U— - \Y
ot t ox z T R N <
Quy Qv dw _ o
dr Ody 0z
: . . ) ,0v
divergence of the momentum equations gives V<p = —2U 8_
T

elliminate pressure in v-equation =

0 0 0 1
[(— | U—) V2_U"— - —vV4v=0
ot ox Or Re



Parallel shear flows, cont

normal vorticity describes horizontal flow

ou Ow
g _
'~ %2 o
where 7 satisfies
9, 2, 1 O
U - VR = U
ot dr Re 0z

with the boundary conditions

v=v=n=0 at a solid wall and in the far field



Orr-Sommerfeld and Squire equations

i(ar+Bz—wt)

Assume wavelike solutions: v(z,y,z,t) = v(y) e =

1

[(—iw + iaU)(D? — k?) — iaU" — R—e(D2 - A:Q)Ql b = 0

1
[(—m +ial) - —(D* - Arz)] i = —ipU'D

N

Orr-Sommerfeld modes: {fﬁ‘.,-l_,,'fjﬁ,w,,-z} X
n=—

Squire modes: {’5 — Oa 'ﬁnu w-m.}.%;l,:l



Nonmodal stability analysis

* |Input-output approach
 Nonnormal operators

* Non-orthogonal eigenvectors



Matrix norm ||G|| = max ||Gw|
|wl|=1

Euclidean scalar product ||”LUH% = ’ijwj

Matrix as transformation with associated amplification

|Guwlls [wHGHGw]1/2

wH w

Figenvalues of GE G orsingularvaluesof G:  GHGu, = \v;

Largest amplification for the largest singular value: A1, v

G
VA = max ||Guw|s = [Goul: Guy = uy

|w]j2=1 o2

Input and output basis v;, u;: G = UAVH



