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Transient growth on boundary layer streaks
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The linear perturbations evolving on streamwise boundary layer streaks which yield
maximum energy growth are computed. The steady and spanwise-periodic streaks
arising from the nonlinear saturation of optimally growing streamwise vortices are
considered as base flow. It is shown that significant transient growth may occur for
both sinuous antisymmetric perturbations and for varicose symmetric modes. The
energy growth is observed at amplitudes significantly below the threshold beyond
which the streaks become linearly unstable and is largest for sinuous perturbations,
to which the base flow considered first become unstable. The optimal initial condition
consists of velocity perturbations localized in the regions of highest shear of the
streak base flow, tilted upstream from the wall. The optimal response is still localized
in the areas of largest shear but it is tilted in the flow direction. The most amplified per-
turbations closely resemble the unstable eigenfunctions obtained for streaks of higher
amplitudes. The results suggest the possibility of a transition scenario characterized
by the non-modal growth of primary perturbations, the streaks, followed by the
secondary transient growth of higher frequency perturbations. The implication for
turbulent flow is also discussed.

1. Introduction
Eigenvalue analysis is traditionally performed to investigate the linear stability of a

given flow configuration. The least stable among the exponentially decaying eigen-
solutions to the linearized disturbance equations provides information about the
flow behaviour at large times. However, initial conditions which give transient energy
growth may exist, a possibility related to the non-normality of the governing operator.
This transient energy amplification is also referred to as non-modal since it is not due
to the behaviour of a single eigenmode but it is caused by the superposition of several.
In some cases the energy growth can be large enough to trigger nonlinear interactions
and take the flow into a new configuration. The initial disturbance able to induce the
largest perturbation at a given time is called optimal and can be computed by applying
optimization techniques. These were first introduced in this context by Farrell (1988).

Here we apply this analysis to investigate the behaviour of small-amplitude pertur-
bations developing on boundary layer streamwise streaks. These elongated structures
and their breakdown are found to be key factors both in transition in boundary
layers subject to high levels of free-stream turbulence (Matsubara & Alfredsson 2001)
and in the near-wall region in turbulent flows (e.g. Kim, Kline & Reynolds 1971).
The motivation for this study comes from the observation that the breakdown may
occur also for asymptotically stable streaks. In the case of near-wall turbulence,
it was noted by Schoppa & Hussain (2002) that only 20% of the streaks in the
buffer layer exceed the amplitude threshold for instability. By choosing an initial
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condition based on streamwise- and spanwise-velocity Reynolds stress events from
fully developed near-wall turbulence, these authors were able to identify a streak
transient growth mechanism, capable of triggering the breakdown. The amplification
observed was about tenfold. From the experimental data on transition induced by free-
stream turbulence as well as from the simulations by Brandt, Schlatter & Henningson
(2004) it is difficult to assess whether the streaks undergoing breakdown are linearly
unstable. However, the possibility of a transient energy amplification is suggested
by the experiments of Lundell (2004). In the present study, by considering a steady
approximation of the transitional streaks, we assess how large this transient growth
can be and present the corresponding optimal flow structures. The present results
are therefore directly applicable to boundary layer transition, albeit with a physical
connection with near-wall turbulence via rescaling of the base flows.

Interestingly, the basic flow under consideration is also the result of a non-modal
growth. Owing to the lift-up effect (Landahl 1975), streamwise elongated vortices
are able to mix high- and low-momentum fluid and thus create streaks of high
and low streamwise velocity. It is therefore not surprising that for wall-bounded
laminar flows the initial condition yielding the largest transient energy growth has been
found to consist of streamwise oriented vortices of long streamwise wavelength (see
Schmid & Henningson 2001, for a review). In the case of a spatially evolving zero-
pressure-gradient boundary layer, the input at the leading edge leading to maximum
output energy far downstream has been identified by Andersson, Berggren &
Henningson (1999) and Luchini (2000). The output perturbation consists of
streamwise streaks whose spanwise periodicity is of the order of the boundary
layer thickness. If the upstream vortex amplitude is high enough, the disturbance
eventually reaches an amplitude at which nonlinear effects become relevant. The
basic flow considered here was obtained in Andersson et al. (2001) by computing the
nonlinear streaks forced by these optimal leading-edge vortices.

If the amplitude of the streaks grow to a sufficiently high value, instabilities can
develop and provoke breakdown to turbulence. This instability is caused by inflectional
profiles of the base flow velocity and it is of inviscid type. The experiments of
Swearingen & Blackwelder (1987) were the first to document the emergence of
streaks with inflectional profiles, in this case due to the formation of Görtler vortices
in the boundary layer over a concave wall. That investigation demonstrated that time-
dependent fluctuations appear in the flow either in a spanwise symmetric (varicose)
or antisymmetric (sinuous) pattern with respect to the underlying streak. The varicose
perturbations are more closely related to the wall-normal inflection points while the
sinuous oscillations are related to the spanwise inflectional profile and they were
found to be the fastest growing. For the streaks considered here, it was also found
that the most dangerous perturbations are of sinuous type (Brandt & Henningson
2002) and that the instability is convective in nature (Brandt et al. 2003).

The inviscid streak instability evolves on the fast convective time scale and is charac-
terized by a large exponential growth. Therefore, we will focus our analysis on streaks
of moderate amplitude, mainly stable to linear perturbations, to investigate the
potential of a non-modal growth mechanism to trigger the breakdown of subcritical
streaks.

2. Flow configuration and numerical method
2.1. Base flow and physical configuration

We consider the boundary layer over a flat plate and define the local Reynolds
number, Re =(U∞δ∗)/ν, by means of the free-stream velocity U∞ and the local Blasius
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boundary layer displacement thickness δ∗. In the analysis the streaks resulting from
the nonlinear evolution of the spatial optimal perturbation in a zero-pressure-gradient
boundary layer are considered. This base flow was computed in Andersson et al. (2001)
by solving the full Navier–Stokes equations. In that work, the complete velocity
field representing the steady linear optimal perturbation calculated by Andersson
et al. (1999) was used as input close to the leading edge and its downstream
nonlinear development was monitored for different upstream amplitudes of the input
disturbance. The flow was assumed periodic in the spanwise direction and only one
spanwise wavelength of the optimal perturbation considered. To quantify the size
of this primary disturbance field at each streamwise position, an amplitude A was
defined in Andersson et al. (2001) as

A(X) =
1

2

[
max

y,z
(U (x, y, z) − UB(x, y)) − min

y,z
(U (x, y, z) − UB(x, y))

]
, (2.1)

where UB(x, y) is the Blasius profile and U (x, y, z) is the total streamwise velocity
in the presence of streaks. The streamwise velocity U is made non-dimensional with
respect to U∞. The spanwise wavenumber is taken to be β = 0.45, which corresponds
to linearly optimally growing streaks at x =1 (cf. the scaling used in Andersson et al.
2001).

We are interested in determining the local properties of the streaks in the parallel
flow approximation. Therefore we wish to study the local characteristics of a basic flow
which evolves slowly in the streamwise direction, as required in the boundary layer
approximation, and to consider a perturbation which evolves faster than the basic
flow. The parallel flow assumption therefore becomes questionable for perturbations
of long streamwise scale or when the behaviour at large times is considered.

As in Andersson et al. (2001), the streak profiles under consideration are extracted
at the streamwise station x = 2. This station has been chosen because it is associated
with the region where the streak energy attains its maximum value (see figure 5 in
Andersson et al. 2001). The critical amplitude A beyond which unstable streamwise
travelling waves are found is 0.26 for sinuous instability modes and 0.37 for their
varicose counterpart. Note finally that in the present investigation, we restrict our
attention to perturbations which have the same spanwise periodicity as the base
flow, i.e. according to Floquet theory the detuning parameter is taken to be zero
(see Nayfeh & Mook 1979). This reduction to the fundamental mode amounts to
considering a total flow (basic flow plus perturbation) which is spanwise periodic of
fundamental wavelength λz and it is justified by the observation that the perturbations
under consideration are localized in the region of strongest shear. For this reason,
weak variations with the Floquet parameter were found in the eigenvalue analysis in
Andersson et al. (2001).

2.2. Governing equations and optimisation procedure

The equations governing the linear evolution of a perturbation velocity u(x, y, z, t) =
(u, v, w), of corresponding pressure p, on the streak profile U (y, z) are obtained
by substituting U + u into the Navier–Stokes equations and neglecting the quadratic
terms in the perturbation. Following a procedure similar to that used in the derivation
of the Orr–Sommerfeld and Squire system, the above equations can be reduced to
two equations in terms of the normal velocity v and the normal vorticity η = uz − wx

(Waleffe 1995; Schmid & Henningson 2001)

�vt + U�vx + Uzzvx + 2Uzvxz − Uyyvx − 2Uzwxy − 2Uyzwx = (1/Re)��v,

ηt + Uηx − Uzvy + Uyzv + Uyvz + Uzzw = (1/Re)�η.

}
(2.2)
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In the above, the spanwise velocity w can be eliminated by using the identity

wxx + wzz = −ηx − vyz.

Since the flow is assumed parallel, solution can be sought in the form of normal
modes

[v, η] = [v̂(y, z, t), η̂(y, z, t)] eiαx + c.c. (2.3)

where α is the streamwise wavenumber. As the basic flow is symmetric about z =0,
the modes can be further divided into separate classes according to their odd or even
symmetry with respect to the basic flow.

In particular, fundamental modes with an odd symmetry are called varicose with
reference to their streamline patterns in the (x, z)-plane, whereas fundamental modes
with an even symmetry are usually referred to as sinuous.

Being able to describe the dynamics of small perturbations on streamwise streaks,
we aim at finding the initial disturbance that would lead to the largest amplification
at a given time. The search for the initial condition that leads to the maximum energy
growth for a linear system is a well-known procedure (see e.g. Andersson et al. 1999;
Corbett & Bottaro 2000) and it is therefore only briefly outlined here.

Let us define Hτ as the linear operator that maps an arbitrary initial condition q

to the subsequent state at time τ . To apply this operator amounts to integrating (2.2)
in time. The maximum energy growth G(τ ) at time τ is

G(τ ) = max
q

‖Hτ q‖
‖q‖ = max

q

(Hτ q, Hτ q)

(q, q)
� max

q

(q, H+
τ Hτ q)

(q, q)
, (2.4)

where the rightmost identity introduces the definition of H+
τ , the adjoint of Hτ with

respect to the inner product (·, ·). It appears from (2.4) that the greatest eigenvalue
and corresponding eigenvector of the operator H+

τ Hτ are the greatest achievable
growth and the corresponding initial condition.

The direct solution of the problem by eigendecomposition of H+
τ Hτ is a heavy

computational task for a system of large order, since it involves the computation
of two matrix exponentials for the explicit description of Hτ and H+

τ . Instead, the
mapping Hτ is applied to the state q(0) by marching the initial condition in time
using the dynamic operator L, defined by (2.2), and H+

τ is applied to q(τ ) by marching
the state backward in time using the adjoint L+ of the dynamic operator. The adjoint
L+ is built as the discrete adjoint

L+ = Q−1LHQ, (2.5)

where the matrix Q defines the discrete energy inner product,

(q1, q2) = qH
2 Qq1, (2.6)

and the superscript H stands for the matrix conjugate transpose. Each step of the
power iteration qn+1 = H+

τ Hτ qn will magnify the projection of q onto the desired
flow state by a factor G. The iteration will thus converge quickly provided the leading
eigenvalue is well separated from the following ones. In the present case, an absolute
accuracy of 10−2 could be achieved within about 15 iterations when starting from an
arbitrary initial guess.

The state variable and dynamic operator are discretized in the wall-normal direction
using a Chebyshev collocation method (see e.g. Weideman & Reddy 2000). Both the
forward and the backward time marching are implemented using the second-order
Crank–Nicholson scheme (implicit) and a unit time step is employed in the time
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Figure 1. Maximum amplification G versus τ of sinuous perturbations with wavenumber
α = 0.01, 0.1, 0.2 . . . 0.6 for streaks of increasing amplitude. (a) A = 0.14, (b) A = 0.20,
(c) A = 0.255, (d) A = 0.288. Note the appearance of the exponential instability for the largest
streak amplitude.
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Figure 2. As figure 1 but for varicose perturbations. The dashed line in (a) pertains to
α = 0.25 at which a viscous instability is present.

integration. The results have been validated by computing the evolution of the optimal
input with the numerical code and procedure described in Brandt et al. (2003).

3. Results
3.1. Optimal growth

The maximum energy growth G(τ ) for different values of the streak amplitude and
of the streamwise wavenumber α is displayed in figures 1 and 2 for the sinuous and
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Figure 3. (a) Maximum transient growth and (b) instant of maximum amplification, versus
the Reynolds number for streaks of increasing amplitude, A = 0.14, 0.20, 0.229, 0.255, 0.288.
Solid lines display sinuous perturbations whereas dashed lines are used for their varicose
counterpart. The selected streamwise wavenumber is α = 0.3.

varicose symmetry respectively. The curve given by G(τ ) represents the maximum
possible amplification at each instant in time optimized over all possible initial
conditions with unity energy norm. Since the optimal initial conditions are in general
different for different τ , G(τ ) can be also thought of as the envelope of the energy
evolutions of the initial conditions yielding maximum energy growth at each instant
τ . Note that time is made non-dimensional with respect to δ∗/U∞.

Results are also presented for low values of the streamwise wavenumber α, at
which the parallel flow approximation becomes questionable, to show that the
maximum amplification is attained in the limit α → 0 for asymptotically stable
streaks. However, significant amplification is also observed at larger wavenumbers. For
sinuous perturbations, an energy growth of the order of a thousand is already found at
Re = 1000 for a streak amplitude of 14%, i.e. well below the threshold for the onset of
the inviscid secondary instability. It can also be seen in figure 1 that the energy growth
of perturbations of larger α increases with increasing streak amplitude more than for
disturbances of low streamwise wavenumber. Figure 1(d) shows the maximum energy
growth for a streak which is slightly unstable to sinuous perturbations, A= 0.288.
The initial transient growth becomes stronger, it is no longer maximum at the lowest
streamwise wavenumber considered and for the unstable α = 0.2 it dominates over
the exponential growth for times τ < 200. Conversely, for streaks of higher amplitudes
(> 30%), the exponential inviscid instability is seen to have already become dominant
at small values of τ (not reported here).

The results pertaining to varicose perturbations are presented in figure 2. The
maximum transient energy amplification is lower than for sinuous perturbations and
it is slightly decreasing with increasing streak amplitude. The dashed line in figure 2(a)
depicts perturbations with α = 0.25 at which a weak viscous instability is present (see
Cossu & Brandt 2004).

The maximum transient growth and the instant at which the maximum occurs
are displayed in figure 3 versus the Reynolds number for sinuous and varicose
perturbations with α = 0.3. Both these quantities increase with Re but a simple
scaling law could not be found. Note that in the simulations by Brandt et al. (2004)
of a boundary layer subject to free-stream turbulence of relatively high intensity,
T u =4.7%, transition is found to occur, on average, at Re ≈ 730, whereas in the
experiment by Matsubara & Alfredsson (2001), where T u ≈ 2%, the breakdown to
turbulence is observed at Re ≈ 1500.
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Figure 4. (a) Streamwise, wall-normal and spanwise velocity fields of the input initial
condition yielding maximum output energy at τ =123 for sinuous perturbations with α = 0.3
at Re = 1000. (b) Velocity field at the instant of maximum growth. The isosurfaces represent the
areas where the value of the velocity is 0.2 of the maxima: u = 0.386, v = 0.658 and w = 1.893
at t = 0; u = 63.499, v = 6.13 and w = 15.662 at t = τ .
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Figure 5. (a) Streamwise, wall-normal and spanwise velocity fields of the input initial
condition yielding maximum output energy at τ = 80 for varicose perturbations with α = 0.3 at
Re = 1000. (b) Velocity field at the instant of maximum growth. The isosurfaces represent the
areas where the value of the velocity is 0.2 of the maxima: u = 0.462, v = 0.867 and w = 1.494
at t = 0; u = 27.691, v = 3.538 and w = 8.560 at t = τ .

3.2. Flow visualization

The velocity field pertaining to the initial conditions yielding maximum growth
and the flow configuration at the time of maximum energy are displayed in figures 4
and 5 for sinuous and varicose disturbances, respectively. In the case of antisymmetric
perturbations, the streamwise and wall-normal velocity components of the optimal
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disturbance are concentrated in the region of strongest spanwise shear of the basic
flow, i.e. on the flanks of the low-speed streak located in the middle of the box
in the figures, whereas the spanwise velocity is larger in the region of strong wall-
normal shear on the top of the high-speed streak. Both velocity components are tilted
upstream from the wall. The optimal response velocity field (figure 4b) resembles the
unstable modes leading to the streak breakdown (see Brandt & Henningson 2002).
Thus, it would be difficult to assess from experimental results whether the streak
breakdown is triggered by an exponential instability or by a non-modal mechanism.
The streamwise velocity component is the most amplified and the perturbation is still
located in the region of strongest shear but the flow structures are now inclined in
the downstream direction. This indicates that the disturbance has extracted energy
from the mean shear by transporting momentum down the mean velocity gradient,
similarly to what is observed for the Orr mechanism (Orr 1907; Butler & Farrell
1992). This non-modal growth mechanism is the only one present in the case of
spanwise-independent perturbations in a shear flow and describes short-term inviscid
instabilities due to the tilting of initial disturbances into the direction of the mean
shear. However, the maximum of the perturbation is not attained when the disturbance
is aligned in the wall-normal direction (cf. Butler & Farrell 1992) and the analysis
presented below confirms that other mechanisms are active as well.

In the case of varicose perturbations (figure 5), the rotation of the perturbation from
upstream to downstream tilting is also observed. The perturbations are still located at
the locations of maximum shear of the underlying streak and the streamwise velocity
component is the most amplified.

To try to better understand the mechanisms responsible for the observed growth,
the evolution of the perturbation kinetic energy K integrated over one streamwise
wavelength is considered

Kt =

∫
(−uv Uy︸ ︷︷ ︸

Ty

−uw Uz︸ ︷︷ ︸
Tz

−ω · ω/Re︸ ︷︷ ︸
D

) dy dz dx, (3.1)

where ω is the perturbation vorticity vector. This balance equation is derived in a
straightforward manner from the Navier–Stokes equations linearized around the base
flow U (y, z). The first production term of density Ty = −uv Uy represents the work
of the Reynolds stress −uv on the wall-normal basic shear Uy , while the second
production term of density Tz = −uw Uz is associated with the work of the Reynolds
stress −uw on the spanwise basic shear Uz. The last term represents viscous dissipation.

The time evolution of the terms appearing in (3.1) is displayed in figure 6 both
for a sinuous and a varicose perturbation. The production associated with the wall-
normal shear of the perturbation Ty is positive at early times and then becomes
negative as for two-dimensional perturbations experiencing a growth due to the Orr
mechanism. However its amplitude is lower than that of the production related to the
spanwise shear Tz which is therefore responsible for the large growth observed both
for the sinuous and the varicose disturbance. Note that initially both production terms
are positive and that the spanwise shear is also responsible for the growth of varicose
perturbations. This is unexpected, since exponentially growing varicose perturbations
are driven by the action of the wall-normal shear. Two growth mechanisms seem
therefore to be active, similarly to what is observed in constant-shear flows by Farrell &
Ioannou (1993): tilting of the mean flow vorticity, as in the streak generation process
in two-dimensional flows, and the Orr mechanism. The former is stronger for α → 0,
while the latter is present at finite α.
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Figure 6. Time evolution of the volume integral of the terms appearing in the perturbation
kinetic energy equation. ——, Ty = −uv Uy; − − −, Tz = −uw Uz; · − ·−, viscous dissipation
and �, Kt . (a) Sinuous perturbation at Re = 1000, α = 0.3, τ =123. (b) Varicose perturbation
at Re = 1000, α = 0.3, τ = 80.

4. Conclusions
The behaviour of linear perturbations developing on boundary layer streamwise

streaks is investigated for streak amplitudes below or at the onset of the inflectional
secondary instability. The input velocity fields leading to an output flow of maximum
possible energy at a given time are computed for the first time for a parallel basic
flow periodic in the spanwise direction.

It is found that large energy amplification can be achieved both by sinuous and
by varicose disturbances. The transient energy growth is larger for sinuous modes,
it increases with the Reynolds number and it is already relevant at amplitudes well
below the threshold for the onset of secondary instabilities. The results indicate
the possibility, first suggested by Grossmann (2000), of a transition scenario in which
energy is extracted from the laminar state by a series of linear non-modal mechanisms:
in particular, first the lift-up effect responsible for the streak growth and then the
non-modal amplification of the streamwise-dependent perturbations presented here.

The present results also have implications for the dynamics of near-wall turbulent
flows, where the streak breakdown is one of the key elements of the underlying
self-sustaining process. The regeneration of vortices following the streak breakdown
can be related to non-modal growth mechanisms and therefore occurs at lower
streak amplitudes (cf. Schoppa & Hussain 2002) and for both sinuous and varicose
perturbations.

The input and output velocity fields are also presented. The optimal initial condition
consists of velocity perturbations localized in the regions of highest shear of the streak
base flow, tilted upstream from the wall. The optimal response is still localized in
the areas of largest shear but it is tilted in the flow direction. The most amplified
perturbations closely resemble the unstable eigenfunctions obtained for streaks of
higher amplitudes and it is therefore difficult to distinguish between the two from
experimental/numerical data. Similar flow structures at the streak breakdown are
observed for the unstable streaks in Brandt & Henningson (2002) and the transient
growth scenario in Schoppa & Hussain (2002). Varicose modes are also shown to have
significant amplifications and they are indeed observed in the simulations in Brandt
et al. (2004). Comparable growth rates for varicose and sinuous modes are found in the
analysis of the corrugated vortex sheet instability in Kawahara et al. (2003). Analysis
of the equation governing the evolution of the perturbation kinetic energy reveals that
the work of the Reynolds stress uw against the spanwise shear of the underlying streak
is responsible for the transient growth of both sinuous and varicose disturbances. In
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both cases, the largest velocity component of the optimal disturbance is the spanwise
whereas the optimal response is strongest in its streamwise velocity component.
This also explains why the initial condition proposed by Schoppa & Hussain (2002)
is able to trigger some transient amplification and lead to the streak breakdown.
Future investigations will aim at a better understanding of the physical mechanism
responsible for the observed transient growth and quantifying the realizability of this
growth process in noisy situations in which streaks continuously form.
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