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ABSTRACT

To study the dynamics of particles in turbulence when their sizes are comparable to the smallest ed-
dies in the flow, the Kolmogorov length scale, efficient and accurate numerical models for the particle-
fluid interaction are still missing. Therefore, we here extend the treatment of the particle feedback on
the fluid based on the volume-averaged fluid equations (VA simulation) in the previous study of the
present authors, by estimating the fluid force correlated with the disturbed flow. We validate the model
against interface-resolved simulations using the immersed-boundary method. Simulations of single par-
ticles show that the history effect is well captured by the present estimation method based on the dis-
turbed flow. Similarly, the simulation of the flow around a rotating particle demonstrates that the lift
force is also well captured by the proposed method. We also consider the interaction between non-
negligible size particles and an array of Taylor-Green vortices. For density ratios p4 [p > 10, the results
show that the particle motion captured by the VA approach is closer to that of the fully-resolved simu-
lations than that obtained with a traditional two-way coupling simulation. The flow disturbance is also
well represented by the VA simulation. In particular, it is found that history effects enhance the curvature
of the trajectory in vortices and this enhancement increases with the particle size. Furthermore, the flow
field generated by a neighboring particle at distances of around ten particle diameters significantly in-
fluences particle trajectories. The computational cost of the VA simulation proposed here is considerably
lower than that of the interface-resolved simulation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Interactions between particles and a turbulent flow are impor-
tant in many industrial processes like cyclone separators and pul-
verised coal combustion. Many factors determine the fluid-particle
interaction such as the flow configuration, the particle relaxation
time (the Stokes number), the role of flow inertia (Reynolds num-
ber), the importance of gravity (Froude number), the solid volume
fraction and the mass fraction (the latter two related by the den-
sity ratio). One critical factor is the ratio between the particle size
and a typical length scale of the flow. In pipe flows and free jets
laden with particles (including bubbles and droplets), for exam-
ple, the turbulence intensity increases when the particle diameter
D is larger than one-tenth of the integral length scale (Gore and
Crowe, 1989). Experimental works with dilute suspensions, on the
other hand, report significant reductions of the turbulence inten-
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sity when the particle diameter is comparable to the turbulence
Kolmogorov length scale n (Kulick et al., 1994; Paris and Eaton,
2001; Hwang and Eaton, 2006). To understand the mechanisms
of the interaction between the phases, numerical simulations can
be used to capture both the turbulence structures and the par-
ticle motion. In many numerical studies, however, the force on
the particle is approximated and the feedback force on the fluid
is either ignored (i.e., one-way coupling) or simplified (i.e., tra-
ditional two-way coupling) to a point-source. Thus, the turbu-
lence attenuation by particles of D~n is not reasonably repro-
duced by traditional two-way coupling simulations (Eaton, 2009;
Schneiders et al., 2017). On the other hand, fully-resolved sim-
ulations like those in Kempe et al. (2014), Picano et al. (2015),
Fornari et al. (2016) and Santarelli and Frohlich (2016) are still
too expensive for configurations of practical interest, which justi-
fies the need for better models.

Focusing on the particle motion, the mean particle settling ve-
locity is influenced by the background turbulence (Nielsen, 1993).
As recently shown in the experimental study of Good et al. (2014),
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Fig. 1. Schematic images of undisturbed (left) and disturbed (right) velocity vectors
in a two-way coupling simulation around the particle centre.

the settling velocity of particles can both increase and decrease
when the particle diameter is slightly smaller than the Kolmogorov
length scale. Although one-way coupling simulations capture this
trend qualitatively, a quantitative difference is recognised even for
very dilute cases. For direct numerical simulations of turbulent
flows, a grid width Ax of the order of the Kolmogorov length scale
is necessary. Therefore, for a simulation of a particle-laden flow of
particle size D~ 1, an appropriate two-way interaction model be-
tween the flow and the particle is required.

The most reliable numerical approach is resolving the parti-
cle boundary, in which case the fluid force is directly computed.
The immersed boundary method (IBM) is one of the possible ap-
proaches of this type as shown in several studies (Kajishima and
Takiguchi, 2002; Lucci et al., 2010; Tenneti and Subramaniam,
2014; Fornari et al., 2016). As the particle diameter needs to be
resolved by ten or more grid points, fully-resolved simulations
are practical when the particle is sufficiently larger than the Kol-
mogorov length scale. In other words, for the case D~n, fully-
resolved simulations are not feasible because of the prohibitive
computational costs. Therefore, the effect of the particle on the
fluid has to be modelled without capturing the boundary layer.
In the traditional two-way coupling simulations, the drag force
model is based on the undisturbed flow velocity and the particle
is assumed to be much smaller than the Kolmogorov length and
the grid width. In the implementation, the local flow disturbance
around the particle (see Fig. 1) is neglected and the disturbed ve-
locity interpolated at the particle position is used as the undis-
turbed velocity in the expressions for the force (Squires and Eaton,
1990; Boivin et al., 1998; Sundaram and Collins, 1999; Li et al.,
2001; Rani et al., 2004). However, as Gualtieri et al. (2015) pointed
out, the effect of the disturbance around the particle itself cannot
be ignored even when D« 7. These authors proposed, therefore,
an estimation of the fluid force based on the Stokes flow around
the particle, still considered to be smaller than the grid size. In the
case of D~n, the disturbance flow around the particle becomes
more important and the assumption of Stokes flow is questionable.
On the fluid side, moreover, the point-source feedback force on the
momentum equation is numerically distributed in space. Since the
particle size is ignored, the distribution does not consider the ef-
fect of the physical surface position.

To overcome these limitations, one possibility is volume av-
eraging of the momentum equation that enable us to distribute
physically-meaningful feedback force. This force is referred to as
interaction force in this paper. Fukada et al. (2016) recently de-
veloped a distribution model of the interaction force for particle
of diameters slightly larger than the grid size, Ax. The interac-
tion forces for uniform and simple shear flows around a sphere
are modelled for particle Reynolds numbers Rep, = O(10) and shear

Reynolds number based on the particle diameter Re,, = O(1). The
asymmetric distribution of the interaction force resulted in qualita-
tively and quantitatively reasonable flow fields consistent with the
fully-resolved results. The energy transfer on the volume-averaged
field was also captured, something which is not considered in tra-
ditional two-way coupling models. However, the simulations in
this previous work were limited to the case of a fixed particle and
known steady undisturbed flow.

In the present study, we therefore propose a novel estimation
method of the fluid force based on the disturbed flow around the
particle. This approach is suited for the volume-averaged frame-
work unlike a conventional two-way coupling approach. The study
aims to show the applicability of the volume-average framework
for the flow including moving particles.

We will initially consider the history effect on the particle
motion, an effect whose importance is increasingly recognised
(Olivieri et al., 2014; Daitche, 2015). The history effects are highly
influenced by the background flow and the modelling is therefore
difficult (Bagchi and Balachandar, 2003). The traditional Basset his-
tory model based on the assumption of Stokes flow (Maxey and Ri-
ley, 1983) is not applicable for a long physical time since the model
overestimates the past effects (Mei and Adrian, 1992). Some mod-
els developed for finite Reynolds number are, on the other hand,
limited to specific and relatively simple flows (Mei and Adrian,
1992; Wakaba and Balachandar, 2005). The high computational
cost of the integration of the history effect is also a factor to con-
sider. However, in an appropriate two-way coupling simulation, the
history effects are included in the force estimation if the effect of
unsteady disturbances is correctly captured (Gualtieri et al., 2015).
In a similar way, the lift force can be also represented by an appro-
priate two-way coupling algorithm that captures the flow distur-
bance, again reducing the dependence on a specific model. To in-
vestigate how the history and the lift forces appear in the present
simulation framework based on the volume-averaged equation (re-
ferred to as VA simulation), the settling of a particle in a fluid
at rest and the flow around a rotating particle will be examined.
For comparison and validation, we refer to the result from a fully-
resolved IBM simulation, which is carried out in this study, and
previous results (Rubinow and Keller, 1961; Kurose and Komori,
1999; Bagchi and Balachandar, 2002; Bluemink et al., 2010).

We will then focus on the interaction between particles and a
cellular vortical flow, the Taylor-Green vortex. The particle diam-
eter is O(10) times smaller than the vortex and its size is there-
fore non-negligible. The particle trajectory in the Taylor-Green vor-
tex has been first investigated by Maxey (1987) in the one-way
coupling regime. For particles of non-negligible size, however, the
particle-vortex interaction leads to the flow disturbance at scales
larger than the particle size as well as local disturbances around
the particle. Bergougnoux et al. (2014) showed in their experimen-
tal study that weak disturbances of the vortex influence the parti-
cle trajectory significantly. Therefore, a two-way coupling investi-
gation is necessary to correctly capture the particle motion in vor-
tices. Flow disturbances also induce and modify the interactions
between two different particles. The hydrodynamic forces on par-
ticles at distances of the order of D in a uniform flow have been
the main objectives of previous studies (Tsuji et al., 2003; Yoon
and Yang, 2007; Ozgoren, 2013). However, for a better understand-
ing of the particle motion in turbulence, inter-particle interactions
at larger distances in a vortical flow should also be considered. In
this study, we simulate the behaviour of the particle in the Taylor-
Green vortices and show advantage of the VA approach for the
particle motion in comparison to the point-model based method.
The fully-resolved IBM simulations are also carried out as refer-
ence. Finally, the importance of two-way coupling on the particle
trajectories is confirmed for cases with different initial positions
and inter-particle distance of around 10D.
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Fig. 2. Schematic image of the volume-averaging area. Particle surface within V is
denoted by S,.

2. Governing equations
2.1. Volume-averaged equations of the fluid phase

The volume-averaged mass and momentum equations for dis-
persed multiphase flows are derived by Anderson and Jack-
son (1967) under averaging length scales much larger than
the inter-particle spacing. The derivation is also detailed in
Crowe et al. (1997). On the other hand, the treatments of the resid-
ual stress and the interaction force terms for a case of averaging
length scale comparable to the particle size have been developed
by Fukada et al. (2016). The volume-averaged equations and the
models of these terms are briefly described in the following.

The multiphase flow consists of the continuous (fluid) phase
(c-phase) and the dispersed phase (d-phase). Only rigid spherical
particles are considered for the dispersed phase. Considering the
spherical averaging volume V as shown in Fig. 2, the volume frac-
tion and the phase average of a physical property B are defined
as

Vi
a =y (1)

(B), = Vl Bdv, (2)
k JV,
where V), is the volume occupied by k-phase (either c or d) inside
V. For a quantity f defined through the averaging volume V, we use
the notation f(x) where x denotes the centre of V.
The basic mass and momentum equations for an incompressible
Newtonian fluid are written as follows:

V.u=0, (3)
ou 1 2
—+V.(uu)=-—Vp+vV-u+h, (4)
at Pc

where u is the velocity, t time, p. the fluid density, p pres-
sure, v viscosity and h an external forcing. In the present study,
h is given to keep the background flow steady. As shown in
Fukada et al. (2016), through volume-averaging these equations,
we obtain

V. (aC<u>c +ad<v>d) =0, (5)
% +V - (o), (u),)

t
= —%VP—F \)Vz(ac<u)c+ad<v)d) ©)

f

+ac(h).— V. T+ v

where v is the velocity inside a particle, P the scalar function
corresponding to pressure, T the residual stress and f the in-
teraction force. The fluid variables used in the simulations are
o <u>, and P. Appendix A shows the differentiability of the
volume-averaged quantities. The form of the viscous term is differ-
ent from that in other volume-averaged equations (Anderson and
Jackson, 1967; van Wachem et al., 2001), and the decomposition
into VV2(ac(u),.) + vV2(ay(v),) is not allowed.

The scalar function P can be decomposed as oc(p), + Y., ¥g nPn
where oy , and p, are the volume fraction and the surface-mean
pressure (over the entire surface) of the nth particle. In a numerical
simulation, P can be obtained without considering the decomposi-
tion.

The residual stress is defined as

T = oc(0udu),, (7)

where Su=u-— (u),. The original model by
Fukada et al. (2016) is
_13R2 | 9 (ac(u). + ag(v)y) ov
_ 138 c c d\Y/d) _ I
T—ac 5 { axm ad(aXm>d (8)
a(ac(u)c + otd(v)d) —a <ﬂ>
0Xm X ’

where xp, is the mth component of the Cartesian coordinates and
the summation convention is applied for the subscript m. The ve-
locity gradient inside the rigid particle dv/dxn, corresponds to the
angular velocity of the particle.

The interaction force is defined as

f== [ -5 0m+v(Vu+ (vuy) nfds ©)

where §p is the deviation from the surface-mean pressure p, of
the corresponding particle, n the unit normal vector on the particle
surface directed to the fluid-phase and S; the partitioned particle
surface area inside V (see Fig. 2).

2.2. Interaction force models

According to Appendix B of our previous study (Fukada et al.,
2016), the independent interaction force models can be success-
fully superimposed for steady flows with Re, <40 and yD?/v =
O(1), where y is the shear rate. In the present study, we thus as-
sume superposition of the different contributions:

= Funit + fug + Jog + Frot, (10)

where the contributions due to the relative velocity, the undis-
turbed velocity gradient, the undisturbed pressure gradient and the
particle rotation are represented as fynir, fug, fog and fror. Each com-
ponent is described in the following.

Introducing the particle Reynolds number as

Re, = |U;|D, (11)

where U; is the relative velocity based on the undisturbed flow
and D is the particle diameter, the interaction force corresponding
to the relative velocity is modelled as (Fukada et al., 2016)

Fara X—x

Funit(®) = { e IEA - ~m}m )
X—Xp

-x&@ *E)fopy

In the above expression, & =S, /wD? denotes the normalised sur-
face area (hereafter, referred to as surface fraction), m the unit vec-
tor in the direction of the relative velocity Uy, X, the particle centre
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position, Fyr,, the contribution of the relative velocity to the fluid
force

Firag = 37 V2 pcRep (1 4 0.15Re)®7), (13)
and yx is a fitting coefficient
x = 0.225mv?Re; (1 + 0.126Re***). (14)

Note that V=1 [ f.irdx = —Fyrag /pc holds, which guarantees the
total momentum conservation between the phases. The interaction
force (12) is based on the theoretical result of the flow around the
sphere for low Re, (Proudman and Pearson, 1957). The fitting co-
efficient x is introduced for extending to higher Re, according to
our numerical result (Fukada et al., 2016) .

For a uniform shear flow of undisturbed velocity U,y = y (x; —
Xpp)e; with Rep =0, the shear-induced interaction force is mod-
elled as (Fukada et al., 2016)

Jugy ®) =—mvyD*E(1 - §)

Xy —X
x| 4 2 p2e1+
|x —xp|

X1 — Xp1 (15)
2 ]
|x —xp|

where e; is the unit basis vector in the ith direction. The model

for a general undisturbed velocity gradient can be written as the
superposition

fis@)=—mvD*E(1 — &) 4( 222V |u,,
|x—xp|
o, (16)
+(VUud)~m .

Appendix B of this paper briefly summarises the derivation, and
for more details the reader is referred to Fukada et al. (2016).

The pressure gradient and the added-mass forces on the parti-
cle, Fyg, are modelled as

3me me dvp
20 T2 ar
where P4 is the undisturbed pressure and v, the translating veloc-
ity of the particle, m¢ = 7 pcD3/6 the mass of the displaced fluid.
Assuming that this force corresponds to the additional surface

pressure —(3F,g - n/rD?) obtained for an inviscid uniform flow, the
interaction force can be shown to be (see Appendix B)

Fos) = £ (1 = (1= £)(1 - 26)) 2%
—-36(1-6)(1-2§) (18)
y <Fpg. X—xp ) X—xp
pe Tx— %] JTx—2,]
Using the Stokes solution for a rotating sphere with angular ve-

locity €2, the interaction force due to the particle rotation is ob-
tained as

Srot(®) = 3JTVD2§(1 —éj)ﬂp X

Fpg = — (17)

X—x,
Al (19)

2.3. Estimation of undisturbed flow at the particle position

To represent the interaction between the fluid and the parti-
cles, the relative velocity U, and the undisturbed gradients of U4
and P,q at the particle position need to be estimated. In tradi-
tional two-way coupling simulations, the disturbed fluid velocity
interpolated at the particle position is often regarded as the undis-
turbed flow when computing the interaction. However, this treat-
ment is justified only when the particle is much smaller than the
grid spacing and not appropriate for the present cases (D~ Ax).
Therefore, in this paper, we propose new estimation methods for
the relative velocity U; and the undisturbed gradients of U,y and

100
2
~
E 10 | =
(=8
)
|
P
A .
S
3
i
0.1 N
1 10 100
Re,

Fig. 3. Comparison of the averaged velocity at the particle centre from the numer-
ical data (symbol) and from the model by Eq. (20) (line).

Pyq- The radius R of the averaging volume V is kept to be 0.75D
throughout this paper as the effectiveness of this value was con-
firmed (Fukada et al., 2016).

2.3.1. Relative velocity

The contribution of the relative velocity to the fluid force (13) is
described in terms of Rep. As the volume-averaged disturbed ve-
locity ¢ (u) ¢ is obtained from the volume-averaged equations, the
correlation for the particle Reynolds number Re, is necessarily
based on (o (u) c)(xp). For the fixed value R =0.75D, the corre-
lation equation,

0.81
Re, = 464(0‘5'(");_ "”'D) : (20)

is obtained by a curve fitting based on the numerical data of
our previous study (Fukada et al., 2016) for the steady uniform
flow around a single particle. Fig. 3 shows that Eq. (20) is valid
for Rep <40, which is sufficient for the present study. The ef-
fect of unsteady velocity on the force is qualitatively reflected
through |(u). — vp|. The estimation method for ac({u), — vp) is in
Section 3.1. In the numerical implementation, the direction of the
relative velocity is assumed to be the same as that of a¢((u), — vp).

2.3.2. Velocity and pressure gradients

A simple estimation method for the undisturbed gradients
based on the volume-averaged variables is proposed. We define the
differentiation operator in the direction e; at the particle centre:

x,+1le) — f(xp, —le;

31, ley = Lot 1e) —fxy —le)
where f is a function of x, and [ is an appropriately determined
distance. In this study, | = D is adopted as supported by the tests
for the pressure gradient shown in Appendix C. One of the simplest
possible estimates of the undisturbed gradients are

Uy

T; ~ S (ac(u). +aq(v)y. le).

1

0Py

aX,‘
However, even in a uniform flow, non-zero gradients would be es-
timated around a particle due to the particle relative motion. To
remove the effect of the relative motion, the following equations
are constructed for the uniform flow case by curve fittings:

Surr(Rep) = 8(“5(” : m)c + ad<v : m)ds Dmy)
_ _0.114<1>Re},-”,

(21)

(22)

~ §(P, le;).

(23)
D2
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Fig. 4. Comparison of the disturbed velocity gradient at the particle centre from
the numerical data (symbol) and from the model by Eq. (23) (line).
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Fig. 5. Comparison of the disturbed pressure gradient at the particle centre from
the numerical data (symbol) and from the model by Eq. (24) (line).

8pr(Rep) = 8(P. Dm)

pcv? 1.68 (24)
:—0.298( hE )Rep ,

where the direction of the relative velocity m is ((u). — vp)/|(u), —
vp|. Figs. 4 and 5 compare Eqs. (23) and (24) with the fully-
resolved numerical data obtained on a body-fit coordinate system
(Fukada et al., 2016). According to these correlations, the undis-
turbed gradients are approximated by

VU ~ €6 (ac{u), + aq(v)y, le)

(25)
—(1.58;ymm — 0.58,,1),

VP ~ §(P,le;)e; — &,rm, (26)

where I is the identity tensor and the summation convention is
applied for the subscript i.

2.4. Equation of motion for the dispersed phase

For finite Reynolds numbers, the force F on a particle can be
modelled as

F = Fyragm + mc

DUy + ﬁ DUy _ %
Dt 2\ Dt dt

+F, + (mg —m¢)g + Fext (27)

(see Crowe et al., 1997), where F,, is the history force, g the gravita-
tional acceleration, Fex; the external force, my; = ,odD3 /6 the par-
ticle mass. The first three terms on the right-hand side are the
steady viscous force, the pressure gradient force and the added-
mass force. The term p.(DU,q/Dt) is replaced by —VP,4 because
the viscous force vV2U,4 cancels with the external force h for
the undisturbed flows considered in the present study. The ex-
ternal force on the particle Fexc is the same as that on the dis-
placed fluid o fvp hdV where V) is the volume of the particle. For
the history force at a finite Reynolds number, a reliable model
for general flows is not available so far. However, as discussed
by Gualtieri et al. (2015), the history effect can be partly repro-
duced in accurate two-way coupling simulations without any spe-
cific model. Therefore, in the present model, we will numerically
solve the following equation

dvy 2 nD3
a - 2md—|—mc{Fdragm - Tvpud + (mg —me)g
+,0C/ hdv}. (28)
Vo

To investigate the effects of the pressure gradient and the added
mass, we will also compare the result by solving the following
equation

dv, 1
a S m, {Fdragm + (my —me)g + pc /vp hdv}. (29)

The particle position is given by the following equation:

dxp _

i = Up. (30)

To include a first-order approximation of the effect of the flow on
the particle rotation, the following equation for the angular veloc-
ity based on the Stokes solution is considered

d 7 pcvD3 /1
T;ZPFTGVXUM—QP), (31)

where I; = myD?/10 is the moment of inertia of the spherical par-
ticle. This equation is consistent with Eqs. (16) and (19) as both
equations assume the same Stokes solution.

3. Numerical methods

For simplicity, the simulation with the volume-averaged equa-
tions (Sections 2.1 and 2.2) is referred to as VA simulation. To in-
vestigate the history effect, a one-way coupling simulation is also
attempted. Moreover, we will compare the results of the VA sim-
ulation to those of a traditional two-way coupling simulation and
the fully-resolved simulation with the immersed boundary method
(IBM). In the following, these numerical procedures are described
briefly. In all the simulations, the 2nd-order central-difference
scheme is used for the spatial derivatives with a staggered arrange-
ment for the fluid variables. The fractional step method (Kim and
Moin, 1985) is used as the pressure-velocity coupling algorithm for
the fluid-phase. The computational cell is a cube of side length Ax.

3.1. VA simulation
The 2nd-order Runge-Kutta method is used for the time evolu-

tion of both phases. As the averaging volume V is larger than the
particle (R = 0.75D), the contribution of each particle to the vol-
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ume fraction o, is calculated as

3

R% for 0<|x—xp| <R—1y

1 3 2 2

16T{|;>\:—;>\cp| —6(r2 + R?)|x — x|
ag(x) = 3(r2 —R?)? , 32
a(%) ~3(rg ) L8R 4 1) (32)

|% — xp|
for R—ry<|[x—%xp| <R+r1y
0 for |[x —x,| >R+1y

where r; = D/2 is the radius of the particle. The surface fraction &
is calculated as

1 for 0<|x—x,| <R—1y
1 1_|X*xp|+ R —r3
Ex) =12 21y 2r4]x — Xp| . (33)
for R—rg <|x—xp| <R+14

0 for |[x—x,| > R+1y
The averaged velocity of the solid-phase « (v), is calculated as

(o {v)4) (%)

3

r
R3vp for 0 <|x—xp| <R—1yg

ag(X)vp + Ky (|x — xp]) 2, x (X —Xp)

= (34)
for R—rgy<|x—%,| <R+r1y
0 for |[x —x,| > R+14
where the function Ky(y) is
(R—1q —y)*(R+14 —y)*(R* + 4Ry — 1* +y*)
Ka(y) = — ‘ .39

32R3)3

The derivation of these geometrical functions (32)-(34) is sum-
marised in Appendix D.

To keep the total external force on the system shdV constant,
the external forces are approximated as

(ac(h)) () = ach(x) (36)

for fluid, in Eq. (6), and

Pc/v hdV =" peorg jjchij AX3 (37)
b ik

for solid, in Eq. (28), where the subscript ijk represents the spatial
point of grid index (i, j, k).

The estimation of {orc({(u), — vp)}(xp) in Eq. (20) is particularly
important to predict the drag force. As the distribution of o (u) .
has a local minimum near the particle centre, a linear interpola-
tion is not sufficient. Therefore, the following interpolation steps
are used for the velocity:

w = ac{u) 4+ ay(v)y, (38)
Wi = wi(x) + (%p — X)) - Vw;(x))
1 (39)
+ j(xp —X) (X, — %) : VVw;(x),

{ac(<u'>c - Upi)}(xp) ~
i ’Xm X11| ‘sz *X12|
; 1- ) <1 T Ax (40)

X (l — ‘XIBA_XXB‘)VV” _ Upiv

where [ =1, --.,8 indicates the eight definition points of the ve-
locity around x;. The effect of the second-order derivative is con-
sidered in (39) and the linear interpolation (40) guarantees the
continuity about x,. For the pressure, the linear interpolation

8
~ _x = xn X2 —xp|
P(x) ~ Z (1 A 1 A

1=1

X3 —X
X<1_ | BAXB|>PI

is used (I indicates the definition points of the pressure).

To adjust the flow field far away from the particle to the non-
averaged field, the residual stress term V -t is replaced by C(V - 1)
where C is given as follows:

(41)

T |X— Xy
cx)=1{° (2 R+, ) for |x %[ <R+rq. (42)
0 for ¥ —x,| >R+1y

3.2. One-way coupling simulation

In the one-way coupling simulation, the flow field (Uyq, Pyq4) is
theoretically or numerically given and only the particle motion is
solved for. To consider the history effect, the acceleration including
the Basset history term is considered. The equation of motion is
given by

dvp
dt m {37TPCVD(Uud —Vp)
D3
VP + (g — mo)g (43)
2 pch\/ f \/7 ar (uud - vp)df}-

Egs. (30) and (43) are solved with the efficient implicit method
proposed by van Hinsberg et al. (2011). The linear drag force model
(Firag = 37 pcvD|Uyq — Vpl) is used as they did. Simulations are also
performed without the Basset term for comparison.

To quantify the relevance of the nonlinear drag force model, we
solve Egs. (28) and (30) without the external force, h, with a 2nd-
order Runge-Kutta method. Note that the volume force h is en-
tirely distributed on the fluid. The particle Reynolds number used
here is given by

_ |Uua —vp|D (44)

instead of Eq. (20); the direction defined by the unit vector m is
parallel to Uyg — vp.

In the present study, to examine the history effect in time when
Re, is low, the following three cases of one-way coupling simula-
tions are performed and those are denoted as:

O-LB: including the linear drag, the added mass, the pressure
gradient and the Basset terms, see Eq. (43),

O-L: same as O-LB but without the Basset term,

O-NL: including the nonlinear drag, the added mass and the
pressure gradient, see Eq. (28).
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3.3. Traditional two-way coupling simulation

In the traditional two-way coupling simulation, Eq. (3) and the
momentum equation

a
ad

are solved without volume-averagmg, where f}, is the feedback
force from the particle. Eq. (29) with h =0 (as h is entirely dis-
tributed on the fluid) and Eq. (30) are solved for the particle mo-
tion. This traditional two-way coupling simulation is referred to as
TT below.

To distribute the feedback force f},, we use the following equa-
tion (regularised Dirac delta function)

Fy;. _
_ 298 k{1 + cos nlx Xp|
Pc R+ry

for |x—x,| <R+rq

1:+V (uu)_——Vp+vV2u+h+fb (45)

fr(x) = (46)

0 for |x—xp| >R+1y

where K is the normalisation factor computed as

4
_ |%;j — %p] 3
K= |:§k: {l + cos (JTR_Hd AC| . (47)

The direction m, used in Eq. (46 (u(xp) —
vp)/|u(xp) — vpl.
The fluid velocity at the particle centre is interpolated with

Wi = ui(x) + (%p — %)) - Vu; (%)

), is determined by m =

1
+§(xp—x,)(xp—x1) : VVU,‘(X[), (48)
i [Xp1 — X1 [Xp2 — xp2|
wp) ~ 3 (1= ) - " a
=1
Xp3 — X
« (1 _ | p3AX l3|)VVL,-. (49)

To compute the drag force by Eq. (13
ber is estimated as

|u(x,) —vy|D

—

The numerical procedure with the 2nd-order Runge-Kutta method
is employed for both phases.

), the particle Reynolds num-

Re, = (50)

3.4. Fully-resolved simulation

The immersed boundary code originally developed by
Breugem (2012) is used for the fully-resolved simulation. The
continuity Eq. (3) and the following momentum equation are
solved in the whole domain including the regions occupied by the
particles:

0
ad
where fig is the body force used to impose the no-slip condition on

the particle surface. The particle translational and rotational equa-
tions are

mddv” = %s-ndS—i—pc/ hav + (my — mc)g, (52)
dt S Vp

't’+v (uu)_——Vp—l— wW2u h+ fis, (51)

dﬂp % (X —xp) x (s-m)dS
(53)
Cf (x —xp) x hdV,
Vo

where S is the particle surface, s = —pl+ pcv(Vu+ VuT) the
stress tensor. The force exchange is considered on a set of N La-
grangian points around each particle surface. The force F; at the
jth Lagrangian point is distributed on the fluid as

N
> F8q(x — %)) AV}, (54)
j=1

fs(®) =

where 8 is a regularised Dirac delta function and AV; the volume
of the Lagrangian grid cell. In the simulation, Eqs. (52) and (53) are
converted to

dv al
m"dTP = 7pcj§1~'jAvj

; (55)
+Pc—; (/ Udv> + (myg —me)g,
de\ Jy,
dSZ N
a0 = P22 (% = %) xFAY,
j=1 (56)

+pcdt</vp (% —xp) x udV>‘

The three-step Runge-Kutta method is used for the time in-
tegration. More details can be found in Breugem (2012) and
Lambert et al. (2013).

4. Numerical results

In the VA simulation, the history and lift forces are captured
without any specific treatment as this method intrinsically incor-
porates the effect of the flow perturbation through the volume-
averaging. In Section 4.1, the particle settling problem in a sta-
tionary fluid is simulated to show how the history force is rep-
resented. The lift force on a rotating particle is instead the focus of
Section 4.2. For the study of the turbulence modulation by parti-
cles of comparable size to the Kolmogorov length scale, the inter-
action between the particle and a vortex element should be pre-
cisely represented. In Section 4.3, therefore, the applicability of the
VA simulation for the Taylor-Green vortex is investigated. As the
fundamental validation for different density ratios, the particle mo-
tion in the smallest periodic unit is simulated without gravity. Fi-
nally, in Section 4.4, to highlight the importance of the two-way
coupling simulation for a vortical flow, we show the particle trajec-
tory and the inter-particle interaction in an array of Taylor-Green
units with gravity.

Throughout this study, grid resolutions of D/Ax =24 for the
fully-resolved simulations and D/Ax =2 for the VA simulations
are commonly employed. Note that the number of grid points is
123 times lower for the VA simulation with respect to the fully-
resolved simulation and consequently the time step At is 20 times
larger. Therefore, the total computational cost is ©(10%) times
lower with the VA model. The computational domain is rectangu-
lar of lengths I, I, and I3 in the x;, x, and x3-directions. Periodic
boundary conditions are applied in all the directions. The motion
of the particle is confined in the x; — x, plane due to the sym-
metry of the flows studied. The choice of R =0.75D and D/Ax =
2 is reasonable according to our previous study (Fukada et al.,
2016). The effects of these parameters are further discussed in
Appendix E.

4.1. History effect on the settling particle
A single particle settling in a stationary fluid is studied by one-

way coupling simulations, the VA approach and the IBM simula-
tion. The fluid and particle velocities are initially set to 0. Gravity
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Fig. 6. (a) Time evolution of the particle settling velocity in a fluid at rest. Solid
line, VA simulation; dashed line, fully-resolved simulation; circle, O-NL simulation;
filled triangle, O-LB simulation; filled square, O-L simulation. (b) Enlarged view of
the same data at the early stage.

acts in the negative x,-direction and the external force, h, is ne-
glected. The importance of gravity is characterised by the Galileo
number defined as

Pd ) 3
— —1)|g|D
(Be-1)

C

In the following, using Eq. (13), Ga is related to the particle
Reynolds number based on the particle terminal velocity as

Ga= \/ 18Rererm (1 + 0.15Re.587). (58)

The following set of parameters are used for the simulations:
(l4/D, /D, 13/D) = (16,32, 16), p4 /pc = 100 and Ga = 8.44 (corre-
sponding to Reierm = 3). The time step is (v/D?)At = 1.19 x 104
for the fully-resolved simulation and (v/D?)At =2.39 x 103 for
the other cases. The number of grid points is 384 x 768 x 384 for
the fully-resolved simulation and 32 x 64 x 32 for the VA simula-
tion.

Fig. 6 shows the time evolution of the dimensionless par-
ticle settling velocity v,,D/v. First we note that the solid and
dashed lines almost overlap with each other and the proposed VA
and the fully-resolved simulations show good agreement. Around
(v/D%)t = 12, the result of the O-NL simulation, including drag,
added-mass and pressure gradient, shows better agreement with
that of the fully-resolved simulation due to the nonlinear drag

model (13). On the other hand, the O-LB simulation, including the
history effect, shows better agreement with the fully-resolved case
only for the earlier stage. Therefore, the history force is essential to
correctly model the initial transient stage, which is captured in the
VA simulation. In Fig. 6(b), focusing on the initial stages of the par-
ticle motions, the difference between the results of the two one-
way coupling simulations without the Basset term (O-L and O-NL)
is small because the nonlinear effect in the drag force is not sig-
nificant at the initial stage when the particle Reynolds number is
low.

As the boundary layer thickness at the beginning of the settling
is smaller than that in the steady flow, the friction drag of the
unsteady flow becomes larger in the developing stage. In the VA
simulation, smaller boundary layer thickness corresponds to larger
|ac((u), —vp)| and the history effect is qualitatively reflected in
the drag force. This also explains why the result of the VA simula-
tion shows quantitatively good agreement with the fully-resolved
simulation.

4.2. Lift force induced by particle rotation

The VA simulation of the flow around a rotating particle is car-
ried out to test the capability of capturing the transversal forces.
The uniform velocity u = (Ujy, 0,0) is given as the initial condi-
tion for the fluid flow. The particle centre is fixed in space and
the angular velocity is kept constant to €, = (0, Qconst, 0), thus
the particle motion, Eqgs. (28), (30) and (31), does not need to be
solved. The Reynolds numbers and the angular velocities are varied
in the following range: Uj,:D/v =1,5,10,20 and QconstD/Uppit =
0.196, 0.393, with gravity and the external forces set to zero. The
size of the computational domain is (l;/D, /D, I3/D) = (64, 32, 16)
and the number of grid points is 128 x 64 x 32. The time step
is (Uiit/D)At = 2.81 x 10~2. The wake of the particle reaches the
particle position around (Uj,;;/D)t = 64 due to the periodic bound-
ary condition. The force is thus examined at (Uj,/D)t =28.1 so
that effects from the re-entering wake are avoided.

Based on the components of the estimated fluid force F, the
drag and lift coefficients, Cp and C;, are defined as follows:

_ B
T .
§ chinit QconstD3

F

Go= 71—,
§IOCU5mD2

G = (59)

The drag and lift coefficients obtained in the VA simulation are
plotted in Fig. 7. Note that the magnitude of the angular velocity
does not influence the two coefficients. The drag coefficient esti-
mated in the present simulation shows good agreement with that
based on Eq. (12) (solid line). Therefore, the effect of the rotation
on the drag force is small as supported by previous researches
(Sridhar and Katz, 1995; Bagchi and Balachandar, 2002). As for
the lift force, the signs of a( (u;) . at the particle centre and F,
should be the same according to the result that the contribution
of the friction lift is in the same direction as F, (Kurose and Ko-
mori, 1999). Therefore, the present force estimation (Section 2.3.1),
the directions of the drag force and «({u). — vp) being the same,
is capable of capturing the direction of the lift force. In the VA
simulation, the interaction force model for the particle rotation,
Eq. (19), induces a. (u3) c <0 and thus the lift force F, <0. Accord-
ing to the theoretical study by Rubinow and Keller (1961), the lift
coefficient is C; = 1 for Rep « 1. On the other hand, numerical stud-
ies at Rep = O(10) have shown an estimate of C; ~0.5 (Bagchi and
Balachandar, 2002; Bluemink et al., 2010). The VA simulation cap-
tures the direction of the lift force generated by the particle ro-
tation, and the magnitude quantitatively agrees with the previous
results for Rep < 10 under the setting of this study.



196 T. Fukada et al./International Journal of Multiphase Flow 104 (2018) 188-205

100

N i
Q;“ 10 ¢ E
QO i 1
14 .
Foo . I =
i 5 ]
I |

0.1 —

1 10

Re,

Fig. 7. Drag and lift coefficients on a rotating particle for different Reynolds num-
bers by the VA simulations, indicated by open and filled symbols. Square symbols,
rotation rate QconstD/Upnic = 0.196; triangle symbols, QconstD/Uinir = 0.393. The solid
line shows the drag coefficient obtained from Eq. (13) and the dashed line repre-
sents C, = 0.5. Square and triangle symbols almost overlap with each other.

4.3. Vortical flow without gravity for three density ratios

To study the interaction between a particle and a vortex, the
Taylor-Green vortex is used as the background undisturbed flow.
The smallest unit structure of the Taylor-Green vortex is consid-
ered to compare the results of relatively simple particle motions
from different simulations. The directions of the Cartesian coordi-
nates (x1, X, X3) are determined so that the velocity components
of the undisturbed flow are
U, -e; =Asin <XT2) U, e =—Asin (%) (60)
where the velocity A and the length L define the vortex in-
tensity and size. The period in the x; and x,-directions is
2L and the Reynolds number Re =AL/v =18. According to
Jiménez et al. (1993), the intensity of a typical vortex in isotropic
turbulence is correlated as I'/v ~ 18,/Re,, where I" is the circula-
tion of the vortex and Re; the Reynolds number based on the Tay-
lor length scale. The present case (Re = 18), where the circulation
of one vortex is I' = 16AL, corresponds therefore to Re; ~250. The
size of the computational domain is ly/L =I5 /L = I3/L = 27 and the
particle diameter D/L = 277 /16. As the Kolmogorov length scale 7 is
around eight times smaller than the diameter of the most intense
vortices in turbulence (Jiménez et al., 1993), the present particle
diameter is considered as a model of the case D~n. The flow is
maintained by the external force
h~e1=%sin(xfz>, h~e2=—%sin(%). (61)
The number of grid points is 384 x 384 x 384 for the fully-resolved
simulation and 32 x 32 x 32 for the VA and the TT simulations. The
time step is (A/L)At =3.31 x 10~ for the fully-resolved simula-
tion and (A/L)At = 6.63 x 103 for the other two methods. Three
different density ratios (p04/p0c = 1, 10, 1000) and two different ini-
tial particle positions are examined in the following. The corre-
sponding Stokes numbers St = pzD2A/(18p,vL) are 0.154, 1.54 and
154. The initial velocity of the particle is set to be the same as
the undisturbed fluid velocity at the particle centre and the initial
angular velocity is 0.

4.3.1. pg/pc = 1000
When the initial particle position is (xq/L,xy/L,x3/L) =
(w/2,7/2,0), the particle trajectory follows the straight line
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Fig. 8. Time evolution of the particle velocity v,; in a vortical flow for p4/0c =
1000. Solid line, VA simulation; asterisk, SVA simulation; dashed line, fully-resolved
simulation; square, TT simulation.

defined by dx,/dx; = —1 through the periodic boundaries and
the particle does not rotate. To highlight the difference between
the VA simulation and the TT simulation, the VA simulation
is repeated without considering the pressure gradient, particle
rotation and the external force on the particle. This simplified VA
simulation is referred to as SVA simulation.

The time evolution of the particle velocity vp; from these differ-
ent simulations are compared in Fig. 8. The results of the VA and
SVA simulations are similar to that of the fully-resolved IBM sim-
ulation, which we take as the reference case. On the other hand,
the particle behaviour predicted by the TT simulation exhibits large
difference from the reference case. One of the most significant dif-
ferences between the SVA and the TT simulations is the estimation
of the drag force. As the flow disturbance is non-negligible for the
finite-size particle, the force estimation according to Eq. (50) with-
out considering the local flow disturbance underestimates the drag
force and results in the smaller acceleration of the particle in the
TT simulation.

To investigate the effect of the particle on the vortex, we define
the induced flow disturbance as (a¢(u). + oq(v)y —Uyq). For com-
parison, the induced flow disturbance for the fully-resolved sim-
ulation is defined as (ac(u), + og(v)y —Uyq) using the local ve-
locities only in the region where o> 0, while (u—Uy) is used
in the other region. Fig. 9(a) shows the induced flow disturbances
at time (A/L)t = 33.13 in the x; — X, cross-section cutting through
the particle for both the VA simulation (solid arrow) and the fully-
resolved simulation (dashed arrow). This figure indicates that the
disturbances at larger scales than the particle size are very close
to each other. Relatively larger differences are found in the area
closer to the particle due to the difference in the position of the
particle. As shown in Fig. 9(b), by extracting the data from the VA
simulation at time (A/L)t = 33.36, to match the particle position
to that of the fully resolved case, the difference in the flow distur-
bance becomes smaller. To summarise, the VA simulation shows a
better agreement with the fully-resolved results for both the flow
disturbance and the particle motion in comparison to the one-way
coupling and the TT models.

4.3.2. pq/pc =10

The initial particle position is given as (x1/L,xy/L,x3/L) =
(r/2,7,0) so that the particle trajectory bends due to the vorti-
cal flow. The particle trajectories for the different simulation meth-
ods are compared in Fig. 10. The result of the VA simulation is
very similar to that of the reference fully-resolved IBM simulation.
The effects of the particle rotation, pressure gradient and external
force are not significant as the result of the SVA simulation is also
very close to the two previous cases. As discussed in Section 4.3.1,
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Fig. 9. (a) Disturbance velocity field induced by a particle transported in a Taylor-
Green vortex in the x; — x, cross-section cutting through the particle at (A/L)t =
33.13 for py/pc = 1000. Solid and dashed vectors represent the results of the VA
simulation and the fully-resolved simulation. The circles show the positions of the
corresponding particles (by the VA and the fully-resolved simulations). (b) Enlarged
view of the disturbance velocity field around the particle when the time of the VA
simulation is changed to (A/L)t = 33.36 to adjust the particle position to that of the
fully-resolved simulation.

the drag force estimated in the TT simulation is smaller than that
in the VA simulation, which gives smaller acceleration in the x;-
direction at the early stage. In the present case where the effect of
the pressure gradient is not so significant, the VA simulation effec-
tively reproduces the curved particle trajectory with significantly
less spatial resolution.

Fig. 11 shows the time evolution of the angular velocity €2p3.
The result of the VA simulation shows good agreement with that
of the fully-resolved simulation. Therefore, the contribution of the
vorticity to €23 is reasonably reproduced by the proposed model.

Finally, Fig. 12(a) shows the induced disturbance velocity field
at (A/L)t =33.13 in the x; — x, cross-section cutting through the
particle for the VA and the fully-resolved IBM simulations. The dis-
turbances at larger scales than the particle size show good agree-

0 2 4 6 8 10
x1/mL
Fig. 10. Trajectory of a particle with density ratio py/pc = 10 in an array of Taylor-
Green vortices. Solid line, VA simulation; asterisk, SVA simulation; dashed line,

fully-resolved simulation; square, TT simulation; The grey lines show the stream-
lines of the undisturbed flow.
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Fig. 11. Time evolution of the angular velocity €2,3 for a particle with density ratio
pPq/pc = 10 transported in an array of Taylor-Green vortices. Solid line, VA simula-
tion; dashed line, fully-resolved simulation.

ment with each other. As shown in Fig. 12(b), the disturbances
around the particles give an even better agreement when the par-
ticle position of the VA simulation is adjusted to that of the fully-
resolved simulation by slightly changing the time ((A/L)t = 32.53).

4.33. pg/pc =1

We next shortly consider particles of density equal to that
of the fluid with initial particle position (x1/L,x/L, x3/L) =
(mr/2,1,0). The particle trajectories are compared in Fig. 13. As the
density ratio is 1, the particle velocity fluctuations are relatively
large. The result of the O-NL simulation including all the forces
except for the history effect and external force, Eq. (28), shows
good agreement with that of the IBM simulation; the streamlines
are almost closed. On the other hand, the O-NL simulation further
neglecting the pressure gradient and added mass forces, Eq. (29),
shows a totally different trend, suggesting that the pressure gradi-
ent gives an important contribution. The result of the VA simula-
tion is also different from that of the fully-resolved IBM simulation.
Therefore, the estimation of the fluid force needs to be improved
for the case where the pressure force is dominant and the particle
velocity fluctuations are large.
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Fig. 12. (a) Disturbance velocity field in the x; — x, cross-section cutting through
the particle at (A/L)t = 33.13 for a particle with p,/p. = 10 transported in a Taylor-
Green array of vortices. Solid and dashed vectors represent the results of VA simu-
lation and the fully-resolved IBM simulation. The circles show the positions of the
corresponding particles (from the VA and the fully-resolved simulations). (b) En-
larged view of the disturbance velocity field around the particle when the time for
VA simulation is changed to (A/L)t = 32.53 to adjust the particle position to that of
the fully-resolved simulation.

4.4. Effects of two-way coupling in vortical flow with gravity

The settling motion of a particle is investigated in an array of
the Taylor-Green units. The flow configuration is

. (X X
Uud =Asm<£)cos (%)

X x (62)
Uuiz = fAcos( L1> sin( L2>

as often used (see e.g. Maxey, 1987; Bergougnoux et al., 2014. Note
that A and L in Eq. (62) are +/2 times larger than those in Eq. (60).
The length of the unit cell is 2L in the x; and x,-directions and
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Fig. 13. Trajectory of a particle of density equal to that of the fluid, p;/poc = 1, in an
array of Taylor-Green vortices. Solid line, VA simulation; dashed line, fully-resolved
IBM simulation; open circle, O-NL simulation; filled circle, O-NL simulation further
neglecting pressure gradient and added-mass forces.

the flow is maintained by the external force:
2Av . X1 X2
= Tsin () o3 (7).

63
h ——Mlcos<x])sin(x—2> o)
1T L L)

As in the previous section, we compare particle trajectories and
the induced disturbance velocity field obtained by different numer-
ical models, with particular emphasis on investigating the history
effect on the trajectory for different initial particle positions. Fi-
nally, the flow-mediated interaction between multiple particles at
distances around 10D is studied. All the results in this section are
obtained for density ratio py/p0c = 100 and the Reynolds number
Re = AL/v = 30 (corresponding to Re = 15 with the definition in
Section 4.3). The time step is (A/L)At = 5.52 x 104 for the fully-
resolved simulation and (A/L)At = 1.10 x 10~2 in the other cases.
Gravity works in the negative x,-direction. For all the simulations,
the initial particle velocity is the same as the flow at the particle
position and the angular velocity is 0.

4.4.1. Validation of the VA simulation

The particle initial position is (x1/L,x3/L,x3/L) = (7w /2,7 /2,0)
where the flow velocity is 0. The particle diameter is D/L =
2w /16 (St=12.9) and the Galileo number is Ga = 8.44. The do-
main size is ly/L=4m and /L = I3/L = 2. The number of grid
points is 768 x 384 x 384 for the fully-resolved IBM simulation and
64 x 32 x 32 for the VA and the TT simulations.

Fig. 14(a) compares the particle trajectories for the different
simulations. The result of the VA simulation shows good agree-
ment with that of the fully-resolved IBM simulation. The trajec-
tory is not as simple as in the no-gravity cases: the particle is
accelerated by gravity initially and then is transported upward by
the vortex. Interestingly, the TT simulation does not yield the up-
ward particle motion due to the reduced value of the drag force.
Fig. 14(b) compares the initial stage of the trajectories obtained by
the different formulations including the one-way coupling regime.
The result of the O-LB simulation, Eq. (43), is the closest (among
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Fig. 14. (a) Trajectory of a single particle with density ratio p;/p. = 100 under
the gravity in an array of Taylor-Green vortices. Solid line, VA simulation; dashed
line, fully-resolved simulation; open square, TT simulation; The grey lines show the
streamlines of the undisturbed flow. (b) Enlarged view around the initial particle
position. Filled triangle, O-LB simulation; filled square, O-L simulation; open circle,
O-NL simulation.

the one-way coupling simulations) to that of the fully-resolved IBM
simulation. Therefore, in the initial stage, the history effect is more
important than the nonlinearity of the drag model. However, the
difference in the trajectory of the O-LB simulation increases with
respect to the reference case after the initial stage of Fig. 14(b)
(i.e., when the particle goes into the neighbouring vortex) because
of the linear drag model and the error in the Basset term at longer
times. The result of the VA simulation suggests that an appropriate
two-way coupling model can reproduce the history effect without
a complicated model when the effect of unsteady disturbance due
to the finite-size particle is reflected.

The particle Reynolds number exhibits temporal variation up to
around 10 with accelerated and decelerated motion (figure omit-
ted).

4.4.2. History effect on particle trajectories

To highlight the importance to include the history effect, we
investigate the particle trajectories for different initial particle po-
sitions and two particle diameters, D/L = 27 /16 (Ga = 8.44, St =
12.8) and D/L =27 /32 (Ga =2.98, St =3.21). The domain size is
li/L=1,/L=8m and I3/L = 4w for the larger particle and l;/L =
I,/L=4m and I3/L = 2w for the smaller particle. The number of
grid points is 128 x 128 x 64 for both cases.

(a)

xo/mL

xo/TL

-1 0

.
x1/mL

Fig. 15. Trajectories of particles in an array of Taylor-Green vortices under the grav-
ity of different size (a) D/L =2m/16 and (b) D/L = 27 /32 and different initial po-
sitions, indicated by the filled squares. Solid line, VA simulation; dashed line, O-NL
simulation. The grey lines show the streamlines of the undisturbed flow.

The trajectories pertaining five different initial particle posi-
tions (along an enclosed streamline and at the vortex centre),
(x1/L,xy/L) = (w /2,7 /2), (|4, [2), 3[4, /[2), (72, m[4) and
(m /2, 3m/4), are displayed in Fig. 15. The trajectories are obtained
with the VA approach and the O-NL simulation excluding the his-
tory effect. The trajectories obtained with the VA simulation have
slightly larger curvature than those from the O-NL simulation at
the early stage, which is consistent with the observations above
about the role of the history effects. The distances between the
corresponding trajectories increase with time. For the larger par-
ticle (Fig. 15(a)), the differences are already non-negligible in the
cell adjacent to that of the initial particle positions. For the smaller
particle (Fig. 15(b)), except for the particle with the initial position
(x1/L,xy/L) = (7 /2, w/2), the differences between the two mod-
els are relatively small. This trend is explained by the fact that the
history effect becomes smaller for smaller particles (Bergougnoux
et al.,, 2014; Daitche, 2015). For the case with the initial position
(x1/L, x5 /L) = (/2,7 /2), the long-time less-active motion around
the vortex centre enhances the history effect on the trajectory.
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Fig. 16. Disturbance flow field and particle trajectories at (a) (A/L)t =22.08 and (b) (A/L)t = 33.12 for three particles released in an array of Taylor-Green vortices under

the gravity. The square symbols indicate the initial particle positions.

4.4.3. Interaction between multiple particles

The importance of the two-way coupling simulation for the
inter-particle interaction through the flow disturbance is demon-
strated in the following. For the simulations presented here,
the physical parameters are D/L =27 /16 and Ga = 8.44. The do-
main size is ly/L=1/L=8mr and l3/L =4m and the number of
grid points 128 x 128 x 64. The interaction between particles at
distances of around 10D, which is a typical distance for vol-
ume fraction @(10~%), is simulated with 3 particles with initial
positions (x{/L,x,/L, x3/L) = (/2,571 /2,0), (57 /2, 57 /2, 0) and
(37 /2, 32, 0). Note that the first two particles are in the same
relative position of the respective Taylor-Green vortex units. Fig. 16
shows the disturbance flow field and the particle trajectories at
two different instants. If the inter-particle interactions are ignored,
the trajectories of the two particles initially at x,/L = 57 /2 should
be the same. As shown in Fig. 16 (b) at time (A/L)t = 33.12, how-
ever, the trajectory of the particle released from (x;/L, x3/L, x3/L) =
(mw/2,5m/2,0) turns to a different direction in comparison to that

released from (xq/L,xy/L,x3/L) = (57 /2,57 /2,0). The present re-
sult suggests that the particle motion for D~n is clearly influ-
enced by other particles at distance around 10D. Also, the flow dis-
turbance around (xy/L,Xy/L,x3/L) = (;t/2,5m/2,0) is larger than
that around (xq/L, x/L,x3/L) = (57 /2,57 /2,0) owing to the inter-
particle interaction. The spreading of the disturbance velocity over
a wide region is caused by convection since the convective time
scale (L/A) is sufficiently smaller than the viscous time scale (L2/v)
(i.e., v/AL=1/30) in our case. As the modeling of the convective
effect is difficult, the two-way coupling simulation is necessary to
investigate the inter-particle interaction.

5. Conclusion

For the simulation of flows laden with particles of size com-
parable to the smallest turbulent eddies, D~1n, we have previ-
ously developed an interaction force model based on the volume-
averaged continuity and momentum equations. In this paper, we
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proposed a new method to estimate the fluid force to enable
simulation of the transport of particles within the same volume-
averaged framework (VA simulation). The VA velocity at the parti-
cle centre is correlated with the particle Reynolds number. At the
same time, the effects of the pressure gradient, the velocity gradi-
ents and the particle rotation are incorporated into the interaction
force model. The qualitative advantages of the VA approach are the
capability of representing the history effect without a complicated
model and the better drag estimation compared to the traditional
point-model based method.

To test the proposed model, we set up configurations of increas-
ing complexity and compared the results with those obtained with
interface-resolved simulations based on the immersed-boundary
method (IBM). When considering a single settling particle in a sta-
tionary fluid, we showed that the history effect was captured in
the VA simulation without any specific model. We then examined
the flow around a rotating particle at Re, <20 and showed that the
direction of the lift force was represented by the model, and the
magnitudes for Rep < 10 agreed with those in other studies (Bagchi
and Balachandar, 2002; Bluemink et al., 2010). Therefore, in the
present cases, the proposed drag estimation method reflects the
disturbance flow that contributes to the history and the lift forces.

To show the applicability of VA simulation for the study of
turbulent modulation, the simulation for the Taylor-Green vortex
at Reynolds numbers Re =15 and 18 was carried out with the
particle diameter being O(10) times smaller than the vortex. For
density ratio p4 [pc>10, the particle motion obtained by the VA
simulation showed much better agreement with that of the fully-
resolved simulation than the traditional two-way coupling simula-
tion. The disturbance flow also showed good agreement with that
of the fully-resolved simulation. On the other hand, for density
ratio p; /pc = 1, the VA simulation model needs to be improved.
For a further improvement of the estimation of the fluid force, un-
steadiness and non-uniformity of the flow need to be considered.
However, we consider the method as promising as the computa-
tional cost of the VA simulation is ©(10%) times lower than that of
the fully-resolved IBM simulation in the present paper.

The importance of two-way coupling for the correct prediction
of particle trajectories in vortical flows was confirmed for p,; /pc =
100. For particles released in a vortical array, the trajectory cur-
vature in the initial stage increased due to the history effects,
which clearly influenced the future dynamics. The history effect es-
timated in the VA simulation tends to be larger for larger particle
as supported by Bergougnoux et al. (2014) and Daitche (2015). For
particles initially placed at the vortex centre, the long residence
time around the initial position increases the importance of the
role of the history effects on the trajectory. It is also found that
the particle interactions, assuming an average inter-particle dis-
tance of about 10D, influence the particle motion in vortical flows.
These results suggest that the history effects and inter-particle
flow-mediated interactions need to be considered by two-way cou-
pling simulations even in dilute particle-laden turbulence.

Acknowledgements

One of the authors, T.F, gratefully acknowledges the financial
support of the Japan Society for the Promotion of Science (JSPS)
KAKENHI grant no. 15J00439. L.B. and W.E. acknowledge financial
support from the European Research Council grant no. ERC-2013-
CoG-616186, TRITOS, by the Swedish Research Council (VR) and
computer time provided by SNIC (Swedish National Infrastructure
for Computing). This work is partly supported by Grant-in-Aid (B)
no.16H04271 and no.17H03174 of the JSPS. The authors gratefully
acknowledge the financial support by Mr. Yibin Lin (Hangzhou,
China).

Appendix A. Differentiability of volume-averaged quantities

The form of the viscous term in Eq. (6) is justified in this sec-
tion. In the following discussion, V is assumed to be larger than the
particle as used in this paper. The volume integral Q(x) is defined
as

Q) = [ qav.

where q is a bounded function defined in both fluid and solid. We
also assume that Taylor expansion of q is possible except on the in-
terface. The volume-averaged quantities correspond to Q(x)/V. For
example, o (uy) ¢ is constructed from

(A1)

_ Juy  inside the fluid
1= {0 inside the solid’ (A2)
and (ac(uq). + og4(v1)4) corresponds to

_ Juy  inside the fluid
1= {u1 inside the solid" (A.3)

In the following, the first and second-order derivatives of Q(x) are
considered.

Fig. A1 schematically shows the geometric relation between
V(x) and V (x + he;), and we focus on the integration of q over the
volume denoted as Q(x) and Q(x + he;). The volume integrals of q
in the shaded regions are denoted as Q*, Q~ and Qcy¢. The surface
of V(x) is denoted as S. The outward unit normal vector on S is de-
noted as ny. The surface S is divided into a region denoted as S,
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Fig. Al. Sketch of the geometrical difference between the volume-averaged quan-

tities Q(x) and Q(x + he;), with nomenclature used in the derivations reported in
Appendix A.
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where ny -e; >0, and S—, defined by ny -e; <0. According to Fig. A1,
the volume integrals are

Q(x+he)=Q(x)+Q"-Q, (A4)
h
Q* = / ny e [ qs+le)dldS — Qe (A5)
S+ 0
h
0 = /S e /0 q(S + le)dldS — Qe (A6)

where S indicates the position on S. Therefore, we obtain the fol-
lowing equation:

Q(x+he)—Q(x) Q" -Q”
h h
1 h
- f/nv-e,-/ q(S + le;)dl dS.
h Js 0
To deal with the interface between the phases, we define the frac-
tion of the surface Sj;mp( CS) such that

Siump = {S | S + Bhe; € particle interface (0 < 8 < 1)},

(A7)

(see Fig. A1). With this decomposition of the surface S,

w - /S _a® +oi}ny -eds

h
+/ nv.e,l/ q(S+le)dlds. (AS8)
S; h 0

jump

Taking the limit of h— 0, Sjyy,, converges to 0 and

1 h

7f q(S + le))dl

h Jo

on Sjymp is bounded since q is bounded. We can therefore write

. he;) —

lim M — /q(S)nv - e;dS.
h—0 h s

As Eq. (A.9) holds regardless of the sign of h, we obtain the deriva-
tive

ad
%)Eix) = /Sq(S)nv ~e,dS.

Note that Sj,mp — 0 is guaranteed by the size difference between V
and the particle. In this case, the continuity of g on the interface
is not necessary for the first-order derivative.

For simplicity, 0Q(x)/dx; is denoted as Q ;(x). For higher-order
derivatives, we consider that

Q;(x+hey) = /q(S+ he,)ny - e;dS
S

(A.9)

(A.10)

=/ {q(S)+aq(S)h—kO(hz)}nvvede
S—Sjump 0x;

+ / q(S + he)ny - ede, (A1)
Sjump
so that
QO =R [ 1) 4 om tmy -eds
h S Sump | O%i
N / { q(S + he;) —q(S) }"v e,ds
Sjump h
(A12)

By denoting the interface as (S + k(S)e;) with 0<k<h, we ob-
tain
q(S+he) —q(S) _ [q(S +ke)]

0
A A +0(h"),

(A13)

where [ - | represents the jump of the function at the interface. Tak-
ing the limit of h— 0, Eq. (A.12) yields:

lim Qj(X-l-he;‘l) — Qj(X) _

h—0

dq
A a—xl(S)nv . e]dS

i [ a6+ ke)
h—0Js. h

jump

ny -ede.

(A14)

In general, the right-hand side of Eq. (A.14) depends on the sign
of h (e.g., the second-order derivative of «4 is not determined). On
the other hand, when [q(S + ke;)] = 0, we can define the second-
order derivative as

9% _ [ 9q
BX,'BXJ‘ - Saxi

As the velocities u and v are continuous across the interface, the
viscous term V2 (ac(u). +a4(v),) is well-defined. Note, however,
that the decomposition into V?(ac(u).) + V2(ag(v)4) is not al-
lowed.

Appendix B. Calculation of interaction force

The interaction force can be written as

f=- 3 és -nds, (B.1)
where s is the stress on the surface:

s=—8pl+ pov(Vu+ (Vu)"). (B.2)
In Section 2.2, the stress vectors:

s~n=pc%n (B.3)
and

s-n=-3pVR, xn (B4)

are used for the modeling of Egs. (18) and (19). Therefore, the fol-
lowing two integrals are enough for the derivation of the interac-
tion force models:
/ nds, [ nnyds. (B5)
Sa Sa

Note that these integrals are also enough for the interaction force
modelling in Fukada et al. (2016).

We consider three unit vectors A, B and C with A=
(x—xp)/|x—xp| and A-B=B-C=C-A=0. The basis vector e;
and n can be written as

e=(A-e)A+ (B-¢e)B+ (C-e¢)C, (B.6)
n=(A-nA+ (B-n)B+ (C-n)C, (B.7)
so that the integrands become
n=mn-e
=(A-¢)(A-n)+ (B-€)(B-n) (B.8)

+(C-€)(C-n),
ninj = (A-€)(A-e;)(A-n)’ + (B-e)(B-e;)(B-n)’

+ (C-€)(C-e)(C - n)?

+ {(A-e)(B-ej)+ (B-e)(A-€;)}(A-nm)(B-m) (B.9)

+ {(B-€)(C-e;)+ (C-e)(B-e;)}(B-n)(C-n)
+ {(C e)(A-e)+ (A e)(C-e)}C m)A m.
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Table 1
Acceleration obtained by the present estimation method. The subscripts 1
and 2 correspond to x; and x,-components.

Pd /pc aslv aiv ail/*-Pg HSZV+FE ali’R agR

1 2.50 -0.122 235 -18.4 0.477 -19.2
10 -1.25 -4.85 -1.62 -7.24 -1.52 —7.69
100 0.292 -0314  0.464 —0.568  0.547 —0.628
1000 -0.174 0174 -0.176 0176 -0.196  0.196

Given the symmetry about the direction A, the integrals reduce
to

/ n;dS = (A-e,-)/ cos tds, (B.10)
Sa Sa

/ninjd5=(A-ei)(A~ej)/ cos? tds
Sa Sa

+{8,,- —(A-e)A- ej)}% /sd(l —cos’t)dS,  (B.11)

where t is the angle between A and n. In this derivation, we used
the following relations:

/S(B-n)2d5=/s (C-m)2dS

(B12)
= %/5 {1- (A -n)*}ds.
(B-e)(B-ej)+ (C-€)(C-e))
= (-AA): ee; (B.13)

= aij — (A-ei)(A‘ej).

According to Egs. (D.10) and (D.11) (shown later), we obtain

/ ndS = (A-e) D% (1 — £), (B.14)
Sa
| minjds = A-e)(@-epmD?E (1 - £)(1 - 26)
Sa
2
+5,-,-%§2(3 —2§). (B.15)

Appendix C. Estimation of fluid force

The applicability of the current approximation of the fluid force
is tested for unsteady flows. For the flow fields around the par-
ticle obtained by the fully-resolved simulation, the contributions
of Fyrag and VP4 on the particle acceleration (28) are computed
by Egs. (13), (20) and (26). Instead, the volume-averaged values
are directly computed from the flow fields. In particular, we con-
sider time (A/L)t = 33.13 for the cases of p; /pc =1,10, 1000 in
Section 4.3 and time (A/L)t = 55.22 for the case p; /p. = 100 in
Section 4.4.1. Table 1 shows the following three dimensionless ac-
celerations (for comparing the contribution of each term to the
right-hand side of Eq. (28)):

2 D3

= Sy £ me 2 ™ (€1)
2 D3 D3
asv+re Sty e V2 {degm 4VPud}’ (C2)
[ - D? [dvy,  2[(mgq — mc)g + mch] 3
v2 | dt 2my + me , )
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Fig. D1. Sketch introducing the geometrical variables used for the calculations of
the volume averages.

where dvp/dt is the net acceleration obtained from the fully-
resolved IBM simulation. Note that a@”*P8 is equal to a® when the
errors in both the model (28) and the estimation of each term are
ignored. Especially for py/poc <100, the effect of the pressure gra-
dient is reasonably captured by Eq. (26) as a*V*P8 is considerably
improved from a%. However, as indicated by the differences be-
tween a+P2 and afR, unsteadiness and non-uniformity of the flow
need to be considered to improve the total estimation method.

Appendix D. Calculations of geometrical functions

The radius R of the averaging volume V is larger than the parti-
cle radius ry. The geometrical functions &, oy and oy (V) 4 are ob-
vious for | — x| <R—r4 and |x — xp| > R+ r4. Therefore, we only
consider R—r4 < |¥x — Xp| < R+ry. Fig. D1 shows the definitions of
the variables considered in the following. The origin is at the par-
ticle centre and y is equal to |[x — xp|. The variable a satisfies

ri—a* =R - (y-a)? (D.1)
2 _R24y?
_ T
a= 2y . (D.2)

Note that a varies in the range —r; < a < ry. The surface fraction
f;: = Sd/JTD2 is

1 feos@m 4 1 a
&= W/O (2mrysint)rydt = i(1 — a) (D.3)
The volume fraction oy = V;/V is
1 re 2 2 M2 2
oy = V|:/y_R7r{R -y —=x) }dx+/a w(r;—x )dx:|
_ ¥ —3ay? +3(a® —R?)y + 2(r] + R®) + 3a(R* — 13) (D.4)
4R3 ' ’
The centre of gravity x; of V; is
Xc = Vid[/yiRn{Rz — (¥ = x)?Jxdx + fard 7 (r3 —xz)xdx]
_ 1 y*—6(R? +a*)y* + 8(R* + &)y — 3(R* — 1) + 6a*(R? — r2)' (D.5)
o 16R3
In general, the rigid-body velocity at x can be written as
V=1y+ R xX
=+ Qo xX¥ + Ry x (x—%), (D.6)

where vy and 2 are the origin velocity and the angular velocity
around the origin. Introducing

X = l/ xdv,

v (D.7)
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where V; is the volume of the rigid body, the average velocity in
the volume becomes

1
o / vdV = vy + R x ¥. (D.8)
Vi v,
Therefore, the averaged velocity a4 (v) 4 is
—X
oy (U)d =0gVp + otdeSZp X P (Dg)
% — xp|

Egs. (32), (33) and (34) are obtained by Egs. (D.3), (D.4), (D.5) and
(D.9) using Eq. (D.2).

Finally, the integrals used in Appendix B are calculated as fol-
lows:

cos~1(a/ry)
/ costdS:/ 2nracostsintdt = 7D*6 (1 - &),
Sq 0

(D.10)

cos~1(a/ry)
/ cos? tdS = / 2713 cos? t sintdt
S 0

2 ag? 65 +3). (D.11)

Appendix E. Effects of size of the averaging volume and grid
width

To investigate the effect of the size of the averaging volume, the
VA simulation is expanded for the case of R = 1.5D. For this case,
the fitting functions (20), (23) and (24) are replaced by

0.93
Re, = 152 /™ —%ID) (E1)
b v
Surr(Rep) = —0.121<%>Reg'759, (E2)
pcv? 1.65
Sw(Rep) = —0.118( Lo )Re}. (E3)

Based on these functions, the VA simulations under R = 1.5D and
different Ax are carried out for the same configurations as in
Sections 4.1 and 4.4.1.

Fig. E1 shows the result for the particle settling problem in a
stationary fluid. As for the case of R = 0.75D, the result of the fine
grid (D/Ax = 4) is almost the same as that for D/Ax = 2. On the
other hand, for the coarse grid (D/Ax = 1), the result is quite dif-
ferent from the others. Therefore, the grid resolution of D/Ax = 2
is necessary to capture the averaged flow distribution around the
particle. As for the case of R = 1.5D, the result of the coarse grid
(D/Ax =1) is not so different from that of D/Ax = 2. Therefore,
choosing a larger R is better for D/Ax = 1, while having a smaller
R is appropriate for D/Ax = 2. However, to outperform the O-NL
simulation (shown in Fig. 6 (a)), a fine grid with small R (= 0.75D)
is necessary.

Fig. E2 shows the result for the particle under gravity in an ar-
ray of Taylor-Green vortices. The tendency of the effects of R and
Ax are quite similar to that for the settling particle in the station-
ary fluid. The results for R = 1.5D (D/Ax =1 and 2) are still better
than that of the O-NL simulation. Therefore, for the larger R, the
history effect is qualitatively captured in the same manner as for
the smaller R. The upper limit of R is considered to be based on
the length scale of the background flow. In conclusion, smaller R
gives better results for sufficiently fine grids. On the other hand,
for coarse grid, larger R is preferable.

vpa D /v

Fig. E1. Time evolution of the particle settling velocity in a fluid at rest. Solid
line, VA simulation (R = 0.75D, D/Ax = 2); dashed line, VA simulation (R = 0.75D,
D/Ax = 4); filled triangle, VA simulation (R = 0.75D, D/Ax = 1); open square, VA
simulation (R = 1.5D, D/Ax = 2); filled square, VA simulation (R = 1.5D, D/Ax = 1).
Solid and dashed lines almost overlap with each other.
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Fig. E2. Trajectory of a single particle with density ratio pq/pc = 100 under the
gravity in an array of Taylor-Green vortices. Solid line, VA simulation (R = 0.75D,
D/Ax = 2); dashed line, VA simulation (R =0.75D, D/Ax = 4); filled triangle, VA
simulation (R = 0.75D, D/Ax = 1); open square, VA simulation (R =1.5D, D/Ax =
2); filled square, VA simulation (R = 1.5D, D/Ax = 1); open circle, O-NL simulation.
The grey lines show the streamlines of the undisturbed flow.
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