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a b s t r a c t 

To study the dynamics of particles in turbulence when their sizes are comparable to the smallest ed- 

dies in the flow, the Kolmogorov length scale, efficient and accurate numerical models for the particle- 

fluid interaction are still missing. Therefore, we here extend the treatment of the particle feedback on 

the fluid based on the volume-averaged fluid equations (VA simulation) in the previous study of the 

present authors, by estimating the fluid force correlated with the disturbed flow. We validate the model 

against interface-resolved simulations using the immersed-boundary method. Simulations of single par- 

ticles show that the history effect is well captured by the present estimation method based on the dis- 

turbed flow. Similarly, the simulation of the flow around a rotating particle demonstrates that the lift 

force is also well captured by the proposed method. We also consider the interaction between non- 

negligible size particles and an array of Taylor–Green vortices. For density ratios ρd / ρc ≥ 10, the results 

show that the particle motion captured by the VA approach is closer to that of the fully-resolved simu- 

lations than that obtained with a traditional two-way coupling simulation. The flow disturbance is also 

well represented by the VA simulation. In particular, it is found that history effects enhance the curvature 

of the trajectory in vortices and this enhancement increases with the particle size. Furthermore, the flow 

field generated by a neighboring particle at distances of around ten particle diameters significantly in- 

fluences particle trajectories. The computational cost of the VA simulation proposed here is considerably 

lower than that of the interface-resolved simulation. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Interactions between particles and a turbulent flow are impor-

tant in many industrial processes like cyclone separators and pul-

verised coal combustion. Many factors determine the fluid-particle

interaction such as the flow configuration, the particle relaxation

time (the Stokes number), the role of flow inertia (Reynolds num-

ber), the importance of gravity (Froude number), the solid volume

fraction and the mass fraction (the latter two related by the den-

sity ratio). One critical factor is the ratio between the particle size

and a typical length scale of the flow. In pipe flows and free jets

laden with particles (including bubbles and droplets), for exam-

ple, the turbulence intensity increases when the particle diameter

D is larger than one-tenth of the integral length scale ( Gore and

Crowe, 1989 ). Experimental works with dilute suspensions, on the

other hand, report significant reductions of the turbulence inten-
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ity when the particle diameter is comparable to the turbulence

olmogorov length scale η ( Kulick et al., 1994; Paris and Eaton,

0 01; Hwang and Eaton, 20 06 ). To understand the mechanisms

f the interaction between the phases, numerical simulations can

e used to capture both the turbulence structures and the par-

icle motion. In many numerical studies, however, the force on

he particle is approximated and the feedback force on the fluid

s either ignored (i.e., one-way coupling) or simplified (i.e., tra-

itional two-way coupling) to a point-source. Thus, the turbu-

ence attenuation by particles of D ∼η is not reasonably repro-

uced by traditional two-way coupling simulations ( Eaton, 2009;

chneiders et al., 2017 ). On the other hand, fully-resolved sim-

lations like those in Kempe et al. (2014) , Picano et al. (2015) ,

ornari et al. (2016) and Santarelli and Fröhlich (2016) are still

oo expensive for configurations of practical interest, which justi-

es the need for better models. 

Focusing on the particle motion, the mean particle settling ve-

ocity is influenced by the background turbulence ( Nielsen, 1993 ).

s recently shown in the experimental study of Good et al. (2014) ,

https://doi.org/10.1016/j.ijmultiphaseflow.2018.02.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2018.02.019&domain=pdf
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Fig. 1. Schematic images of undisturbed (left) and disturbed (right) velocity vectors 

in a two-way coupling simulation around the particle centre. 
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he settling velocity of particles can both increase and decrease

hen the particle diameter is slightly smaller than the Kolmogorov

ength scale. Although one-way coupling simulations capture this

rend qualitatively, a quantitative difference is recognised even for

ery dilute cases. For direct numerical simulations of turbulent

ows, a grid width �x of the order of the Kolmogorov length scale

s necessary. Therefore, for a simulation of a particle-laden flow of

article size D ∼η, an appropriate two-way interaction model be-

ween the flow and the particle is required. 

The most reliable numerical approach is resolving the parti-

le boundary, in which case the fluid force is directly computed.

he immersed boundary method (IBM) is one of the possible ap-

roaches of this type as shown in several studies ( Kajishima and

akiguchi, 2002; Lucci et al., 2010; Tenneti and Subramaniam,

014; Fornari et al., 2016 ). As the particle diameter needs to be

esolved by ten or more grid points, fully-resolved simulations

re practical when the particle is sufficiently larger than the Kol-

ogorov length scale. In other words, for the case D ∼η, fully-

esolved simulations are not feasible because of the prohibitive

omputational costs. Therefore, the effect of the particle on the

uid has to be modelled without capturing the boundary layer.

n the traditional two-way coupling simulations, the drag force

odel is based on the undisturbed flow velocity and the particle

s assumed to be much smaller than the Kolmogorov length and

he grid width. In the implementation, the local flow disturbance

round the particle (see Fig. 1 ) is neglected and the disturbed ve-

ocity interpolated at the particle position is used as the undis-

urbed velocity in the expressions for the force ( Squires and Eaton,

990; Boivin et al., 1998; Sundaram and Collins, 1999; Li et al.,

0 01; Rani et al., 20 04 ). However, as Gualtieri et al. (2015) pointed

ut, the effect of the disturbance around the particle itself cannot

e ignored even when D �η. These authors proposed, therefore,

n estimation of the fluid force based on the Stokes flow around

he particle, still considered to be smaller than the grid size. In the

ase of D ∼η, the disturbance flow around the particle becomes

ore important and the assumption of Stokes flow is questionable.

n the fluid side, moreover, the point-source feedback force on the

omentum equation is numerically distributed in space. Since the

article size is ignored, the distribution does not consider the ef-

ect of the physical surface position. 

To overcome these limitations, one possibility is volume av-

raging of the momentum equation that enable us to distribute

hysically-meaningful feedback force. This force is referred to as

nteraction force in this paper. Fukada et al. (2016) recently de-

eloped a distribution model of the interaction force for particle

f diameters slightly larger than the grid size, �x . The interac-

ion forces for uniform and simple shear flows around a sphere

re modelled for particle Reynolds numbers Re p = O(10) and shear
eynolds number based on the particle diameter Re γ = O(1) . The

symmetric distribution of the interaction force resulted in qualita-

ively and quantitatively reasonable flow fields consistent with the

ully-resolved results. The energy transfer on the volume-averaged

eld was also captured, something which is not considered in tra-

itional two-way coupling models. However, the simulations in

his previous work were limited to the case of a fixed particle and

nown steady undisturbed flow. 

In the present study, we therefore propose a novel estimation

ethod of the fluid force based on the disturbed flow around the

article. This approach is suited for the volume-averaged frame-

ork unlike a conventional two-way coupling approach. The study

ims to show the applicability of the volume-average framework

or the flow including moving particles. 

We will initially consider the history effect on the particle

otion, an effect whose importance is increasingly recognised

 Olivieri et al., 2014; Daitche, 2015 ). The history effects are highly

nfluenced by the background flow and the modelling is therefore

ifficult ( Bagchi and Balachandar, 2003 ). The traditional Basset his-

ory model based on the assumption of Stokes flow ( Maxey and Ri-

ey, 1983 ) is not applicable for a long physical time since the model

verestimates the past effects ( Mei and Adrian, 1992 ). Some mod-

ls developed for finite Reynolds number are, on the other hand,

imited to specific and relatively simple flows ( Mei and Adrian,

992; Wakaba and Balachandar, 2005 ). The high computational

ost of the integration of the history effect is also a factor to con-

ider. However, in an appropriate two-way coupling simulation, the

istory effects are included in the force estimation if the effect of

nsteady disturbances is correctly captured ( Gualtieri et al., 2015 ).

n a similar way, the lift force can be also represented by an appro-

riate two-way coupling algorithm that captures the flow distur-

ance, again reducing the dependence on a specific model. To in-

estigate how the history and the lift forces appear in the present

imulation framework based on the volume-averaged equation (re-

erred to as VA simulation), the settling of a particle in a fluid

t rest and the flow around a rotating particle will be examined.

or comparison and validation, we refer to the result from a fully-

esolved IBM simulation, which is carried out in this study, and

revious results ( Rubinow and Keller, 1961; Kurose and Komori,

999; Bagchi and Balachandar, 2002; Bluemink et al., 2010 ). 

We will then focus on the interaction between particles and a

ellular vortical flow, the Taylor–Green vortex. The particle diam-

ter is O(10) times smaller than the vortex and its size is there-

ore non-negligible. The particle trajectory in the Taylor–Green vor-

ex has been first investigated by Maxey (1987) in the one-way

oupling regime. For particles of non-negligible size, however, the

article-vortex interaction leads to the flow disturbance at scales

arger than the particle size as well as local disturbances around

he particle. Bergougnoux et al. (2014) showed in their experimen-

al study that weak disturbances of the vortex influence the parti-

le trajectory significantly. Therefore, a two-way coupling investi-

ation is necessary to correctly capture the particle motion in vor-

ices. Flow disturbances also induce and modify the interactions

etween two different particles. The hydrodynamic forces on par-

icles at distances of the order of D in a uniform flow have been

he main objectives of previous studies ( Tsuji et al., 2003; Yoon

nd Yang, 2007; Ozgoren, 2013 ). However, for a better understand-

ng of the particle motion in turbulence, inter-particle interactions

t larger distances in a vortical flow should also be considered. In

his study, we simulate the behaviour of the particle in the Taylor–

reen vortices and show advantage of the VA approach for the

article motion in comparison to the point-model based method.

he fully-resolved IBM simulations are also carried out as refer-

nce. Finally, the importance of two-way coupling on the particle

rajectories is confirmed for cases with different initial positions

nd inter-particle distance of around 10 D . 
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Fig. 2. Schematic image of the volume-averaging area. Particle surface within V is 

denoted by S d . 
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2. Governing equations 

2.1. Volume-averaged equations of the fluid phase 

The volume-averaged mass and momentum equations for dis-

persed multiphase flows are derived by Anderson and Jack-

son (1967) under averaging length scales much larger than

the inter-particle spacing. The derivation is also detailed in

Crowe et al. (1997) . On the other hand, the treatments of the resid-

ual stress and the interaction force terms for a case of averaging

length scale comparable to the particle size have been developed

by Fukada et al. (2016) . The volume-averaged equations and the

models of these terms are briefly described in the following. 

The multiphase flow consists of the continuous (fluid) phase

( c -phase) and the dispersed phase ( d -phase). Only rigid spherical

particles are considered for the dispersed phase. Considering the

spherical averaging volume V as shown in Fig. 2 , the volume frac-

tion and the phase average of a physical property B are defined

as 

αk = 

V k 

V 

, (1)

〈 B 〉 k = 

1 

V k 

∫ 
V k 

BdV, (2)

where V k is the volume occupied by k -phase (either c or d ) inside

V . For a quantity f defined through the averaging volume V , we use

the notation f ( x ) where x denotes the centre of V . 

The basic mass and momentum equations for an incompressible

Newtonian fluid are written as follows: 

∇ · u = 0 , (3)

∂u 

∂t 
+ ∇ · (uu ) = − 1 

ρc 
∇ p + ν∇ 

2 u + h , (4)

where u is the velocity, t time, ρc the fluid density, p pres-

sure, ν viscosity and h an external forcing. In the present study,

h is given to keep the background flow steady. As shown in

Fukada et al. (2016) , through volume-averaging these equations,

we obtain 

∇ · (αc 〈 u 〉 c + αd 〈 v 〉 d ) = 0 , (5)

∂ ( αc 〈 u 〉 c ) 
∂t 

+ ∇ · ( αc 〈 u 〉 c 〈 u 〉 c ) 

= − 1 

ρc 
∇ P + ν∇ 

2 ( αc 〈 u 〉 c + αd 〈 v 〉 d ) 

+ αc 〈 h 〉 c − ∇ · τ + 

f 
, 

(6)
V 
here v is the velocity inside a particle, P the scalar function

orresponding to pressure, τ the residual stress and f the in-

eraction force. The fluid variables used in the simulations are

c < u > c and P . Appendix A shows the differentiability of the

olume-averaged quantities. The form of the viscous term is differ-

nt from that in other volume-averaged equations ( Anderson and

ackson, 1967; van Wachem et al., 2001 ), and the decomposition

nto ν∇ 

2 (αc 〈 u 〉 c ) + ν∇ 

2 (αd 〈 v 〉 d ) is not allowed. 

The scalar function P can be decomposed as αc 〈 p 〉 c + 

∑ 

n αd,n ̂  p n 
here αd, n and ˆ p n are the volume fraction and the surface-mean

ressure (over the entire surface) of the n th particle. In a numerical

imulation, P can be obtained without considering the decomposi-

ion. 

The residual stress is defined as 

= αc 〈 δu δu 〉 c , (7)

here δu = u − 〈 u 〉 c . The original model by

ukada et al. (2016) is 

τ = α−1 / 3 
c 

R 

2 

5 

{
∂ ( αc 〈 u 〉 c + αd 〈 v 〉 d ) 

∂x m 

− αd 〈 ∂ v ∂x m 

〉 
d 

}
{

∂ ( αc 〈 u 〉 c + αd 〈 v 〉 d ) 
∂x m 

− αd 〈 ∂ v ∂x m 

〉 
d 

}
, 

(8)

here x m 

is the m th component of the Cartesian coordinates and

he summation convention is applied for the subscript m . The ve-

ocity gradient inside the rigid particle ∂ v / ∂ x m 

corresponds to the

ngular velocity of the particle. 

The interaction force is defined as 

f = −
∫ 

S d 

{ 
− 1 

ρc 
δpn + ν

(∇u + (∇u ) T 
)

· n 

} 
dS (9)

here δp is the deviation from the surface-mean pressure ˆ p n of

he corresponding particle, n the unit normal vector on the particle

urface directed to the fluid-phase and S d the partitioned particle

urface area inside V (see Fig. 2 ). 

.2. Interaction force models 

According to Appendix B of our previous study ( Fukada et al.,

016 ), the independent interaction force models can be success-

ully superimposed for steady flows with Re p ≤ 40 and γ D 

2 /ν =
(1) , where γ is the shear rate. In the present study, we thus as-

ume superposition of the different contributions: 

f = f unif + f vg + f pg + f rot , (10)

here the contributions due to the relative velocity, the undis-

urbed velocity gradient, the undisturbed pressure gradient and the

article rotation are represented as f unif , f vg , f pg and f rot . Each com-

onent is described in the following. 

Introducing the particle Reynolds number as 

e p = 

| U r | D 

ν
, (11)

here U r is the relative velocity based on the undisturbed flow

nd D is the particle diameter, the interaction force corresponding

o the relative velocity is modelled as ( Fukada et al., 2016 ) 

f unif ( x ) = 

{
−F drag 

ρc 
ξ + 3 χξ ( 1 − ξ ) 

x − x p 

| x − x p | · m 

}
m 

−χξ ( 1 − ξ ) 
x − x p 

| x − x p | . 
(12)

n the above expression, ξ = S d /πD 

2 denotes the normalised sur-

ace area (hereafter, referred to as surface fraction), m the unit vec-

or in the direction of the relative velocity U r , x p the particle centre
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Fig. 3. Comparison of the averaged velocity at the particle centre from the numer- 

ical data (symbol) and from the model by Eq. (20) (line). 
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osition, F drag the contribution of the relative velocity to the fluid

orce 

 drag = 3 πν2 ρc Re p 
(
1 + 0 . 15 Re 0 . 687 

p 

)
, (13) 

nd χ is a fitting coefficient 

= 0 . 225 πν2 Re 1 . 687 
p 

(
1 + 0 . 126 Re 0 . 464 

p 

)
. (14) 

ote that V −1 
∫ 

f unif dx = −F drag /ρc holds, which guarantees the

otal momentum conservation between the phases. The interaction

orce (12) is based on the theoretical result of the flow around the

phere for low Re p ( Proudman and Pearson, 1957 ). The fitting co-

fficient χ is introduced for extending to higher Re p according to

ur numerical result ( Fukada et al., 2016 ) . 

For a uniform shear flow of undisturbed velocity U ud = γ (x 2 −
 p2 ) e 1 with Re p = 0 , the shear-induced interaction force is mod-

lled as ( Fukada et al., 2016 ) 

f vg γ ( x ) = −πνγ D 

2 ξ ( 1 − ξ ) 

×
(

4 

x 2 − x p2 

| x − x p | e 1 + 

x 1 − x p1 

| x − x p | e 2 
)

, 
(15) 

here e i is the unit basis vector in the i th direction. The model

or a general undisturbed velocity gradient can be written as the

uperposition 

f vg ( x ) = −πνD 

2 ξ ( 1 − ξ ) 

{
4 

(
x − x p 

| x − x p | · ∇ 

)
U ud 

+ ( ∇U ud ) ·
x − x p 

| x − x p | 
}

. 

(16) 

ppendix B of this paper briefly summarises the derivation, and

or more details the reader is referred to Fukada et al. (2016) . 

The pressure gradient and the added-mass forces on the parti-

le, F pg , are modelled as 

 pg = −3 m c 

2 ρc 
∇P ud −

m c 

2 

d v p 
dt 

, (17) 

here P ud is the undisturbed pressure and v p the translating veloc-

ty of the particle, m c = πρc D 

3 / 6 the mass of the displaced fluid.

ssuming that this force corresponds to the additional surface

ressure −(3 F pg · n /πD 

2 ) obtained for an inviscid uniform flow, the

nteraction force can be shown to be (see Appendix B ) 

f pg ( x ) = −ξ{ 1 − ( 1 − ξ ) ( 1 − 2 ξ ) } F pg 

ρc 

−3 ξ ( 1 − ξ ) ( 1 − 2 ξ ) 

×
(

F pg 

ρc 
· x − x p 

| x − x p | 
)

x − x p 

| x − x p | . 
(18) 

Using the Stokes solution for a rotating sphere with angular ve-

ocity �p , the interaction force due to the particle rotation is ob-

ained as 

f rot (x ) = 3 πνD 

2 ξ (1 − ξ ) �p × x − x p 

| x − x p | . (19) 

.3. Estimation of undisturbed flow at the particle position 

To represent the interaction between the fluid and the parti-

les, the relative velocity U r and the undisturbed gradients of U ud 

nd P ud at the particle position need to be estimated. In tradi-

ional two-way coupling simulations, the disturbed fluid velocity

nterpolated at the particle position is often regarded as the undis-

urbed flow when computing the interaction. However, this treat-

ent is justified only when the particle is much smaller than the

rid spacing and not appropriate for the present cases ( D ∼�x ).

herefore, in this paper, we propose new estimation methods for

he relative velocity U r and the undisturbed gradients of U and
ud 
 ud . The radius R of the averaging volume V is kept to be 0.75 D

hroughout this paper as the effectiveness of this value was con-

rmed ( Fukada et al., 2016 ). 

.3.1. Relative velocity 

The contribution of the relative velocity to the fluid force (13) is

escribed in terms of Re p . As the volume-averaged disturbed ve-

ocity αc 〈 u 〉 c is obtained from the volume-averaged equations, the

orrelation for the particle Reynolds number Re p is necessarily

ased on ( αc 〈 u 〉 c )( x p ). For the fixed value R = 0 . 75 D, the corre-

ation equation, 

e p = 4 . 64 

(
αc | 〈 u 〉 c − v p | D 

ν

)0 . 81 

, (20) 

s obtained by a curve fitting based on the numerical data of

ur previous study ( Fukada et al., 2016 ) for the steady uniform

ow around a single particle. Fig. 3 shows that Eq. (20) is valid

or Re p ≤ 40, which is sufficient for the present study. The ef-

ect of unsteady velocity on the force is qualitatively reflected

hrough | 〈 u 〉 c − v p | . The estimation method for αc ( 〈 u 〉 c − v p ) is in

ection 3.1 . In the numerical implementation, the direction of the

elative velocity is assumed to be the same as that of αc ( 〈 u 〉 c − v p ) .

.3.2. Velocity and pressure gradients 

A simple estimation method for the undisturbed gradients

ased on the volume-averaged variables is proposed. We define the

ifferentiation operator in the direction e i at the particle centre: 

( f, le i ) = 

f (x p + le i ) − f (x p − le i ) 

2 l 
, (21) 

here f is a function of x , and l is an appropriately determined

istance. In this study, l = D is adopted as supported by the tests

or the pressure gradient shown in Appendix C . One of the simplest

ossible estimates of the undisturbed gradients are 
 

 

 

 

 

∂U ud 

∂x i 
≈ δ( αc 〈 u 〉 c + αd 〈 v 〉 d , le i ) , 

∂P ud 

∂x i 
≈ δ( P, le i ) . 

(22) 

owever, even in a uniform flow, non-zero gradients would be es-

imated around a particle due to the particle relative motion. To

emove the effect of the relative motion, the following equations

re constructed for the uniform flow case by curve fittings: 

urr ( Re p ) = δ( αc 〈 u · m 〉 c + αd 〈 v · m 〉 d , D m ) 

 −0 . 114 

(
ν

D 

2 

)
Re 1 . 17 

p , 
(23) 
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Fig. 4. Comparison of the disturbed velocity gradient at the particle centre from 

the numerical data (symbol) and from the model by Eq. (23) (line). 

Fig. 5. Comparison of the disturbed pressure gradient at the particle centre from 

the numerical data (symbol) and from the model by Eq. (24) (line). 
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δpr ( Re p ) = δ( P, D m ) 

= −0 . 298 

(
ρc ν2 

D 

3 

)
Re 1 . 68 

p , 
(24)

where the direction of the relative velocity m is ( 〈 u 〉 c − v p ) / | 〈 u 〉 c −
v p | . Figs. 4 and 5 compare Eqs. (23) and (24) with the fully-

resolved numerical data obtained on a body-fit coordinate system

( Fukada et al., 2016 ). According to these correlations, the undis-

turbed gradients are approximated by 

∇U ud ≈ e i δ( αc 〈 u 〉 c + αd 〈 v 〉 d , le i ) 
−( 1 . 5 δurr mm − 0 . 5 δurr I ) , 

(25)

∇P ud ≈ δ(P , le i ) e i − δpr m , (26)

where I is the identity tensor and the summation convention is

applied for the subscript i . 

2.4. Equation of motion for the dispersed phase 

For finite Reynolds numbers, the force F on a particle can be

modelled as 

F = F drag m + m c 
D U ud 

Dt 
+ 

m c 

2 

(
D U ud 

Dt 
− d v p 

dt 

)
+ F + (m − m c ) g + F ext (27)
h d 
see Crowe et al., 1997 ), where F h is the history force, g the gravita-

ional acceleration, F ext the external force, m d = πρd D 

3 / 6 the par-

icle mass. The first three terms on the right-hand side are the

teady viscous force, the pressure gradient force and the added-

ass force. The term ρc ( D U ud / Dt ) is replaced by −∇P ud because

he viscous force ν∇ 

2 U ud cancels with the external force h for

he undisturbed flows considered in the present study. The ex-

ernal force on the particle F ext is the same as that on the dis-

laced fluid ρc 

∫ 
V p 

h dV where V p is the volume of the particle. For

he history force at a finite Reynolds number, a reliable model

or general flows is not available so far. However, as discussed

y Gualtieri et al. (2015) , the history effect can be partly repro-

uced in accurate two-way coupling simulations without any spe-

ific model. Therefore, in the present model, we will numerically

olve the following equation 

d v p 
dt 

= 

2 

2 m d + m c 

{
F drag m − πD 

3 

4 

∇P ud + (m d − m c ) g 

+ ρc 

∫ 
V p 

h dV 

}
. (28)

o investigate the effects of the pressure gradient and the added

ass, we will also compare the result by solving the following

quation 

d v p 
dt 

= 

1 

m d 

{
F drag m + (m d − m c ) g + ρc 

∫ 
V p 

h dV 

}
. (29)

he particle position is given by the following equation: 

dx p 

dt 
= v p . (30)

o include a first-order approximation of the effect of the flow on

he particle rotation, the following equation for the angular veloc-

ty based on the Stokes solution is considered 

d�p 

dt 
= 

πρc νD 

3 

I d 

(
1 

2 

∇ × U ud − �p 

)
, (31)

here I d = m d D 

2 / 10 is the moment of inertia of the spherical par-

icle. This equation is consistent with Eqs. (16) and (19) as both

quations assume the same Stokes solution. 

. Numerical methods 

For simplicity, the simulation with the volume-averaged equa-

ions ( Sections 2.1 and 2.2 ) is referred to as VA simulation. To in-

estigate the history effect, a one-way coupling simulation is also

ttempted. Moreover, we will compare the results of the VA sim-

lation to those of a traditional two-way coupling simulation and

he fully-resolved simulation with the immersed boundary method

IBM). In the following, these numerical procedures are described

riefly. In all the simulations, the 2nd-order central-difference

cheme is used for the spatial derivatives with a staggered arrange-

ent for the fluid variables. The fractional step method ( Kim and

oin, 1985 ) is used as the pressure-velocity coupling algorithm for

he fluid-phase. The computational cell is a cube of side length �x .

.1. VA simulation 

The 2nd-order Runge–Kutta method is used for the time evolu-

ion of both phases. As the averaging volume V is larger than the

article ( R = 0 . 75 D ), the contribution of each particle to the vol-



T. Fukada et al. / International Journal of Multiphase Flow 104 (2018) 188–205 193 

u

α

w
i

ξ

K

T  

m

 

t

f

ρ

f  

p

 

i

h  

t  

a

W

w  

l  

s  

c

i

 

a  

w

C

3

 

t  

s  

t  

g

E  

p  

(  

p

 

s  

o  

t  

h

R

i  

p

 

R  

t

 

 

pressure gradient, see Eq. (28) . 
me fraction αd is calculated as 

d (x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

r 3 
d 

R 

3 
for 0 ≤ | x − x p | < R − r d 

1 

16 R 

3 

{| x − x p | 3 − 6(r 2 
d 

+ R 

2 ) | x − x p | 

− 3(r 2 
d 

− R 

2 ) 2 

| x − x p | + 8(R 

3 + r 3 
d 
) 

}
for R − r d ≤ | x − x p | ≤ R + r d 

0 for | x − x p | > R + r d 

, (32) 

here r d = D/ 2 is the radius of the particle. The surface fraction ξ
s calculated as 

(x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 for 0 ≤ | x − x p | < R − r d 

1 

2 

(
1 − | x − x p | 

2 r d 
+ 

R 2 − r 2 
d 

2 r d | x − x p | 
)

for R − r d ≤ | x − x p | ≤ R + r d 

0 for | x − x p | > R + r d 

. (33) 

The averaged velocity of the solid-phase αd 〈 v 〉 d is calculated as 

(αd 〈 v 〉 d )(x ) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

r 3 
d 

R 3 
v p for 0 ≤ | x − x p | < R − r d 

αd (x ) v p + K d (| x − x p | ) �p × (x − x p ) 

for R − r d ≤ | x − x p | ≤ R + r d 

0 for | x − x p | > R + r d 

, (34) 

where the function K d ( y ) is 

 d (y ) = 

(R − r d − y ) 2 (R + r d − y ) 2 (R 

2 + 4 Ry − r 2 + y 2 ) 

32 R 

3 y 3 
. (35) 

he derivation of these geometrical functions (32) –(34) is sum-

arised in Appendix D . 

To keep the total external force on the system ∫ h dV constant,

he external forces are approximated as 

(αc 〈 h 〉 c )(x ) = αc h (x ) (36) 

or fluid, in Eq. (6) , and 

c 

∫ 
V p 

h dV = 

∑ 

i jk 

ρc αd ,i j k h i jk �x 3 (37) 

or solid, in Eq. (28) , where the subscript ijk represents the spatial

oint of grid index ( i, j, k ). 

The estimation of { αc ( 〈 u 〉 c − v p ) } (x p ) in Eq. (20) is particularly

mportant to predict the drag force. As the distribution of αc 〈 u 〉 c 
as a local minimum near the particle centre, a linear interpola-

ion is not sufficient. Therefore, the following interpolation steps

re used for the velocity: 

w = αc 〈 u 〉 c + αd 〈 v 〉 d , (38) 

 l,i = w i ( x l ) + ( x p − x l ) · ∇w i ( x l ) 

+ 

1 

2 

( x p − x l ) ( x p − x l ) : ∇ ∇ w i ( x l ) , 
(39) 
{
αc 

(〈 u i 〉 c − v pi 

)}
( x p ) ≈

8 ∑ 

l=1 

( 

1 −
∣∣x p1 − x l1 

∣∣
�x 

) ( 

1 −
∣∣x p2 − x l2 

∣∣
�x 

) 

×
( 

1 −
∣∣x p3 − x l3 

∣∣
�x 

) 

W l,i − v pi , 

(40) 

here l = 1 , · · · , 8 indicates the eight definition points of the ve-

ocity around x p . The effect of the second-order derivative is con-

idered in (39) and the linear interpolation (40) guarantees the

ontinuity about x p . For the pressure, the linear interpolation 

P ( x ) ≈
8 ∑ 

l=1 

(
1 − | x 1 − x l1 | 

�x 

)(
1 − | x 2 − x l2 | 

�x 

)

×
(

1 − | x 3 − x l3 | 
�x 

)
P l 

(41) 

s used ( l indicates the definition points of the pressure). 

To adjust the flow field far away from the particle to the non-

veraged field, the residual stress term ∇ ·τ is replaced by C ( ∇ ·τ)

here C is given as follows: 

(x ) = 

⎧ ⎨ 

⎩ 

cos 

(
π

2 

| x − x p | 
R + r d 

)
for | x − x p | ≤ R + r d 

0 for | x − x p | > R + r d 

. (42) 

.2. One-way coupling simulation 

In the one-way coupling simulation, the flow field ( U ud , P ud ) is

heoretically or numerically given and only the particle motion is

olved for. To consider the history effect, the acceleration including

he Basset history term is considered. The equation of motion is

iven by 

d v p 
dt 

= 

2 

2 m d + m c 

{ 
3 πρc νD ( U ud − v p ) 

−πD 

3 

4 

∇P ud + ( m d − m c ) g 

+ 

3 

2 

ρc D 

2 
√ 

πν

∫ t 

−∞ 

1 √ 

t − τ

d 

dτ
( U ud − v p ) dτ

}
. 

(43) 

qs. (30) and (43) are solved with the efficient implicit method

roposed by van Hinsberg et al. (2011) . The linear drag force model

 F drag = 3 πρc νD | U ud − v p | ) is used as they did. Simulations are also

erformed without the Basset term for comparison. 

To quantify the relevance of the nonlinear drag force model, we

olve Eqs. (28) and (30) without the external force, h , with a 2nd-

rder Runge–Kutta method. Note that the volume force h is en-

irely distributed on the fluid. The particle Reynolds number used

ere is given by 

e p = 

| U ud − v p | D 

ν
(44) 

nstead of Eq. (20) ; the direction defined by the unit vector m is

arallel to U ud − v p . 
In the present study, to examine the history effect in time when

e p is low, the following three cases of one-way coupling simula-

ions are performed and those are denoted as: 

O-LB: including the linear drag, the added mass, the pressure

gradient and the Basset terms, see Eq. (43) , 

O-L: same as O-LB but without the Basset term, 

O-NL: including the nonlinear drag, the added mass and the
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3.3. Traditional two-way coupling simulation 

In the traditional two-way coupling simulation, Eq. (3) and the

momentum equation 

∂u 

∂t 
+ ∇ · (uu ) = − 1 

ρc 
∇ p + ν∇ 

2 u + h + f b (45)

are solved without volume-averaging, where f b is the feedback

force from the particle. Eq. (29) with h = 0 (as h is entirely dis-

tributed on the fluid) and Eq. (30) are solved for the particle mo-

tion. This traditional two-way coupling simulation is referred to as

TT below. 

To distribute the feedback force f b , we use the following equa-

tion (regularised Dirac delta function) 

f b (x ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

−F drag 

ρc 
m K 

{
1 + cos 

(
π

| x − x p | 
R + r d 

)}
for | x − x p | ≤ R + r d 

0 for | x − x p | > R + r d 

(46)

where K is the normalisation factor computed as 

K = 

[ ∑ 

i jk 

{
1 + cos 

(
π

| x i jk − x p | 
R + r d 

)}
�x 3 

] −1 

. (47)

The direction m , used in Eq. (46) , is determined by m = (u (x p ) −
v p ) / | u (x p ) − v p | . 

The fluid velocity at the particle centre is interpolated with 

 l,i = u i (x l ) + (x p − x l ) · ∇u i (x l ) 

+ 

1 

2 

(x p − x l )(x p − x l ) : ∇ ∇ u i (x l ) , (48)

u i (x p ) ≈
8 ∑ 

l=1 

(
1 − | x p1 − x l1 | 

�x 

)(
1 − | x p2 − x l2 | 

�x 

)

×
(

1 − | x p3 − x l3 | 
�x 

)
W l,i . (49)

To compute the drag force by Eq. (13) , the particle Reynolds num-

ber is estimated as 

Re p = 

| u (x p ) − v p | D 

ν
. (50)

The numerical procedure with the 2nd-order Runge–Kutta method

is employed for both phases. 

3.4. Fully-resolved simulation 

The immersed boundary code originally developed by

Breugem (2012) is used for the fully-resolved simulation. The

continuity Eq. (3) and the following momentum equation are

solved in the whole domain including the regions occupied by the

particles: 

∂u 

∂t 
+ ∇ · (uu ) = − 1 

ρc 
∇ p + ν∇ 

2 u + h + f IB , (51)

where f IB is the body force used to impose the no-slip condition on

the particle surface. The particle translational and rotational equa-

tions are 

m d 

d v p 
dt 

= 

∮ 
S 

s · n dS + ρc 

∫ 
V p 

h dV + (m d − m c ) g, (52)

I d 
d�p 

dt 
= 

∮ 
S 
( x − x p ) × ( s · n ) dS 

+ ρc 

∫ 
V p 

( x − x p ) × h dV , 
(53)
here S is the particle surface, s = −pI + ρc ν(∇u + ∇u 

T ) the

tress tensor. The force exchange is considered on a set of N La-

rangian points around each particle surface. The force F j at the

 th Lagrangian point is distributed on the fluid as 

f IB (x ) = 

N ∑ 

j=1 

F j δd (x − x j )�V j , (54)

here δd is a regularised Dirac delta function and �V j the volume

f the Lagrangian grid cell. In the simulation, Eqs. (52) and (53) are

onverted to 

 d 

d v p 
dt 

= −ρc 

N ∑ 

j=1 

F j �V j 

+ ρc 
d 

dt 

(∫ 
V p 

u dV 

)
+ ( m d − m c ) g, 

(55)

 d 

d�p 

dt 
= −ρc 

N ∑ 

j=1 

(
x j − x p 

)
× F j �V j 

+ ρc 
d 

dt 

(∫ 
V p 

( x l − x p ) × u dV 

)
. 

(56)

he three-step Runge–Kutta method is used for the time in-

egration. More details can be found in Breugem (2012) and

ambert et al. (2013) . 

. Numerical results 

In the VA simulation, the history and lift forces are captured

ithout any specific treatment as this method intrinsically incor-

orates the effect of the flow perturbation through the volume-

veraging. In Section 4.1 , the particle settling problem in a sta-

ionary fluid is simulated to show how the history force is rep-

esented. The lift force on a rotating particle is instead the focus of

ection 4.2 . For the study of the turbulence modulation by parti-

les of comparable size to the Kolmogorov length scale, the inter-

ction between the particle and a vortex element should be pre-

isely represented. In Section 4.3 , therefore, the applicability of the

A simulation for the Taylor–Green vortex is investigated. As the

undamental validation for different density ratios, the particle mo-

ion in the smallest periodic unit is simulated without gravity. Fi-

ally, in Section 4.4 , to highlight the importance of the two-way

oupling simulation for a vortical flow, we show the particle trajec-

ory and the inter-particle interaction in an array of Taylor–Green

nits with gravity. 

Throughout this study, grid resolutions of D/ �x = 24 for the

ully-resolved simulations and D/ �x = 2 for the VA simulations

re commonly employed. Note that the number of grid points is

2 3 times lower for the VA simulation with respect to the fully-

esolved simulation and consequently the time step �t is 20 times

arger. Therefore, the total computational cost is O(10 4 ) times

ower with the VA model. The computational domain is rectangu-

ar of lengths l 1 , l 2 and l 3 in the x 1 , x 2 and x 3 -directions. Periodic

oundary conditions are applied in all the directions. The motion

f the particle is confined in the x 1 − x 2 plane due to the sym-

etry of the flows studied. The choice of R = 0 . 75 D and D/ �x =
 is reasonable according to our previous study ( Fukada et al.,

016 ). The effects of these parameters are further discussed in

ppendix E . 

.1. History effect on the settling particle 

A single particle settling in a stationary fluid is studied by one-

ay coupling simulations, the VA approach and the IBM simula-

ion. The fluid and particle velocities are initially set to 0. Gravity
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Fig. 6. (a) Time evolution of the particle settling velocity in a fluid at rest. Solid 

line, VA simulation; dashed line, fully-resolved simulation; circle, O-NL simulation; 

filled triangle, O-LB simulation; filled square, O-L simulation. (b) Enlarged view of 

the same data at the early stage. 
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cts in the negative x 2 -direction and the external force, h , is ne-

lected. The importance of gravity is characterised by the Galileo

umber defined as 

a = 

√ (
ρd 

ρc 
− 1 

)
| g| D 

3 

ν
. (57) 

n the following, using Eq. (13) , Ga is related to the particle

eynolds number based on the particle terminal velocity as 

a = 

√ 

18 Re term 

(1 + 0 . 15 Re 0 . 687 
term 

) . (58) 

The following set of parameters are used for the simulations:

(l 1 /D, l 2 /D, l 3 /D ) = (16 , 32 , 16) , ρd /ρc = 100 and Ga = 8 . 44 (corre-

ponding to Re term 

= 3 ). The time step is (ν/D 

2 )�t = 1 . 19 × 10 −4 

or the fully-resolved simulation and (ν/D 

2 )�t = 2 . 39 × 10 −3 for

he other cases. The number of grid points is 384 × 768 × 384 for

he fully-resolved simulation and 32 × 64 × 32 for the VA simula-

ion. 

Fig. 6 shows the time evolution of the dimensionless par-

icle settling velocity v p 2 D / ν . First we note that the solid and

ashed lines almost overlap with each other and the proposed VA

nd the fully-resolved simulations show good agreement. Around

(ν/D 

2 ) t = 12 , the result of the O-NL simulation, including drag,

dded-mass and pressure gradient, shows better agreement with

hat of the fully-resolved simulation due to the nonlinear drag
odel (13) . On the other hand, the O-LB simulation, including the

istory effect, shows better agreement with the fully-resolved case

nly for the earlier stage. Therefore, the history force is essential to

orrectly model the initial transient stage, which is captured in the

A simulation. In Fig. 6 (b), focusing on the initial stages of the par-

icle motions, the difference between the results of the two one-

ay coupling simulations without the Basset term (O-L and O-NL)

s small because the nonlinear effect in the drag force is not sig-

ificant at the initial stage when the particle Reynolds number is

ow. 

As the boundary layer thickness at the beginning of the settling

s smaller than that in the steady flow, the friction drag of the

nsteady flow becomes larger in the developing stage. In the VA

imulation, smaller boundary layer thickness corresponds to larger

 αc ( 〈 u 〉 c − v p ) | and the history effect is qualitatively reflected in

he drag force. This also explains why the result of the VA simula-

ion shows quantitatively good agreement with the fully-resolved

imulation. 

.2. Lift force induced by particle rotation 

The VA simulation of the flow around a rotating particle is car-

ied out to test the capability of capturing the transversal forces.

he uniform velocity u = (U init , 0 , 0) is given as the initial condi-

ion for the fluid flow. The particle centre is fixed in space and

he angular velocity is kept constant to �p = (0 , �const , 0) , thus

he particle motion, Eqs. (28) , (30) and (31) , does not need to be

olved. The Reynolds numbers and the angular velocities are varied

n the following range: U init D/ν = 1 , 5 , 10 , 20 and �const D/U init =
 . 196 , 0 . 393 , with gravity and the external forces set to zero. The

ize of the computational domain is (l 1 /D, l 2 /D, l 3 /D ) = (64 , 32 , 16)

nd the number of grid points is 128 × 64 × 32. The time step

s (U init /D )�t = 2 . 81 × 10 −2 . The wake of the particle reaches the

article position around (U init /D ) t = 64 due to the periodic bound-

ry condition. The force is thus examined at (U init /D ) t = 28 . 1 so

hat effects from the re-entering wake are avoided. 

Based on the components of the estimated fluid force F , the

rag and lift coefficients, C D and C L , are defined as follows: 

 D = 

F 1 
π

8 

ρc U 

2 
init 

D 

2 
, C L = 

−F 2 
π

8 

ρc U init �const D 

3 
. (59) 

he drag and lift coefficients obtained in the VA simulation are

lotted in Fig. 7 . Note that the magnitude of the angular velocity

oes not influence the two coefficients. The drag coefficient esti-

ated in the present simulation shows good agreement with that

ased on Eq. (12) (solid line). Therefore, the effect of the rotation

n the drag force is small as supported by previous researches

 Sridhar and Katz, 1995; Bagchi and Balachandar, 2002 ). As for

he lift force, the signs of αc 〈 u 2 〉 c at the particle centre and F 2 
hould be the same according to the result that the contribution

f the friction lift is in the same direction as F 2 ( Kurose and Ko-

ori, 1999 ). Therefore, the present force estimation ( Section 2.3.1) ,

he directions of the drag force and αc ( 〈 u 〉 c − v p ) being the same,

s capable of capturing the direction of the lift force. In the VA

imulation, the interaction force model for the particle rotation,

q. (19) , induces αc 〈 u 2 〉 c < 0 and thus the lift force F 2 < 0. Accord-

ng to the theoretical study by Rubinow and Keller (1961) , the lift

oefficient is C L = 1 for Re p � 1. On the other hand, numerical stud-

es at Re p = O(10) have shown an estimate of C L ≈ 0.5 ( Bagchi and

alachandar, 2002; Bluemink et al., 2010 ). The VA simulation cap-

ures the direction of the lift force generated by the particle ro-

ation, and the magnitude quantitatively agrees with the previous

esults for Re p < 10 under the setting of this study. 
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Fig. 7. Drag and lift coefficients on a rotating particle for different Reynolds num- 

bers by the VA simulations, indicated by open and filled symbols. Square symbols, 

rotation rate �const D/U init = 0 . 196 ; triangle symbols, �const D/U init = 0 . 393 . The solid 

line shows the drag coefficient obtained from Eq. (13) and the dashed line repre- 

sents C L = 0 . 5 . Square and triangle symbols almost overlap with each other. 
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Fig. 8. Time evolution of the particle velocity v p 1 in a vortical flow for ρd /ρc = 

10 0 0 . Solid line, VA simulation; asterisk, SVA simulation; dashed line, fully-resolved 

simulation; square, TT simulation. 
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4.3. Vortical flow without gravity for three density ratios 

To study the interaction between a particle and a vortex, the

Taylor–Green vortex is used as the background undisturbed flow.

The smallest unit structure of the Taylor–Green vortex is consid-

ered to compare the results of relatively simple particle motions

from different simulations. The directions of the Cartesian coordi-

nates ( x 1 , x 2 , x 3 ) are determined so that the velocity components

of the undisturbed flow are 

 ud · e 1 = A sin 

(
x 2 
L 

)
, U ud · e 2 = −A sin 

(
x 1 
L 

)
, (60)

where the velocity A and the length L define the vortex in-

tensity and size. The period in the x 1 and x 2 -directions is

2 πL and the Reynolds number Re = AL/ν = 18 . According to

Jiménez et al. (1993) , the intensity of a typical vortex in isotropic

turbulence is correlated as �/ν ≈ 18 
√ 

Re λ, where � is the circula-

tion of the vortex and Re λ the Reynolds number based on the Tay-

lor length scale. The present case ( Re = 18 ), where the circulation

of one vortex is � = 16 AL, corresponds therefore to Re λ ≈ 250. The

size of the computational domain is l 1 /L = l 2 /L = l 3 /L = 2 π and the

particle diameter D/L = 2 π/ 16 . As the Kolmogorov length scale η is

around eight times smaller than the diameter of the most intense

vortices in turbulence ( Jiménez et al., 1993 ), the present particle

diameter is considered as a model of the case D ∼η. The flow is

maintained by the external force 

h · e 1 = 

Aν

L 2 
sin 

(
x 2 
L 

)
, h · e 2 = −Aν

L 2 
sin 

(
x 1 
L 

)
. (61)

The number of grid points is 384 × 384 × 384 for the fully-resolved

simulation and 32 × 32 × 32 for the VA and the TT simulations. The

time step is (A/L )�t = 3 . 31 × 10 −4 for the fully-resolved simula-

tion and (A/L )�t = 6 . 63 × 10 −3 for the other two methods. Three

different density ratios ( ρd /ρc = 1 , 10 , 10 0 0 ) and two different ini-

tial particle positions are examined in the following. The corre-

sponding Stokes numbers St = ρd D 

2 A/ (18 ρc νL ) are 0.154, 1.54 and

154. The initial velocity of the particle is set to be the same as

the undisturbed fluid velocity at the particle centre and the initial

angular velocity is 0. 

4.3.1. ρd /ρc = 10 0 0 

When the initial particle position is (x 1 /L, x 2 /L, x 3 /L ) =
(π/ 2 , π/ 2 , 0) , the particle trajectory follows the straight line
efined by d x 2 /d x 1 = −1 through the periodic boundaries and

he particle does not rotate. To highlight the difference between

he VA simulation and the TT simulation, the VA simulation

s repeated without considering the pressure gradient, particle

otation and the external force on the particle. This simplified VA

imulation is referred to as SVA simulation. 

The time evolution of the particle velocity v p 1 from these differ-

nt simulations are compared in Fig. 8 . The results of the VA and

VA simulations are similar to that of the fully-resolved IBM sim-

lation, which we take as the reference case. On the other hand,

he particle behaviour predicted by the TT simulation exhibits large

ifference from the reference case. One of the most significant dif-

erences between the SVA and the TT simulations is the estimation

f the drag force. As the flow disturbance is non-negligible for the

nite-size particle, the force estimation according to Eq. (50) with-

ut considering the local flow disturbance underestimates the drag

orce and results in the smaller acceleration of the particle in the

T simulation. 

To investigate the effect of the particle on the vortex, we define

he induced flow disturbance as (αc 〈 u 〉 c + αd 〈 v 〉 d − U ud ) . For com-

arison, the induced flow disturbance for the fully-resolved sim-

lation is defined as (αc 〈 u 〉 c + αd 〈 v 〉 d − U ud ) using the local ve-

ocities only in the region where αc > 0, while (u − U ud ) is used

n the other region. Fig. 9 (a) shows the induced flow disturbances

t time (A/L ) t = 33 . 13 in the x 1 − x 2 cross-section cutting through

he particle for both the VA simulation (solid arrow) and the fully-

esolved simulation (dashed arrow). This figure indicates that the

isturbances at larger scales than the particle size are very close

o each other. Relatively larger differences are found in the area

loser to the particle due to the difference in the position of the

article. As shown in Fig. 9 (b), by extracting the data from the VA

imulation at time (A/L ) t = 33 . 36 , to match the particle position

o that of the fully resolved case, the difference in the flow distur-

ance becomes smaller. To summarise, the VA simulation shows a

etter agreement with the fully-resolved results for both the flow

isturbance and the particle motion in comparison to the one-way

oupling and the TT models. 

.3.2. ρd /ρc = 10 

The initial particle position is given as (x 1 /L, x 2 /L, x 3 /L ) =
(π/ 2 , π, 0) so that the particle trajectory bends due to the vorti-

al flow. The particle trajectories for the different simulation meth-

ds are compared in Fig. 10 . The result of the VA simulation is

ery similar to that of the reference fully-resolved IBM simulation.

he effects of the particle rotation, pressure gradient and external

orce are not significant as the result of the SVA simulation is also

ery close to the two previous cases. As discussed in Section 4.3.1 ,
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Fig. 9. (a) Disturbance velocity field induced by a particle transported in a Taylor–

Green vortex in the x 1 − x 2 cross-section cutting through the particle at (A/L ) t = 

33 . 13 for ρd /ρc = 10 0 0 . Solid and dashed vectors represent the results of the VA 

simulation and the fully-resolved simulation. The circles show the positions of the 

corresponding particles (by the VA and the fully-resolved simulations). (b) Enlarged 

view of the disturbance velocity field around the particle when the time of the VA 

simulation is changed to (A/L ) t = 33 . 36 to adjust the particle position to that of the 

fully-resolved simulation. 
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Fig. 10. Trajectory of a particle with density ratio ρd /ρc = 10 in an array of Taylor–

Green vortices. Solid line, VA simulation; asterisk, SVA simulation; dashed line, 

fully-resolved simulation; square, TT simulation; The grey lines show the stream- 

lines of the undisturbed flow. 

Fig. 11. Time evolution of the angular velocity �p 3 for a particle with density ratio 

ρd /ρc = 10 transported in an array of Taylor–Green vortices. Solid line, VA simula- 

tion; dashed line, fully-resolved simulation. 
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he drag force estimated in the TT simulation is smaller than that

n the VA simulation, which gives smaller acceleration in the x 1 -

irection at the early stage. In the present case where the effect of

he pressure gradient is not so significant, the VA simulation effec-

ively reproduces the curved particle trajectory with significantly

ess spatial resolution. 

Fig. 11 shows the time evolution of the angular velocity �p 3 .

he result of the VA simulation shows good agreement with that

f the fully-resolved simulation. Therefore, the contribution of the

orticity to �p 3 is reasonably reproduced by the proposed model. 

Finally, Fig. 12 (a) shows the induced disturbance velocity field

t (A/L ) t = 33 . 13 in the x 1 − x 2 cross-section cutting through the

article for the VA and the fully-resolved IBM simulations. The dis-

urbances at larger scales than the particle size show good agree-
ent with each other. As shown in Fig. 12 (b), the disturbances

round the particles give an even better agreement when the par-

icle position of the VA simulation is adjusted to that of the fully-

esolved simulation by slightly changing the time ( (A/L ) t = 32 . 53 ).

.3.3. ρd /ρc = 1 

We next shortly consider particles of density equal to that

f the fluid with initial particle position (x 1 /L, x 2 /L, x 3 /L ) =
(π/ 2 , π, 0) . The particle trajectories are compared in Fig. 13 . As the

ensity ratio is 1, the particle velocity fluctuations are relatively

arge. The result of the O-NL simulation including all the forces

xcept for the history effect and external force, Eq. (28) , shows

ood agreement with that of the IBM simulation; the streamlines

re almost closed. On the other hand, the O-NL simulation further

eglecting the pressure gradient and added mass forces, Eq. (29) ,

hows a totally different trend, suggesting that the pressure gradi-

nt gives an important contribution. The result of the VA simula-

ion is also different from that of the fully-resolved IBM simulation.

herefore, the estimation of the fluid force needs to be improved

or the case where the pressure force is dominant and the particle

elocity fluctuations are large. 
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Fig. 12. (a) Disturbance velocity field in the x 1 − x 2 cross-section cutting through 

the particle at (A/L ) t = 33 . 13 for a particle with ρd /ρc = 10 transported in a Taylor–

Green array of vortices. Solid and dashed vectors represent the results of VA simu- 

lation and the fully-resolved IBM simulation. The circles show the positions of the 

corresponding particles (from the VA and the fully-resolved simulations). (b) En- 

larged view of the disturbance velocity field around the particle when the time for 

VA simulation is changed to (A/L ) t = 32 . 53 to adjust the particle position to that of 

the fully-resolved simulation. 

 

 

 

 

 

Fig. 13. Trajectory of a particle of density equal to that of the fluid, ρd /ρc = 1 , in an 

array of Taylor–Green vortices. Solid line, VA simulation; dashed line, fully-resolved 

IBM simulation; open circle, O-NL simulation; filled circle, O-NL simulation further 

neglecting pressure gradient and added-mass forces. 
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4.4. Effects of two-way coupling in vortical flow with gravity 

The settling motion of a particle is investigated in an array of

the Taylor–Green units. The flow configuration is ⎧ ⎪ ⎨ 

⎪ ⎩ 

U ud 1 = A sin 

(
x 1 
L 

)
cos 

(
x 2 
L 

)
, 

U ud 2 = −Acos 

(
x 1 
L 

)
sin 

(
x 2 
L 

)
, 

(62)

as often used (see e.g. Maxey, 1987; Bergougnoux et al., 2014 . Note

that A and L in Eq. (62) are 
√ 

2 times larger than those in Eq. (60) .

The length of the unit cell is 2 πL in the x and x -directions and
1 2 
he flow is maintained by the external force: 
 

 

 

 

 

h 1 = 

2 Aν

L 2 
sin 

(
x 1 
L 

)
cos 

(
x 2 
L 

)
, 

h 2 = −2 Aν

L 2 
cos 

(
x 1 
L 

)
sin 

(
x 2 
L 

)
. 

(63)

s in the previous section, we compare particle trajectories and

he induced disturbance velocity field obtained by different numer-

cal models, with particular emphasis on investigating the history

ffect on the trajectory for different initial particle positions. Fi-

ally, the flow-mediated interaction between multiple particles at

istances around 10 D is studied. All the results in this section are

btained for density ratio ρd /ρc = 100 and the Reynolds number

e = AL/ν = 30 (corresponding to Re = 15 with the definition in

ection 4.3 ). The time step is (A/L )�t = 5 . 52 × 10 −4 for the fully-

esolved simulation and (A/L )�t = 1 . 10 × 10 −2 in the other cases.

ravity works in the negative x 2 -direction. For all the simulations,

he initial particle velocity is the same as the flow at the particle

osition and the angular velocity is 0. 

.4.1. Validation of the VA simulation 

The particle initial position is (x 1 /L, x 2 /L, x 3 /L ) = (π/ 2 , π/ 2 , 0)

here the flow velocity is 0. The particle diameter is D/L =
 π/ 16 ( St = 12 . 9 ) and the Galileo number is Ga = 8 . 44 . The do-

ain size is l 1 /L = 4 π and l 2 /L = l 3 /L = 2 π . The number of grid

oints is 768 × 384 × 384 for the fully-resolved IBM simulation and

4 × 32 × 32 for the VA and the TT simulations. 

Fig. 14 (a) compares the particle trajectories for the different

imulations. The result of the VA simulation shows good agree-

ent with that of the fully-resolved IBM simulation. The trajec-

ory is not as simple as in the no-gravity cases: the particle is

ccelerated by gravity initially and then is transported upward by

he vortex. Interestingly, the TT simulation does not yield the up-

ard particle motion due to the reduced value of the drag force.

ig. 14 (b) compares the initial stage of the trajectories obtained by

he different formulations including the one-way coupling regime.

he result of the O-LB simulation, Eq. (43) , is the closest (among
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Fig. 14. (a) Trajectory of a single particle with density ratio ρd /ρc = 100 under 

the gravity in an array of Taylor–Green vortices. Solid line, VA simulation; dashed 

line, fully-resolved simulation; open square, TT simulation; The grey lines show the 

streamlines of the undisturbed flow. (b) Enlarged view around the initial particle 

position. Filled triangle, O-LB simulation; filled square, O-L simulation; open circle, 

O-NL simulation. 
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Fig. 15. Trajectories of particles in an array of Taylor–Green vortices under the grav- 

ity of different size (a) D/L = 2 π/ 16 and (b) D/L = 2 π/ 32 and different initial po- 

sitions, indicated by the filled squares. Solid line, VA simulation; dashed line, O-NL 

simulation. The grey lines show the streamlines of the undisturbed flow. 
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he one-way coupling simulations) to that of the fully-resolved IBM

imulation. Therefore, in the initial stage, the history effect is more

mportant than the nonlinearity of the drag model. However, the

ifference in the trajectory of the O-LB simulation increases with

espect to the reference case after the initial stage of Fig. 14 (b)

i.e., when the particle goes into the neighbouring vortex) because

f the linear drag model and the error in the Basset term at longer

imes. The result of the VA simulation suggests that an appropriate

wo-way coupling model can reproduce the history effect without

 complicated model when the effect of unsteady disturbance due

o the finite-size particle is reflected. 

The particle Reynolds number exhibits temporal variation up to

round 10 with accelerated and decelerated motion (figure omit-

ed). 

.4.2. History effect on particle trajectories 

To highlight the importance to include the history effect, we

nvestigate the particle trajectories for different initial particle po-

itions and two particle diameters, D/L = 2 π/ 16 ( Ga = 8 . 44 , St =
2 . 8 ) and D/L = 2 π/ 32 ( Ga = 2 . 98 , St = 3 . 21 ). The domain size is

 1 /L = l 2 /L = 8 π and l 3 /L = 4 π for the larger particle and l 1 /L =
 2 /L = 4 π and l 3 /L = 2 π for the smaller particle. The number of

rid points is 128 × 128 × 64 for both cases. 
The trajectories pertaining five different initial particle posi-

ions (along an enclosed streamline and at the vortex centre),

(x 1 /L, x 2 /L ) = (π/ 2 , π/ 2) , ( π /4, π /2), (3 π /4, π /2), ( π /2, π /4) and

 π /2, 3 π /4), are displayed in Fig. 15 . The trajectories are obtained

ith the VA approach and the O-NL simulation excluding the his-

ory effect. The trajectories obtained with the VA simulation have

lightly larger curvature than those from the O-NL simulation at

he early stage, which is consistent with the observations above

bout the role of the history effects. The distances between the

orresponding trajectories increase with time. For the larger par-

icle ( Fig. 15 (a)), the differences are already non-negligible in the

ell adjacent to that of the initial particle positions. For the smaller

article ( Fig. 15 (b)), except for the particle with the initial position

(x 1 /L, x 2 /L ) = (π/ 2 , π/ 2) , the differences between the two mod-

ls are relatively small. This trend is explained by the fact that the

istory effect becomes smaller for smaller particles ( Bergougnoux

t al., 2014; Daitche, 2015 ). For the case with the initial position

(x 1 /L, x 2 /L ) = (π/ 2 , π/ 2) , the long-time less-active motion around

he vortex centre enhances the history effect on the trajectory. 
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Fig. 16. Disturbance flow field and particle trajectories at (a) (A/L ) t = 22 . 08 and (b) (A/L ) t = 33 . 12 for three particles released in an array of Taylor–Green vortices under 

the gravity. The square symbols indicate the initial particle positions. 
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4.4.3. Interaction between multiple particles 

The importance of the two-way coupling simulation for the

inter-particle interaction through the flow disturbance is demon-

strated in the following. For the simulations presented here,

the physical parameters are D/L = 2 π/ 16 and Ga = 8 . 44 . The do-

main size is l 1 /L = l 2 /L = 8 π and l 3 /L = 4 π and the number of

grid points 128 × 128 × 64. The interaction between particles at

distances of around 10 D , which is a typical distance for vol-

ume fraction O(10 −4 ) , is simulated with 3 particles with initial

positions (x 1 /L, x 2 /L, x 3 /L ) = (π/ 2 , 5 π/ 2 , 0) , (5 π /2, 5 π /2, 0) and

(3 π /2, 3 π /2, 0). Note that the first two particles are in the same

relative position of the respective Taylor–Green vortex units. Fig. 16

shows the disturbance flow field and the particle trajectories at

two different instants. If the inter-particle interactions are ignored,

the trajectories of the two particles initially at x 2 /L = 5 π/ 2 should

be the same. As shown in Fig. 16 (b) at time (A/L ) t = 33 . 12 , how-

ever, the trajectory of the particle released from (x 1 /L, x 2 /L, x 3 /L ) =
(π/ 2 , 5 π/ 2 , 0) turns to a different direction in comparison to that
eleased from (x 1 /L, x 2 /L, x 3 /L ) = (5 π/ 2 , 5 π/ 2 , 0) . The present re-

ult suggests that the particle motion for D ∼η is clearly influ-

nced by other particles at distance around 10 D . Also, the flow dis-

urbance around (x 1 /L, x 2 /L, x 3 /L ) = (π/ 2 , 5 π/ 2 , 0) is larger than

hat around (x 1 /L, x 2 /L, x 3 /L ) = (5 π/ 2 , 5 π/ 2 , 0) owing to the inter-

article interaction. The spreading of the disturbance velocity over

 wide region is caused by convection since the convective time

cale ( L / A ) is sufficiently smaller than the viscous time scale ( L 2 / ν)

i.e., ν/AL = 1 / 30 ) in our case. As the modeling of the convective

ffect is difficult, the two-way coupling simulation is necessary to

nvestigate the inter-particle interaction. 

. Conclusion 

For the simulation of flows laden with particles of size com-

arable to the smallest turbulent eddies, D ∼η, we have previ-

usly developed an interaction force model based on the volume-

veraged continuity and momentum equations. In this paper, we
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Fig. A1. Sketch of the geometrical difference between the volume-averaged quan- 

tities Q ( x ) and Q(x + h e i ) , with nomenclature used in the derivations reported in 

Appendix A . 
roposed a new method to estimate the fluid force to enable

imulation of the transport of particles within the same volume-

veraged framework (VA simulation). The VA velocity at the parti-

le centre is correlated with the particle Reynolds number. At the

ame time, the effects of the pressure gradient, the velocity gradi-

nts and the particle rotation are incorporated into the interaction

orce model. The qualitative advantages of the VA approach are the

apability of representing the history effect without a complicated

odel and the better drag estimation compared to the traditional

oint-model based method. 

To test the proposed model, we set up configurations of increas-

ng complexity and compared the results with those obtained with

nterface-resolved simulations based on the immersed-boundary

ethod (IBM). When considering a single settling particle in a sta-

ionary fluid, we showed that the history effect was captured in

he VA simulation without any specific model. We then examined

he flow around a rotating particle at Re p ≤ 20 and showed that the

irection of the lift force was represented by the model, and the

agnitudes for Re p < 10 agreed with those in other studies ( Bagchi

nd Balachandar, 2002; Bluemink et al., 2010 ). Therefore, in the

resent cases, the proposed drag estimation method reflects the

isturbance flow that contributes to the history and the lift forces.

To show the applicability of VA simulation for the study of

urbulent modulation, the simulation for the Taylor–Green vortex

t Reynolds numbers Re = 15 and 18 was carried out with the

article diameter being O(10) times smaller than the vortex. For

ensity ratio ρd / ρc ≥ 10, the particle motion obtained by the VA

imulation showed much better agreement with that of the fully-

esolved simulation than the traditional two-way coupling simula-

ion. The disturbance flow also showed good agreement with that

f the fully-resolved simulation. On the other hand, for density

atio ρd /ρc = 1 , the VA simulation model needs to be improved.

or a further improvement of the estimation of the fluid force, un-

teadiness and non-uniformity of the flow need to be considered.

owever, we consider the method as promising as the computa-

ional cost of the VA simulation is O(10 4 ) times lower than that of

he fully-resolved IBM simulation in the present paper. 

The importance of two-way coupling for the correct prediction

f particle trajectories in vortical flows was confirmed for ρd /ρc =
00 . For particles released in a vortical array, the trajectory cur-

ature in the initial stage increased due to the history effects,

hich clearly influenced the future dynamics. The history effect es-

imated in the VA simulation tends to be larger for larger particle

s supported by Bergougnoux et al. (2014) and Daitche (2015) . For

articles initially placed at the vortex centre, the long residence

ime around the initial position increases the importance of the

ole of the history effects on the trajectory. It is also found that

he particle interactions, assuming an average inter-particle dis-

ance of about 10 D , influence the particle motion in vortical flows.

hese results suggest that the history effects and inter-particle

ow-mediated interactions need to be considered by two-way cou-

ling simulations even in dilute particle-laden turbulence. 
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ppendix A. Differentiability of volume-averaged quantities 

The form of the viscous term in Eq. (6) is justified in this sec-

ion. In the following discussion, V is assumed to be larger than the

article as used in this paper. The volume integral Q ( x ) is defined

s 

(x ) = 

∫ 
V 

qdV, (A.1) 

here q is a bounded function defined in both fluid and solid. We

lso assume that Taylor expansion of q is possible except on the in-

erface. The volume-averaged quantities correspond to Q ( x )/ V . For

xample, αc 〈 u 1 〉 c is constructed from 

 = 

{
u 1 inside the fluid 

0 inside the solid 

, (A.2) 

nd (αc 〈 u 1 〉 c + αd 〈 v 1 〉 d ) corresponds to 

 = 

{
u 1 inside the fluid 

v 1 inside the solid 

. (A.3) 

n the following, the first and second-order derivatives of Q ( x ) are

onsidered. 

Fig. A1 schematically shows the geometric relation between

 ( x ) and V (x + h e i ) , and we focus on the integration of q over the

olume denoted as Q ( x ) and Q(x + h e i ) . The volume integrals of q

n the shaded regions are denoted as Q 

+ , Q 

− and Q cut . The surface

f V ( x ) is denoted as S . The outward unit normal vector on S is de-

oted as n . The surface S is divided into a region denoted as S + ,

https://doi.org/10.13039/501100001691
https://doi.org/10.13039/501100000781
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where n V · e i ≥ 0, and S −, defined by n V · e i ≤ 0. According to Fig. A1 ,

the volume integrals are 

Q(x + h e i ) = Q(x ) + Q 

+ − Q 

−, (A.4)

Q 

+ = 

∫ 
S + 

n V · e i 

∫ h 

0 

q (S + l e i ) dl dS − Q cut , (A.5)

Q 

− = 

∫ 
S −

−n V · e i 

∫ h 

0 

q (S + l e i ) dl dS − Q cut , (A.6)

where S indicates the position on S . Therefore, we obtain the fol-

lowing equation: 

Q(x + h e i ) − Q(x ) 

h 

= 

Q 

+ − Q 

−

h 

= 

1 

h 

∫ 
S 

n V · e i 

∫ h 

0 

q (S + le i ) d l d S. (A.7)

To deal with the interface between the phases, we define the frac-

tion of the surface S jump ( ⊂ S ) such that 

S jump = { S | S + βh e i ∈ particle interface (0 ≤ β ≤ 1) } , 
(see Fig. A1 ). With this decomposition of the surface S , 

Q(x + h e i ) − Q(x ) 

h 

= 

∫ 
S−S jump 

{
q (S) + O (h ) 

}
n V · e i dS 

+ 

∫ 
S jump 

n V · e i 
1 

h 

∫ h 

0 

q (S + le i ) d l d S. (A.8)

Taking the limit of h → 0, S jump converges to 0 and 

1 

h 

∫ h 

0 

q (S + le i ) dl 

on S jump is bounded since q is bounded. We can therefore write 

lim 

h → 0 

Q(x + h e i ) − Q(x ) 

h 

= 

∫ 
S 

q (S) n V · e i dS. (A.9)

As Eq. (A.9) holds regardless of the sign of h , we obtain the deriva-

tive 

∂Q(x ) 

∂x i 
= 

∫ 
S 

q (S) n V · e i dS. (A.10)

Note that S jump → 0 is guaranteed by the size difference between V

and the particle. In this case, the continuity of q on the interface

is not necessary for the first-order derivative. 

For simplicity, ∂ Q ( x )/ ∂ x i is denoted as Q , i ( x ). For higher-order

derivatives, we consider that 

Q , j (x + h e i ) = 

∫ 
S 

q (S + h e i ) n V · e j dS 

= 

∫ 
S−S jump 

{
q (S) + 

∂q 

∂x i 
(S) h + O (h 

2 ) 

}
n V · e j dS 

+ 

∫ 
S jump 

q (S + h e i ) n V · e j dS, (A.11)

so that 

Q , j (x + h e i ) − Q , j (x ) 

h 

= 

∫ 
S−S jump 

{
∂q 

∂x i 
(S) + O (h ) 

}
n V · e j dS 

+ 

∫ 
S jump 

{
q (S + h e i ) − q (S) 

h 

}
n V · e j dS. 

(A.12)

By denoting the interface as (S + k (S) e i ) with 0 ≤ k ≤ h , we ob-

tain 

q (S + h e i ) − q (S) = 

[ q (S + k e i )] + O (h 

0 ) , (A.13)

h h 
here [ · ] represents the jump of the function at the interface. Tak-

ng the limit of h → 0, Eq. (A.12) yields: 

lim 

 → 0 

Q , j (x + h e i ) − Q , j (x ) 

h 

= 

∫ 
S 

∂q 

∂x i 
(S) n V · e j dS 

+ lim 

h → 0 

∫ 
S jump 

[ q (S + k e i )] 

h 

n V · e j dS. 

(A.14)

n general, the right-hand side of Eq. (A.14) depends on the sign

f h (e.g., the second-order derivative of αd is not determined). On

he other hand, when [ q (S + k e i )] = 0 , we can define the second-

rder derivative as 

∂ 2 Q(x ) 

∂ x i ∂ x j 
= 

∫ 
S 

∂q 

∂x i 
(S) n V · e j dS. (A.15)

s the velocities u and v are continuous across the interface, the

iscous term ∇ 

2 (αc 〈 u 〉 c + αd 〈 v 〉 d ) is well-defined. Note, however,

hat the decomposition into ∇ 

2 (αc 〈 u 〉 c ) + ∇ 

2 (αd 〈 v 〉 d ) is not al-

owed. 

ppendix B. Calculation of interaction force 

The interaction force can be written as 

f = −
∫ 

S d 

1 

ρc 
s · n dS, (B.1)

here s is the stress on the surface: 

 = −δpI + ρc ν
(∇u + (∇u ) T 

)
. (B.2)

n Section 2.2 , the stress vectors: 

 · n = ρc 
3(F pg · n ) 

πD 

2 
n (B.3)

nd 

 · n = −3 ρc ν�p × n (B.4)

re used for the modeling of Eqs. (18) and (19) . Therefore, the fol-

owing two integrals are enough for the derivation of the interac-

ion force models: 
 

S d 

n i dS, 

∫ 
S d 

n i n j dS. (B.5)

ote that these integrals are also enough for the interaction force

odelling in Fukada et al. (2016) . 

We consider three unit vectors A , B and C with A =
(x − x p ) / | x − x p | and A · B = B · C = C · A = 0 . The basis vector e i
nd n can be written as 

 i = (A · e i ) A + (B · e i ) B + (C · e i ) C, (B.6)

 = (A · n ) A + (B · n ) B + (C · n ) C, (B.7)

o that the integrands become 

 i = n · e i 

= ( A · e i ) ( A · n ) + ( B · e i ) ( B · n ) 

+ ( C · e i ) ( C · n ) , 

(B.8)

 i n j = ( A · e i ) 
(
A · e j 

)
( A · n ) 

2 + ( B · e i ) 
(
B · e j 

)
( B · n ) 

2 

+ ( C · e i ) 
(
C · e j 

)
( C · n ) 

2 

+ 

{
( A · e i ) 

(
B · e j 

)
+ ( B · e i ) 

(
A · e j 

)}
( A · n ) ( B · n ) 

+ 

{
( B · e i ) 

(
C · e j 

)
+ ( C · e i ) 

(
B · e j 

)}
( B · n ) ( C · n ) 

+ 

{
( C · e i ) 

(
A · e j 

)
+ ( A · e i ) 

(
C · e j 

)}
( C · n ) ( A · n ) . 

(B.9)



T. Fukada et al. / International Journal of Multiphase Flow 104 (2018) 188–205 203 

Table 1 

Acceleration obtained by the present estimation method. The subscripts 1 

and 2 correspond to x 1 and x 2 -components. 

ρd / ρc a s v 1 a s v 2 a s v + pg 
1 

a s v + pg 
2 

a FR 
1 a FR 

2 

1 2.50 −0 . 122 2.35 −18 . 4 0.477 −19 . 2 

10 −1 . 25 −4 . 85 −1 . 62 −7 . 24 −1 . 52 −7 . 69 

100 0.292 −0 . 314 0.464 −0 . 568 0.547 −0 . 628 

10 0 0 −0 . 174 0.174 −0 . 176 0.176 −0 . 196 0.196 
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Fig. D1. Sketch introducing the geometrical variables used for the calculations of 

the volume averages. 
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iven the symmetry about the direction A , the integrals reduce

o 
 

S d 

n i dS = (A · e i ) 

∫ 
S d 

cos tdS, (B.10) 

 

S d 

n i n j dS = (A · e i )(A · e j ) 

∫ 
S d 

cos 2 tdS 

+ 

{
δi j − (A · e i )(A · e j ) 

}1 

2 

∫ 
S d 

(1 − cos 2 t) dS, (B.11) 

here t is the angle between A and n . In this derivation, we used

he following relations: 
 

S d 

( B · n ) 
2 dS = 

∫ 
S d 

( C · n ) 
2 dS 

 

1 

2 

∫ 
S d 

{
1 − ( A · n ) 

2 
}

dS , 
(B.12) 

( B · e i ) 
(
B · e j 

)
+ ( C · e i ) 

(
C · e j 

)
 ( I − AA ) : e i e j 

 δij − ( A · e i ) 
(
A · e j 

)
. 

(B.13) 

ccording to Eqs. (D.10) and (D.11) (shown later), we obtain 

 

S d 

n i dS = (A · e i ) πD 

2 ξ (1 − ξ ) , (B.14) 

 

S d 

n i n j dS = (A · e i )(A · e j ) πD 

2 ξ (1 − ξ )(1 − 2 ξ ) 

+ δi j 

πD 

2 

3 

ξ 2 (3 − 2 ξ ) . (B.15) 

ppendix C. Estimation of fluid force 

The applicability of the current approximation of the fluid force

s tested for unsteady flows. For the flow fields around the par-

icle obtained by the fully-resolved simulation, the contributions

f F drag and ∇P ud on the particle acceleration (28) are computed

y Eqs. (13) , (20) and (26) . Instead, the volume-averaged values

re directly computed from the flow fields. In particular, we con-

ider time (A/L ) t = 33 . 13 for the cases of ρd /ρc = 1 , 10 , 10 0 0 in

ection 4.3 and time (A/L ) t = 55 . 22 for the case ρd /ρc = 100 in

ection 4.4.1 . Table 1 shows the following three dimensionless ac-

elerations (for comparing the contribution of each term to the

ight-hand side of Eq. (28) ): 

 

s v = 

2 

2 m d + m c 

D 

3 

ν2 
F drag m , (C.1) 

 

s v + pg = 

2 

2 m d + m c 

D 

3 

ν2 

{
F drag m − πD 

3 

4 

∇P ud 

}
, (C.2) 

a 

FR = 

D 

3 

ν2 

{
d v p 
dt 

− 2 [ ( m d − m c ) g + m c h ] 

2 m d + m c 

}
, (C.3) 
here d v p / dt is the net acceleration obtained from the fully-

esolved IBM simulation. Note that a 

s v + pg is equal to a 

FR when the

rrors in both the model (28) and the estimation of each term are

gnored. Especially for ρd / ρc ≤ 100, the effect of the pressure gra-

ient is reasonably captured by Eq. (26) as a 

s v + pg is considerably

mproved from a 

sv . However, as indicated by the differences be-

ween a 

s v + pg and a 

FR , unsteadiness and non-uniformity of the flow

eed to be considered to improve the total estimation method. 

ppendix D. Calculations of geometrical functions 

The radius R of the averaging volume V is larger than the parti-

le radius r d . The geometrical functions ξ , αd and αd 〈 v 〉 d are ob-

ious for | x − x p | < R − r d and | x − x p | > R + r d . Therefore, we only

onsider R − r d ≤ | x − x p | ≤ R + r d . Fig. D1 shows the definitions of

he variables considered in the following. The origin is at the par-

icle centre and y is equal to | x − x p | . The variable a satisfies 

 

2 
d − a 2 = R 

2 − (y − a ) 2 , (D.1) 

 = 

r 2 
d 

− R 

2 + y 2 

2 y 
. (D.2) 

ote that a varies in the range −r d ≤ a ≤ r d . The surface fraction

= S d /πD 

2 is 

= 

1 

πD 

2 

∫ cos −1 (a/r d ) 

0 

(2 π r d sin t) r d dt = 

1 

2 

(
1 − a 

r d 

)
. (D.3) 

he volume fraction αd = V d /V is 

d = 

1 

V 

[∫ a 

y −R 

π{ R 

2 − (y − x ) 2 } dx + 

∫ r d 

a 

π(r 2 d − x 2 ) dx 

]

= 

y 3 − 3 ay 2 + 3(a 2 − R 

2 ) y + 2(r 3 
d 

+ R 

3 ) + 3 a (R 

2 − r 2 
d 
) 

4 R 

3 
. (D.4) 

he centre of gravity x G of V d is 

 G = 

1 

V d 

[∫ a 

y −R 

π{ R 2 − (y − x ) 2 } xdx + 

∫ r d 

a 

π(r 2 d − x 2 ) xdx 

]

= 

1 

αd 

y 4 − 6(R 2 + a 2 ) y 2 + 8(R 3 + a 3 ) y − 3(R 4 − r 4 ) + 6 a 2 (R 2 − r 2 ) 

16 R 3 
. (D.5) 

In general, the rigid-body velocity at x can be written as 

 = v 0 + �0 × x 

= v 0 + �0 × x ′ + �0 × (x − x ′ ) , (D.6) 

here v 0 and �0 are the origin velocity and the angular velocity

round the origin. Introducing 

 

′ = 

1 

V r 

∫ 
V 

x dV, (D.7) 

r 



204 T. Fukada et al. / International Journal of Multiphase Flow 104 (2018) 188–205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. E1. Time evolution of the particle settling velocity in a fluid at rest. Solid 

line, VA simulation ( R = 0 . 75 D, D/ �x = 2 ); dashed line, VA simulation ( R = 0 . 75 D, 

D/ �x = 4 ); filled triangle, VA simulation ( R = 0 . 75 D, D/ �x = 1 ); open square, VA 

simulation ( R = 1 . 5 D, D/ �x = 2 ); filled square, VA simulation ( R = 1 . 5 D, D/ �x = 1 ). 

Solid and dashed lines almost overlap with each other. 

Fig. E2. Trajectory of a single particle with density ratio ρd /ρc = 100 under the 

gravity in an array of Taylor–Green vortices. Solid line, VA simulation ( R = 0 . 75 D, 

D/ �x = 2 ); dashed line, VA simulation ( R = 0 . 75 D, D/ �x = 4 ); filled triangle, VA 

simulation ( R = 0 . 75 D, D/ �x = 1 ); open square, VA simulation ( R = 1 . 5 D, D/ �x = 

2 ); filled square, VA simulation ( R = 1 . 5 D, D/ �x = 1 ); open circle, O-NL simulation. 

The grey lines show the streamlines of the undisturbed flow. 

R

A  

B  

B  

B  

 

B  

B  

 

B  

C  

D  

 

where V r is the volume of the rigid body, the average velocity in

the volume becomes 

1 

V r 

∫ 
V r 

v dV = v 0 + �0 × x ′ . (D.8)

Therefore, the averaged velocity αd 〈 v 〉 d is 

αd 〈 v 〉 d = αd v p + αd x G �p × x − x p 

| x − x p | . (D.9)

Eqs. (32) , (33) and (34) are obtained by Eqs. (D.3) , (D.4), (D.5) and

(D.9) using Eq. (D.2) . 

Finally, the integrals used in Appendix B are calculated as fol-

lows: ∫ 
S d 

cos t dS = 

∫ cos −1 (a/r d ) 

0 

2 π r 2 d cos t sin t dt = πD 

2 ξ (1 − ξ ) , 

(D.10)

∫ 
S d 

cos 2 tdS = 

∫ cos −1 (a/r d ) 

0 

2 π r 2 d cos 2 t sin tdt 

= 

πD 

2 

3 

ξ (4 ξ 2 − 6 ξ + 3) . (D.11)

Appendix E. Effects of size of the averaging volume and grid 

width 

To investigate the effect of the size of the averaging volume, the

VA simulation is expanded for the case of R = 1 . 5 D . For this case,

the fitting functions (20), (23) and (24) are replaced by 

Re p = 1 . 52 

(
αc | 〈 u 〉 c − v p | D 

ν

)0 . 93 

, (E.1)

δurr ( Re p ) = −0 . 121 

(
ν

D 

2 

)
Re 0 . 759 

p , (E.2)

δpr ( Re p ) = −0 . 118 

(
ρc ν2 

D 

3 

)
Re 1 . 65 

p . (E.3)

Based on these functions, the VA simulations under R = 1 . 5 D and

different �x are carried out for the same configurations as in

Sections 4.1 and 4.4.1 . 

Fig. E1 shows the result for the particle settling problem in a

stationary fluid. As for the case of R = 0 . 75 D, the result of the fine

grid ( D/ �x = 4 ) is almost the same as that for D/ �x = 2 . On the

other hand, for the coarse grid ( D/ �x = 1 ), the result is quite dif-

ferent from the others. Therefore, the grid resolution of D/ �x = 2

is necessary to capture the averaged flow distribution around the

particle. As for the case of R = 1 . 5 D, the result of the coarse grid

( D/ �x = 1 ) is not so different from that of D/ �x = 2 . Therefore,

choosing a larger R is better for D/ �x = 1 , while having a smaller

R is appropriate for D/ �x = 2 . However, to outperform the O-NL

simulation (shown in Fig. 6 (a)), a fine grid with small R ( = 0 . 75 D )

is necessary. 

Fig. E2 shows the result for the particle under gravity in an ar-

ray of Taylor–Green vortices. The tendency of the effects of R and

�x are quite similar to that for the settling particle in the station-

ary fluid. The results for R = 1 . 5 D ( D/ �x = 1 and 2) are still better

than that of the O-NL simulation. Therefore, for the larger R , the

history effect is qualitatively captured in the same manner as for

the smaller R . The upper limit of R is considered to be based on

the length scale of the background flow. In conclusion, smaller R

gives better results for sufficiently fine grids. On the other hand,

for coarse grid, larger R is preferable. 
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