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Turbulent channel flow over an anisotropic
porous wall – drag increase and reduction
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The effect of the variations of the permeability tensor on the close-to-the-wall
behaviour of a turbulent channel flow bounded by porous walls is explored using
a set of direct numerical simulations. It is found that the total drag can be either
reduced or increased by more than 20 % by adjusting the permeability directional
properties. Drag reduction is achieved for the case of materials with permeability in
the vertical direction lower than the one in the wall-parallel planes. This configuration
limits the wall-normal velocity at the interface while promoting an increase of the
tangential slip velocity leading to an almost ‘one-component’ turbulence where the
low- and high-speed streak coherence is strongly enhanced. On the other hand, strong
drag increase is found when high wall-normal and low wall-parallel permeabilities
are prescribed. In this condition, the enhancement of the wall-normal fluctuations due
to the reduced wall-blocking effect triggers the onset of structures which are strongly
correlated in the spanwise direction, a phenomenon observed by other authors in flows
over isotropic porous layers or over ribletted walls with large protrusion heights. The
use of anisotropic porous walls for drag reduction is particularly attractive since equal
gains can be achieved at different Reynolds numbers by rescaling the magnitude of
the permeability only.

Key words: drag reduction, mixing enhancement, turbulence simulation

1. Introduction
One of the central problems in fluid engineering concerns the fact that wall-bounded

turbulent flows usually exert a much higher wall friction than laminar ones. For
this reason, many researchers have studied the flow over surfaces of different
characteristics and in particular over porous walls as it is commonly found in many
industrial and natural flows. The main aim of these studies was to investigate the
effects of locally modified wall boundary conditions on the flow field and to inspire
the design of novel surfaces able to deliver technological benefits by altering the
near-to-the-wall flow behaviour. In this context, this work explores the interactions
between a turbulent shear flow and a permeable porous wall and demonstrates that
it is possible to engineer a porous medium of anisotropic permeability to obtain
favourable conditions such as drag reduction or enhanced mixing.

† Email address for correspondence: merosti@mech.kth.se
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Research in the past has mainly focused on porous surfaces with isotropic
permeability that have as a main effect the destabilisation of the mean flow and the
enhancement of the Reynolds shear stresses with a consequent increase in skin-friction
drag in wall-bounded turbulent flows. Beavers, Sparrow & Magnuson (1970) provided
the first experimental evidence that an isotropic porous wall played a destabilising
role on the mean velocity field. More recently, Tilton & Cortelezzi (2006, 2008)
have performed a three-dimensional temporal linear stability analysis of a laminar
channel flow bounded by an isotropic porous wall proving that wall permeability can
drastically decrease the stability of the flow. Breugem, Boersma & Uittenbogaard
(2006) have numerically studied the influence of a highly permeable porous wall,
made of a packed bed of spheres, on a turbulent channel flow. The results show
that the structure and the dynamics of turbulence are quite different from those of
a canonical turbulent flow over a smooth, impermeable wall. In particular, it turns
out that low- and high-speed streaks and the coexisting quasi-streamwise vortices
loose intensity as compared to the solid wall case. Moreover, in agreement with other
authors, they report the presence of large spanwise vorticity structures that contribute
to increase the exchange of momentum between the porous medium and the channel,
thus inducing a strong increase in the Reynolds shear stresses and, consequently, in
the resulting skin friction. Rosti, Cortelezzi & Quadrio (2015) extended the analysis to
a porous material with relatively small permeability where the inertial effects within
the porous layer can be neglected. In this context, they highlighted the decoupled
roles played by porosity and permeability. They also showed that porous media
characterised by the same porous length scale in viscous units deliver the same effect
on the outer turbulent flow. Suga et al. (2010) conducted an experimental investigation
on the effects of wall permeability on laminar–turbulent transition in channel flows
observing that the slip velocity over the permeable wall increases dramatically in
the range of critical Reynolds numbers. In addition, consistently with the results
of the linear stability analysis of Tilton & Cortelezzi (2006, 2008), they found that
the transition to turbulence appears at progressively lower Reynolds numbers as the
value of the isotropic permeability is increased. They also showed that in a turbulent
regime, the fluctuations of the normal-to-the-wall velocity component increase as the
wall permeability and/or the Reynolds number increases. All the previously reported
results were obtained considering porous isotropic media and only recently have
anisotropic permeable coatings received some attention. In particular, a set of linear
stability analyses reported in Deepu, Anand & Basu (2015) and in Gomez-de Segura,
Sharma & García-Mayoral (2017) have shown that anisotropic porous layers may
provide an effective mean for the passive control of turbulence transition being able
to modulate the value of the critical Reynolds number for parallel wall-bounded flows.
Preliminary simulations of wall-bounded turbulent flows have also shown a potential
for drag reduction (Gomez-de Segura et al. 2017). In particular, by means of stability
analysis, the authors show that relaxing wall permeability triggers a Kelvin–Helmholtz
instability which is responsible for the appearance of elongated spanwise vorticity
structures. They also provide an upper bound for the achievable maximum drag
reduction and, using preliminary direct numerical simulations (DNS) results, they show
that anisotropic coatings may palliate the drag increase produced by isotropic ones.
Abderrahaman-Elena & García-Mayoral (2017) conducted a detailed a priori analysis
to assess the potential of these surfaces, and predicted a monotonic decrease in skin
friction as the streamwise permeability increases. Very recently, Kuwata & Suga
(2017) used a DNS based on a lattice Boltzmann multiple-relaxation-time method to
simulate a turbulent channel flow over a porous layer. The directional permeabilities
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FIGURE 1. (a) Sketch of the channel geometry (not to scale), with interfaces between the
fluid and the porous region located at y= 0 and 2h, and two solid rigid walls at y=−hp
and 2h+ hp. (b) Domain side view and sketch of the volume average process.

are modulated by assembling arrays of hollow cubes along the Cartesian directions.
In particular, they have considered four combinations obtained by complementing
the permeability in the wall-normal direction with added permeabilities along the
streamwise and spanwise axes. Similarly to our findings, they also report strong
effects on the structure of wall turbulence even at low permeability values. However,
differently from the present study, they did not consider the case in which wall-normal
permeability is reduced and, at the same time, the cross-plane one is enhanced. We
will show that this choice of permeability ratio leads to a drag-reducing condition.

In this work, we present DNS of a plane turbulent channel flow at a constant bulk
Reynolds number (Reb = 2800) bounded by two porous slabs with the same porosity
value (60 %). A set of flow realisations is obtained by modifying the permeability
of the porous medium including isotropic cases and anisotropic ones with different
entries in the permeability tensor. It will be shown that porous walls characterised by
an anisotropic permeability allow for an effective passive manipulation of the near-
wall turbulent flow. In particular, by tailoring the directionality of the permeability
tensor one can either obtain a significant drag increase or decrease with decreased
or enhanced local mixing. Either of the two outcomes can be beneficial depending
on the technological application under consideration (e.g. skin-friction drag reduction
or separation control in an aerodynamic scenario). As also highlighted by Kuwata &
Suga (2017), the modulation of the directional values of the permeability leads to
completely different turbulence topologies in the near-wall region where modulation
or destruction of velocity streaks depends on the enhancement or the suppression of
Kelvin–Helmholtz spanwise rollers.

2. Formulation
We consider a fully developed turbulent plane channel flow of an incompressible

viscous fluid. The flow domain is delimited by two identical flat rigid homogeneous
porous layers sealed by impermeable walls at their outer edges as shown in figure 1.
The lower and upper interfaces between the fluid and the porous material are located
at y = 0 and y = 2h, while the lower and upper impermeable walls are located at
y = −0.2h and y = (2 + 0.2)h respectively. As commonly done, we characterise the
porous layer using the porosity ε and the permeability K. The former is a scalar
quantity defined as the ratio of the volume of void over the total volume of a
given material. The latter is a symmetric second-order positive definite tensor that
relates the velocity vector and the pressure gradient in a Darcy porous medium.
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The entries in the permeability tensor provide a direct measure of the ease with
which a fluid flows through the medium along a certain direction. In the case of
isotropic porous media, the off-diagonal terms are null and the diagonal ones assume
the same value. This study will also consider anisotropic media characterised by
a diagonal permeability tensor. In particular, the entries of the non-dimensional
permeability tensor σij =

√
K ij/h are taken to be null if i 6= j, σij = σy if i = j = 2

and σij = σxz otherwise. This choice is quite general since the permeability tensor is
always diagonalizable along the principal directions with real, positive eigenvalues.
We also introduce a characteristic Reynolds number as Reb =Ubh/ν, where ν = µ/ρ
is the fluid kinematic viscosity (µ and ρ being the fluid dynamic viscosity and
density, respectively), h is half the layer to layer distance and Ub the bulk velocity.
The latter is defined as the average of the mean velocity computed across the
whole domain Ub = 1/2(h+ hp)

∫ 2h+hp

−hp
u(y) dy ' 1/2h

∫ 2h
0 u(y) dy, with hp either

set to zero when the wall is solid, or 0.2h in the porous wall case (Breugem
et al. 2006). This choice facilitates the comparison with the canonical solid wall
case since the contribution to the flow rate from inside the porous layer is almost
negligible as the velocity magnitudes inside the layer are of the order of 10−4 of
the bulk velocity. In the continuum limit, the flow of an incompressible viscous
fluid through the whole domain that includes the porous layers, as sketched in
figure 1(a), is governed by the Navier–Stokes equations. However, within the porous
media, the imposition of the boundary conditions on the highly complex solid matrix
and the related resolution requirements make this direct approach almost infeasible.
To overcome these difficulties, Whitaker (1969, 1986, 1996) proposed to model
only the large-scale behaviour of the flow in the porous medium by averaging the
Navier–Stokes equations over a small sphere, of volume V and radius r, as illustrated
in figure 1(b). The introduction of the velocity field splitting (i.e. separation of large
and small scales) and the application of the space averaging operator to the Navier
Stokes equations leads to the so-called volume-averaged Navier–Stokes (VANS)
equations. Rosti et al. (2015) have derived a specific form of the VANS equations
when the hypothesis of isotropic porous medium, negligible fluid inertia and scale
separation (i.e. `s∼ `f� r�Lp, `f and `s being the smallest scales of the fluid and the
solid phase, and Lp the characteristic thickness of the porous layer) are introduced.
The extension of this formulation to anisotropic porous media characterised by a
permeability tensor of the form described above can be easily derived following the
formal process introduced in Rosti et al. (2015). The resulting set of VANS equations
tailored to this specific case reads as:

∂ 〈u〉s

∂t
=−ε∇ 〈p〉f +

1
Reb
∇

2
〈u〉s −

ε

Reb

(
〈u〉s i
σ 2

xz

+
〈v〉s j
σ 2

y

+
〈w〉s k
σ 2

xz

)
, ∇ · 〈u〉s = 0,

(2.1)
where i, j and k are the unit vectors in the three coordinate directions. Equations
(2.1) are obtained introducing two averaging operators over the volume of fluid Vf
contained within the elemental porous volume V: the superficial volume average
〈φ〉s = 1/V

∫
Vf
φ dVf , and the intrinsic volume average 〈φ〉f = 1/Vf

∫
Vf
φ dVf (φ is

any fluid variable). The first average is linearly related to the second via the porosity
value i.e. 〈φ〉s = Vf /V 〈φ〉f = ε 〈φ〉f . Because of the incompressible character of the
flow, the superficial volume average is used for the velocity field, while the intrinsic
volume average is preferred for the pressure, being directly related to experimental
values (Quintard & Whitaker 1994; Whitaker 1996). Equations (2.1) encompass both
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Turbulent channel flow over an anisotropic porous wall 385

the solid and the fluid phase that are discriminated by the porosity value. To close
the formulation, we also need to introduce a proper treatment of the porous–fluid
interface. For a uniform porous medium we require pressure and velocity continuity at
the interface, while the shear stress may show a jump at the interface (Ochoa-Tapia &
Whitaker 1995). The magnitude of the jump discontinuity is controlled by a prescribed
parameter τ that ultimately depends on the type of porous material considered and
the texture of the solid interface (Ochoa-Tapia & Whitaker 1998). The value of τ
measures the transfer of stress at the porous/fluid interface (Minale 2014a,b): τ = 0
represents the situation in which the stress carried by the free flowing fluid is fully
transferred to the fluid saturating the porous matrix, while non-zero values prescribe
the portion of stress that can be held by the solid matrix at the interface. Rosti et al.
(2015) have found that positive values of τ increase the slip velocity and decrease
the Reynolds stresses at the interface, while zero and negatives values produce a
drag increase that weakly depends on the value of τ itself. In this work, it will
be assumed that τ = 0, as a representative condition in which no drag-reducing
benefits are obtained (i.e. τ = 0 produces a drag increase, when isotropic media are
considered). Using the mentioned assumptions, the momentum transfer conditions
(Ochoa-Tapia & Whitaker 1995) at the interfaces (y= 0 and y= 2) reduce to

u= 〈u〉s, p= 〈p〉f ,
(
∂u
∂y
−

1
ε

∂〈u〉s

∂y

)
i +
(
∂w
∂y
−

1
ε

∂〈w〉s

∂y

)
k= 0. (2.2a−c)

It is worth noting that, imposing τ = 0 guarantees a general validity of the jump
boundary condition (Minale 2014a,b). Moreover, the jump free condition on the shear
stress that we have adopted corresponds to the one used by Minale. The validity of
the latter has been experimentally verified by Carotenuto et al. (2015). Finally, the
outermost portions of the porous layers are bounded by impermeable walls where
no-slip and impermeability conditions are applied.

The governing equations are conveniently made independent of pressure and
reformulated in terms of wall-normal velocity and vorticity, v and η (Kim, Moin &
Moser 1987). The derivation of the VANS in the poloidal–toroidal setting for the
considered anisotropic medium can be easily obtained following Rosti et al. (2015).

2.1. Numerical discretisation and simulations parameters
The discrete counterpart of the governing equations (2.1) and the interface conditions
(2.2) are numerically tackled using a modified version of the code used for obtaining
the results presented in Rosti et al. (2015). In what follows we shall give a short
summary of the main numerical features of the code. Readers interested in further
detail can refer to Rosti et al. (2015). The governing equations are discretised in a
box that is doubly periodic in the streamwise, x, and spanwise, z, directions. The
spatial discretisation is spectral in the (x, z) planes using Fourier series while in the
wall-normal direction, fourth-order compact finite-difference schemes are used. The
time discretisation is based on a third-order Runge–Kutta scheme for the nonlinear
convective terms, which are computed in physical space using dealiasing in (x, z)
according to the 2/3 rule, and on an implicit Crank–Nicolson scheme for the viscous
and Darcy terms. All the results that will be presented have been obtained on a
single computational box which size on the (x, z) plane is [4πh× 2πh]. The periodic
directions have been discretised using 256× 256 Fourier modes before dealiasing. In
the wall-normal direction, 150 grid points are used in the fluid region while 75 nodes
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386 M. E. Rosti, L. Brandt and A. Pinelli

are employed in each porous slab. In the (x, z) planes the chosen discretisation in wall
units (indicated by the superscript +) leads to a spatial resolution of 1x+ ≈ 8.8 and
1z+≈ 4.4. The wall-normal resolution 1y+ varies from 0.16 by the interface to 4.1 in
the centreline region. Here the viscous wall units are defined using a friction velocity
uτ =
√
τtotal/ρ, with τtotal the total stress, i.e. the sum of the viscous and the Reynolds

stress evaluated at the fluid/porous interface (Breugem et al. 2006). Using uτ as a
velocity scale, we define the friction Reynolds number as Reτ = uτh/ν. Although
the size of the computational domain and the spatial resolution are comparable to
those employed by Kim et al. (1987) at a similar bulk Reynolds number in a solid
wall plane turbulent channel flow, a further assessment of their adequacy has been
made a posteriori. All the simulations have been initialised from the same field
obtained from the DNS of a fully developed turbulent channel flow with solid walls.
Initially, the simulations with porous layers are advanced in time until the flow
reaches a statistical steady state. From this moment, the calculations are continued
for an interval of 600h/Ub time units, during which 120 full flow fields are stored
for further statistical analysis. To verify that the time interval was sufficiently long to
accumulate statistically converged data, we have systematically compared sequences
of first- and second-order statistics, sampled during the integration time, to guarantee
a final satisfactory convergence.

As already mentioned, all the simulations were carried out at the same bulk
Reynolds number Reb= 2800. In practice, we have considered flows sharing the same
flow rate, thus facilitating the comparison with the baseline solid wall case and also
allowing us to have a direct measurement of the total drag from the required mean
pressure drop. The low value of the considered Reynolds number does not allow for
an analysis of cases with a clear scale separation, however it still provides a valuable
insight into the effect of the porous layers on the near-wall flow. As discussed
by Rosti et al. (2015), when varying Re (at least within a range of moderate to
low values), the average flow variables near the interface still scale with viscous
units provided that the permeability values are adapted to match the value of the
porous Reynolds number ReK =

√
K̃uτ/ν (K̃ is a measure of the magnitude of the

permeability tensor, K̃ = max(σxz, σy)). Apart from the Reynolds number, the other
parameters that are kept invariant throughout all the simulations are: the porosity of
the slabs, which is supposed to be homogeneous, and the width of the porous layers
hp. In particular, we have chosen an intermediate value for the porosity (i.e. ε= 0.6),
because its impact on the flow field is marginal as compared to the effects of the
permeability variations (Rosti et al. 2015). We also have selected a porous layer
thickness (hp = 0.2h) which is large enough to host a wide region where Darcy’s
regime is verified (i.e. the transition region from the interface into the porous layer is
small compared to the total thickness). Table 1 summarises the parameters defining
all the simulations that have been carried out. Starting from the baseline case, denoted
by Iσ ↓, we have studied the effects of increasing permeability in the wall-normal
(Aσxz ↓ σy ↑), wall-parallel (Aσxz ↑ σy ↓) and in all directions (Iσ ↑). We have also
studied the effect of anisotropy, by varying the value of the ratio ψ = σxz/σy. In
particular, we have considered cases with permeability values assigned as σxz = aσ
and σy = σ/a, where σ is the value of permeability of the isotropic case, and a is a
non-dimensional constant set to values of 1/4 (Aσxz ↓ σy ↑), 1 (Iσ ), 4 (Aσxz ↑ σy ↓), 8
(Aσxz ↑↑ σy ↓↓) and 16 (Aσxz ↑↑↑ σy ↓↓↓).

It is worth mentioning that the highest values of the permeability are bounded by
a maximum limit to guarantee that the inertia effect can be neglected both in the
VANS equations and in the jump condition, equations (2.1) and (2.2), respectively.
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Turbulent channel flow over an anisotropic porous wall 387

Case 103 σxz 103 σy ψ Reτ DR % ui

Iσ ↓ 0.2500 0.2500 — 181 −3 0.0029
Iσ 1.0000 1.0000 1 182 −6 0.0090
Iσ ↑ 4.0000 4.0000 — 188 −12 0.0384

Aσxz ↓ σy ↑ 0.2500 4.0000 0.0625 198 −21 0.0034
Aσxz ↑ σy ↓ 4.0000 0.2500 16 177 1 0.0336
Aσxz ↑↑ σy ↓↓ 8.0000 0.1250 64 171 8 0.0632
Aσxz ↑↑↑ σy ↓↓↓ 16.0000 0.0625 256 164 18 0.1149

TABLE 1. Summary of the DNS performed at a fixed bulk Reynolds number equal to
Re= 2800 and with different porous layers, all with height 0.2h and porosity ε= 0.6. The
columns report the value of the wall-parallel σxz and wall-normal σy permeabilities, the
anisotropy parameter ψ = σxz/σy, the friction Reynolds number Reτ , the drag reduction
percentage DR % and the mean velocity at the interface ui, respectively.

The validity of the former has been guaranteed by verifying that the ratio between
Forchheimer’s coefficient (estimated via Ergun’s formula) and Darcy’s coefficient
remains small. Tilton & Cortelezzi (2008) showed that Darcy’s closure remains
acceptable up to a permeability σ = 0.02 which is above our maximum value. In
particular, in all of our simulations the ratio between the two terms remains below
10−3, thus rendering inertial effects negligible in the porous layers. The validity
of the adopted interface condition is implicitly ensured by imposing continuity of
the stresses, i.e. τ = 0. In this case, as discussed by Tilton & Cortelezzi (2008),
inertial effects can be neglected in the interface shear matching condition without any
limitation. As already mentioned, this choice turns out to be equivalent to the one
proposed by Minale (2014a,b), which has been experimentally verified by Carotenuto
et al. (2015).

2.2. Code validation
To verify that the proposed formulation can be employed to tackle the simulation
of turbulent flows over anisotropic porous media, we compare the predictions of the
present method with the DNS-LMB (lattice Boltzmann method) results of Kuwata &
Suga (2017). In particular, we consider the case of a plane channel that is bounded by
an impermeable wall on one side and exposed to a porous medium on the opposite
side. The porous medium is quasi-impermeable in the xz plane (i.e. we set the
in-plane, non-dimensional permeability σxz = 10−6 to avoid a division by zero) and
has a wall-normal permeability equal to σy = 0.036. The porosity of the medium is
set to ε= 0.56. The bulk Reynolds number is set to 1775 corresponding to a friction
Reynolds number of Reτ = 111. Figure 2(a) shows the mean velocity profile, while
the right (b) reports the distribution of the velocity fluctuations as a function of the
wall-normal coordinate. An overall good agreement between the present solution,
obtained by the volume averaged (2.1), and the reference solution of Kuwata &
Suga (2017) obtained using a direct wall-resolving numerical simulation is evident.
It is worthwhile mentioning that this validation proves that the overall formulation
that includes the presented VANS (2.1) and the interface jump condition (2.2) has
the potential to reproduce to a high degree of fidelity in regard to the behaviour of
turbulent flows over anisotropic media. It also shows that the numerical algorithm
chosen for the discretisation of the above equations produces reliable results.
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FIGURE 2. (Colour online) (a) Mean streamwise velocity profile and (b) root mean square
velocity profiles in wall units as a function of the wall-normal distance y. The figure shows
the comparison of our numerical results (solid lines) with those reported by Kuwata &
Suga (2017) (symbols). The blue, red and black colours are used for streamwise, wall-
normal and spanwise direction component, respectively.
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FIGURE 3. (Colour online) (a) Symbolic representation of the friction Reynolds number
Reτ as a function of the permeability in the wall-normal σy and wall-parallel directions
σxz (axis not to scale). The sketches in (a) represent conceptual arrangements of porous
material of various textures. (b) Profile of the drag reduction (black line) and the mean
streamwise velocity ui at the interface (grey line) as a function of ψ ; blue, green, red,
orange and magenta symbols are used for the cases Aσxz ↓ σy ↑, Iσ , Aσxz ↑ σy ↓, Aσxz ↑↑

σy ↓↓ and Aσxz ↑↑↑ σy ↓↓↓, respectively.

3. Results
We start by considering the effect of the wall-normal and wall-parallel permeabilities

on the mean friction coefficient. The friction Reynolds numbers Reτ , reported in
figure 3(a) and in table 1 (Reτ = 178 in the reference, impermeable case) grows
to 181 (Iσ ↓) and 188 (Iσ ↑) in the isotropic cases when permeability is increased.
The two anisotropic cases have instead a different behaviour: when the wall-normal
permeability is greater than the wall-parallel one (Aσxz ↓ σy ↑), the friction Reynolds
number further increases to 198, while on the contrary, when the wall-parallel
component increases and the wall-normal reduces (Aσxz ↑ σy ↓), we recover a value
close to the impermeable case (i.e. 177). Note that, the two anisotropic cases and Iσ ↑
have the same permeability magnitude; from their comparison we can observe that
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lowering σy or σxz produces opposite effects on the Reτ of almost the same amplitude.
When the degree of anisotropy is increased (i.e. higher ψ values) a stronger drag
reduction is observed (note that figure 3(a) also provides conceptual sketches of the
considered porous materials). This effect is also visible in figure 3(b), that shows
the percentage variation of the total drag DR as a function of ψ . Here, the drag
reduction variations are quantified by the ratio DR= (G0 − G)/G0, where G and G0

are the mean pressure drops in the streamwise direction in the porous and solid wall
cases, respectively. It is noted that the drag reduction increases monotonically with ψ ,
reaching a value of approximately 20 % within the considered range of permeability
ratios (i.e. ψ values that can be safely modelled with Darcy’s approach). The most
striking feature of this graph is that the recorded drag reduction does not show
any saturation level and that it could probably reach even higher values at higher
ψ . This behaviour is remarkable when compared to other passive drag reduction
techniques such as riblets that present a drag reduction saturation with increased
protrusion heights. Figure 3(b) also displays the mean slip velocity at the interface
ui as a function of ψ . Consistently with the behaviour of the variations of the drag
reduction, the mean streamwise velocity on the interface monotonically increases
within the range of considered ψ . Although a direct comparison with the results of
Kuwata & Suga (2016) is not possible (these authors considered the variations of all
porous parameters, i.e. ε and the three components of the permeability tensor), they
also observe a similar behaviour associated with the increase of σy, i.e. the friction
Reynolds number Reτ increases with σy.

Figure 4(a) shows the profiles of the difference of the mean velocity and the
interface velocity (i.e. 1u= u− ui), normalised with the friction velocity, versus the
logarithm of the distance from the interface measured in wall units. The baseline,
impermeable turbulent channel flow shows the presence of the three classical regions:
the viscous sublayer for y+ < 5 where the variation of u+ is approximately linear is
followed by the log-law region, y+ > 30. In between the two, a buffer layer region
(between y+ ' 5 and y+ ' 30) is also visible. Figure 4(a), shows that the velocity
profiles from all simulations overlap in the viscous sublayer, depart in the buffer
layer, and reach the equilibrium range with a logarithmic profile. The profiles reveal
an upward shift in the log-law region (with respect to the impermeable walls case) in
the drag-reducing cases (when ψ > 1), and a downward shift when the drag increases.

The wall-normal distributions of the turbulent kinetic energy K= u′iu′i/2 are shown
in figure 4(b) together with the reference impermeable case. The profiles are strongly
affected by the porous walls, especially close to the interface, where they take on
non-zero values due to the relaxation of the no-slip condition on the permeable walls:
a decrease in drag is accompanied by an increase of K at the wall. Increasing the
anisotropy parameter ψ also produces higher peaks with the maxima locations shifting
towards the wall. Those increased values can be attributed to the amplification of
the streamwise velocity fluctuations associated with an enhancement of the streaky
structures above the walls, which will be further discussed.

Figure 4(c) displays the profiles of turbulent dissipation rate ε = µ∂ju′i∂ju′i. The
cases at ψ > 1 are characterised by lower values of ε both at the wall and within a
wide interior region. A different behaviour is observed in the other cases characterised
by a drag increase (ψ 6 1). Consistently with the decrease/increase of streamwise
velocity fluctuations at the wall, decreased/increased viscous dissipations suggest a
reduced/increased fragmentation of the flow structures (i.e. suppression/enhancement
of streaky structure). In all the cases, both the turbulent kinetic energy K and the
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FIGURE 4. (Colour online) (a) Comparison of the streamwise mean velocity profile u over
rigid (+ symbols) and porous walls (solid lines) in wall units. Wall-normal profiles of
(b) the turbulent kinetic energy K and of (c) the turbulent dissipation ε. (d) The Lumley
triangle on the plane of the invariants −II and III of the Reynolds stress anisotropy tensor;
the bounding grey line shows the region of admissible turbulence states, amid the extremal
states of one-component turbulence (1C), two-component turbulence (2C), axisymmetric
turbulence (axi), two-component axisymmetric turbulence (2C axi) and isotropic turbulence
(iso). The bullets correspond to y= h and the square to y= 0. The colour scheme in all
the panels is the same as in figure 3.

dissipation ε drop to zero very quickly when entering the porous layer where the
velocity fluctuations are mainly damped by the porous material itself.

The variations in the near-wall flow topology are clearly observable in figure 5(a),
which displays instantaneous iso-contours of the streamwise component of the velocity
at the interface for the cases of anisotropic (ψ = 0.0625 and ψ = 256) and isotropic
porous layers. In all cases the high and low velocity regions are the footprints of the
streaky pattern of the flow in the buffer layer. However, drag-decreasing conditions
show much wider and coherent structures, while the drag-increasing case shows much
less coherence with largely fragmented spotty contours. The break up of coherent
close-to-the-wall structures induced by the presence of isotropic porous walls, or even
by riblets at high protrusion heights, has been observed in a number of other studies
and often related to the inward surge of large spanwise rollers. These are caused
by a Kelvin–Helmholtz instability induced by the presence of an inflectional point
in the mean velocity profile (Jiménez et al. 2001; García-Mayoral & Jiménez 2011)
ultimately due to the relaxed condition on the vertical velocity component at the
wall. At higher ψ values, the porous interface becomes almost impermeable and the
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FIGURE 5. (Colour online) (a) Contours of instantaneous streamwise velocity fluctuation
at the interface y = 0 (flow going from bottom to top). The colours range from −0.4ui
(blue) to 0.4ui (red). (b) Top: streamwise velocity autocorrelation as a function of x+; (b)
bottom: wall-normal velocity autocorrelation as a function of z+. The solid and dashed
lines correspond to positive and negative values, ranging from −0.1 to 0.9 with a step
of 0.2. The colour scale ranges from −0.2 (blue) to 1.0 (red). In each block, the figures
refer to the drag-increasing Aσxz ↓ σy ↑, isotropic Iσ and drag-reducing Aσxz ↑↑↑ σy ↓↓↓

cases (ψ increases from left to right).

appearance of spanwise rollers, which are the eigenfunctions of the most unstable
modes, is now prohibited (Jiménez et al. 2001).

The effect of the porous layer anisotropy on the flow coherence can be quantified
by looking at the two-point velocity autocorrelation functions corresponding to the
flow realisations of figure 5(a). The top row in figure 5(b) shows the distribution
in the x–y plane of the streamwise velocity component autocorrelation along the
streamwise direction x. In the case ψ = 1 (the isotropic case, shown in the central
panel), the correlations appear to be very similar to the baseline, solid wall case with
highly elongated streaky structures that alternate at a canonical spanwise distance
(i.e. 1z+ ' 100+) (Kim et al. 1987). When the anisotropy parameter ψ is increased,
the correlation length increases monotonically and the velocity streaks penetrate
more and more into the porous layer (see the rightmost panel) also revealing a less
meandering shape (see figure 5). On the contrary, in the drag-increasing scenario
(i.e. ψ < 1) the x-wise correlations drop to zero more rapidly (see the leftmost panel)
confirming a break-up of the streamwise coherence. The panels in the second row
of figure 5(b), showing the spanwise autocorrelation function of the normal velocity
component, reveal that in the drag-increasing scenario a long spanwise correlation
length of the normal velocity establishes in the interface region. The appearance
of these weak but coherent upwash and downwash motions may be related to an
incipient emergence of the already mentioned spanwise rollers that lift and splash the
velocity streaks by the wall thus disrupting their coherence (Jiménez et al. 2001).

In summary, when ψ > 1 (i.e. high wall-parallel and low wall-normal permeability),
the flow is strongly correlated in the streamwise direction delivering a net drag
decrease. On the other hand, when ψ < 1 (i.e. high wall-normal and low wall-
parallel permeability), the flow tends to become more isotropic because of the
fragmentation of the elongated streamwise streaks and the eventual formation of
new spanwise coherent structures. This type of phenomenon has been reported by
other authors dealing with turbulent flows bounded by an isotropic permeable wall
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(Jiménez et al. 2001; García-Mayoral & Jiménez 2011; Rosti & Brandt 2017).
Figure 4(d) is a further evidence of the flow coherence modifications induced by
the variations of the porous media permeability. In the diagram, the flow topology is
clearly indicated by the shape of Lumley’s invariant maps computed for the isotropic
layer and the most drag-reducing and most drag-increasing anisotropic cases. While
the map for the ψ > 1 case (i.e. the drag-reducing condition) shows a trend towards
a one-component behaviour as the interface is approached, the ψ 6 1 cases show a
modification towards a two-components turbulence behaviour.

4. Conclusion

We have numerically investigated the effect of the porous media anisotropy on a
plane turbulent channel flow bounded by porous layers. For a fixed, low Reynolds
number and an intermediate porosity value, the flow inside the fluid region is tackled
via a standard DNS, while a volume-averaged approach is employed inside the
porous layer. The two sets of equations are coupled by imposing velocity and stress
continuity at the interface. We showed that total drag over an anisotropic porous
wall can be reduced or enhanced at least as much as 20 % by varying the ratio of
the parallel to the wall and normal permeabilities ψ . A drag-reducing behaviour is
achieved whenever ψ > 1, while a drag increase is recorded for ψ 6 1. Differently
from other passive control strategies (i.e. riblets), the drag reduction does not seem to
saturate in the range of ψ values that we have considered (in the case of riblets drag
reduction saturates with the protrusion height). This behaviour suggests that a porous
material exhibiting high ψ values, e.g. a grid of rods parallel to the streamwise and
spanwise directions (à la millefeuille), may have a potential for even larger drag
reductions. Such materials would reduce the wall-normal fluctuations while providing
an enhanced slip velocity, thus leading to an overall decrease of the total interface
stress. The reduced permeability also prevents the emergence of spanwise rollers
induced by an inflectional instability of the mean velocity profile at the interface.
On the other hand, porous materials with high wall-normal and low wall-parallel
permeabilities, e.g. a carpet of wall-normal rods, are characterised by an increased
turbulence isotropy in the near-to-the-interface region with a consequent disruption
of the streamwise coherence probably due to the emergence of alternating spanwise
correlated structures also leading to an increased drag.

The use of anisotropic porous coatings may open new ways to manipulate wall-
bounded turbulence. The main advantages of this approach is twofold: it is a passive
technique that does not require the input of any external power, and it provides a
self-regulating effect: the structure of the close-to-the-wall turbulence and in particular
the drag reduction can be conserved if a change in the outer Reynolds number is
compensated by a rescaling of the porous Reynolds number via a proper permeability
scaling.

Although a practical design of the solid matrix that would deliver permeability ratios
such as those used here has not been envisaged yet, the present results complement
the recent ones by Kuwata & Suga (2017) who have modelled the anisotropy of the
medium by stacking cubic open elements. The most important result of the present
research, not covered by the mentioned work, is a conceptual demonstration of the
possibility of assembling a porous medium that can deliver large drag reductions in
internal and external turbulent flows.
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