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Abstract

We perform immersed-boundary-method numerical simulations of oscillatory shear flow of suspensions of mono-disperse
non-colloidal rigid spherical particles in a Newtonian liquid from the dilute to the concentrated regime. Both small and
large amplitude oscillatory shear flow (SAOS and LAOS, respectively) are studied and the effects of particle concentration,
fluid inertia, particle-to-fluid density ratio, and deformation amplitude on the measured apparent viscoelastic moduli of
the suspensions are quantified. In the SAOS regime, a non-zero storage modulus G’ is always detected: inertia acts as an
apparent elasticity. G’-values significantly change with inertia, but depend on the volume fraction of the solid phase only
for suspensions of particles denser than the fluid. On the other hand, the loss modulus G” increases with both inertia and
particle concentration. In the LAOS regime, the moduli are only weakly dependent on the deformation amplitude for a dilute

suspension, whereas non-monotonic variations are observed at high concentrations.
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Introduction

The term ‘suspension’ describes a multiphase fluid system
where solid particles are suspended in a liquid, often called
a ‘solvent’ or a ‘matrix’. Suspensions have been extensively
studied over the last century due to their relevant role in
many technological processes, e.g. those occurring in oil,
cement, paper, or food industries (see, for example, the
review by Mewis and Wagner 2009, and the references
therein). Therefore, the literature on suspension rheology is
vast, with several theoretical, experimental, and numerical
studies.

The most important parameters determining the flow
behaviour of a suspension are the size, shape, and
concentration of the solid fillers and the rheological
behaviour of the suspending liquid. Particle concentration
is usually measured in terms of the volume fraction of
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the suspended phase, ¢, the suspension being identified
as ‘dilute’ when ¢ < 0.05, ‘semi-dilute’ for 0.05 <
¢ < 0.1, and ‘concentrated’ for ¢ > 0.1. Of course,
concentrated suspensions are the most likely to occur
in actual applications (see, for example, the work by
Barnes (2003), and the references therein). Concerning
the suspending liquid, despite the fact that viscoelastic
fluids are important in several technological fields (e.g.
filled polymers, paints, coatings, foods), greater attention
has been devoted in the literature to suspensions with
Newtonian matrices.

The very first work dealing with the rheology of a
suspension of non-colloidal spherical rigid particles in a
Newtonian fluid dates back to the early twentieth century
and is due to Einstein (1911), who theoretically derived that
the shear viscosity of a dilute suspension linearly increases
with ¢ according to the famous law

ns = n(1+2.5¢), ey

with ng the suspension viscosity and n the viscosity of
the suspending liquid. Since then, numerous theoretical,
experimental, and numerical papers have investigated the
rheology of suspensions with Newtonian matrices. A very
recent review of these studies is provided by Tanner (2018).
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Relevant to the work presented here, we mention the
numerical studies by Picano et al. (2013) and Alghalibi
et al. (2018), who considered inertial effects in suspensions
with Newtonian and inelastic non-Newtonian suspending
media up to particle Reynolds numbers of order 10. These
authors report shear-thickening, i.e. an increase of the
suspension viscosity with the shear rate in the inertial
regime (see also Kulkarni and Morris 2008). This is
explained in terms of an increase of the suspension effective
volume fraction related to the asymmetry of the particle-
pair trajectories in the presence of inertia (the formation
of a so-called shadow region). Although the dissipation in
the flow is of viscous origin, inertia affects the suspension
microstructure and thus increases the system effective
viscosity.

Besides viscosity measurements in steady flows, oscil-
latory motions are often used in rheometry in order to
determine the viscoelastic properties of complex fluids. If
the rheometer performs small-amplitude oscillations and
inertia is negligible, the stress in a non-colloidal suspension
with a Newtonian matrix is in phase with the imposed oscil-
latory velocity. In other words, only a non-null loss modulus
is detected, whereas no storage modulus is measured. In the
linear regime, i.e. when the oscillations are ‘small’, the loss
modulus G” of the suspension reads

G = nw(l +2.5¢), 2)

where w is the frequency of the oscillations.

Inertia is neglected in the definition of the fluid material
properties related to oscillatory shear flows, namely, the
storage modulus G’ and the loss modulus G”. Nevertheless,
it might come into play in many practical situations,
especially when low-viscosity fluids and/or high oscillatory
frequencies are considered. If the system is modelled
as inertialess, this could lead to misinterpretation of
the measurements and hence inaccurate predictions. For
instance, Bohme and Stenger (1990) measured non-null
values of the storage modulus G’ in pure Newtonian liquids.

In this paper, we perform numerical simulations to inves-
tigate the effects of inertia on the (in silico) measurements
of the viscoelastic moduli of suspensions of mono-disperse
non-colloidal rigid spheres in a Newtonian fluid, from the
dilute to the concentrated regime. First of all, we study the
effects of inertia acting on suspension volume length scale
on the values of the apparent storage and loss moduli of sus-
pensions of neutrally buoyant spheres. Then, we also study
the effects of micro-inertia, i.e. inertia acting on particle
length scale, by considering suspensions of particles denser
than the suspending fluid. We first study small amplitude
oscillatory shear (SAOS) flow, and then introduce an addi-
tional source of non-linearity by extending the analysis to
the large amplitude oscillatory shear (LAOS) flow regime.

@ Springer

Mathematical model

We consider the system schematically depicted in Fig. 1,
i.e. initially randomly distributed mono-disperse non-
colloidal rigid spheres with diameter D), suspended in
an incompressible Newtonian fluid undergoing oscillatory
shear flow between two counter-sliding parallel plates,
namely, in a plane Couette geometry. Here, x, y, and z
(x1, x2, and x3) denote the streamwise, wall-normal, and
spanwise directions, whereas ux, iy, and u, (u1, uz, and u3)
denote the corresponding components of the fluid velocity
field. The lower and upper moving walls are located at y =
0 and y = H, and move streamwise in opposite directions
with oscillating velocity uy, (t) = (H/2)ypwsin(wt), where
yo is the maximum deformation to which the system is
subjected, w is the oscillatory frequency, and ¢ is time. A
relevant geometrical parameter is the blockage ratio p =
D,/ H, measuring the confinement of the particles. All the
simulations reported in this paper are performed with B =
0.2, as in Picano et al. (2013), Alghalibi et al. (2018), Rosti
and Brandt (2018) among others.

The motion of the fluid is governed by the continuity
and the momentum balance equation in the incompressible
formulation, i.e. the Navier-Stokes equations, that, when
gravity is neglected, read

V.u=0, 3)
ou
p(a—i-u-Vu):V-a—i-f, @)

where p is the fluid density, u is its velocity, o is the Cauchy
stress tensor, and f is a body force used to account for the
presence of the rigid particles. The fluid is assumed to be
Newtonian with the constitutive equation

o = —pl + 29D, (®)]

with p as the pressure, 1 the dynamic viscosity, and D the
strain rate tensor defined as D = (Vu + VuT)/2. The

Fig.1 Schematic picture of a suspension of spherical rigid particles in
a Newtonian liquid undergoing oscillatory shear flow
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motion of the particles is governed by the Newton-Euler
equations. With reference to the generic kth particle, they
read

du,
t 0Py
d
Lok _ 7{ Fox (o - dA + Ty, (6b)
dt 3P

where u,, « is the particle centroid velocity, wp x the particle
angular velocity, d Py denotes the particle boundary, d A
is a differential surface area element, and pp, Z,,, and V,
are the particle density, moment of inertia, and volume,
respectively. In particular, for rigid spheres with radius 7,
Vo = (4/3)7r3 and T, = (2/5) ppVpr3- In addition, ry is
the position vector relative to the particle centroid, ny is the
unit normal vector pointing outwards from the particle, and
F; and Ty are the force and torque acting on the particle
due to particle-particle and particle-wall interactions. We
point out that the density ratio of the suspension pp/p is
considered equal to 1 except where otherwise specified.

The Navier-Stokes and Newton-Euler equations reported
above are supplied by the prescribed velocities on the
channel sliding walls, at y = 0 and y = H, and by
periodic boundary conditions coupling the channel faces at
x = 0and x = L and those at z = O and z = W.
The no-slip/no-penetration conditions are imposed on the
particle boundaries by the immersed boundary method, as
mentioned below. At the initial time, the fluid is considered
still and laden with randomly distributed still particles.

The Stokes number can be defined as St = ,orga)/ n.
According to Bird et al. (1987), in a pure Newtonian liquid,
inertial effects are negligible when St'/? is small compared
with unity.

Numerical method

The time integration of Eqgs. 3—6a is based on an explicit
fractional-step method (Kim and Moin 1985), where all
the terms are advanced with the third order Runge-Kutta
scheme. The governing differential equations are solved
on a staggered grid using a second order central finite
difference (FD) scheme.

In order to couple the motion of the fluid and the
particles, we employ the immersed boundary method (IBM)
proposed by Breugem (2012) and used in several previous
studies on rigid particle suspensions (see, for example,
Picano et al. 2013; Alghalibi et al. 2018). The present IBM
is based on the direct-forcing approach,

in which the predicted velocity is corrected using an
additional term so as to enforce that the fluid velocity on the
surface of the particles matches the velocity of the particles.

In particular, the fluid-solid interaction force reads for the
generic kth particle

Upr — Ui

At ™

For=
where the capital letter is used to indicate that the quantities
are computed on the particle surface, i.e. on the nodes of
a Lagrangian mesh used to define the particle surface. In
the previous relation, Uy is the interpolated fluid velocity
on the Lagrangian points on the particle surface, Up ; the
desired particle velocity in the Lagrangian points (Upx =
Up i + @p i X Iy), and At the time step. The interpolation
and spreading between the two grids are performed using
the three-dimensional regularized delta function centered on
the Lagrangian points first proposed by Roma et al. (1999).

When the distance between two particles is smaller
than one Eulerian grid cell, the lubrication force is
under-predicted by the IBM due to the finite grid
size. To compensate for this inaccuracy and to avoid
computationally expensive grid refinements, a lubrication
correction model based on the asymptotic analytical
expression for the normal lubrication force between spheres
is used Jeffrey (1982). A soft-sphere collision model with
Coulomb friction takes over the interaction when the
particles touch. The restitution coefficients used for normal
and tangential collisions are 0.97 and 0.1, respectively, with
the Coulomb friction coefficient set to 0.15. More details
about these models can be found in the paper by Costa et al.
(2015).

A complete description of the numerical scheme and a
validation campaign are reported in Izbassarov et al. (2018).
In this paper, mesh convergence is achieved with elements
of size of 3.125 x 10_2rp, whereas the surface of each
particle is resolved through 872 Lagrangian points.

Results
Small amplitude oscillatory shear flow

The xy component of the stress in a suspension undergoing
oscillatory shear flow with amplitude y and frequency w
can be expressed as follows (Macosko and Larson, 1994):

+00

oxy () = ¥ Z(G}(cos(kwt) + GYsin(kor)). 8
k=1

In the SAOS regime, i.e.,when yq is small, the coefficients
G). G/, k = 2,..,+00, are negligible with respect to
G, GY; thus, the signal is periodic with one harmonic and
the stress can be written as

oxy (1) = y0(G'cos(wt) + G"sin(wt)), 9)
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with G’ as the storage modulus and G” the loss modulus of
the suspension. It is worth remarking that such a definition
of the moduli is valid only in the SAOS regime, whereas
different definitions apply in the LAOS regime (see below).
The condition of SAOS flow implies a linear relationship
between the applied strain and the stress response. In other
words, in the SAOS regime,

O'xy(t)|2y0 _ ny(t)|)/o ’ (10)
2y0 Y0

which, in turn, implies (G', G")l2,, = (G', G")ly,. We

have verified that this condition is fulfilled for 3y = 0.005;

thus, the results in this Section are obtained with this value

of yp.

In Fig. 2, we display the spatial distribution of the
particles at tw = 1.0 in a suspension with ¢ = 0.15
oscillating at 9 = 0.005 and St'/? = 0.5. In panel a, we
also display contours of the fluid dimensionless x-velocity
ux/(Hypw) on the channel moving walls, the xy-plane at

(a)

" ux/(Hyow)

uy/(Hyow)
0.0035

L0.002
-0.001
fo
_-0.001
-0.002

[-0.0035

Fig.2 Particle distribution at tw = 1.0 for a suspension with ¢ = 0.15
oscillating at y = 0.005 and St'/2 = 0.5. a Maps of the dimensionless
x-component of the fluid velocity on the moving walls, the xy-plane
at z = 0, and the yz-plane at x = 0. b Maps of the dimensionless y-
component of the fluid velocity on the moving walls, the xy-plane at
z =0, and the yz-plane at x =0

@ Springer

z = 0, and the yz-plane at x = 0, showing that the linear
velocity profile that would appear in an inertialess pure
Newtonian liquid is here perturbed both due to appreciable
inertia (note that St'/2 = 0.5), which retards the adaptation
of the velocity profile in the bulk of the channel to the
velocity oscillations imposed at the channel walls, and to the
presence of the particles. Panel b of the same figure depicts
maps of the fluid dimensionless y-velocity uy/(Hypw) on
the same planes as above, to highlight the fluid velocity
perturbations caused by the presence of the particles.

In Fig. 3, we report the temporal history of the shear
stress in a suspension oscillating at yp = 0.005 and
St'/2 = 0.5 for four values of the particle volume fraction
from the dilute to the concentrated regime, namely, ¢ =
0.01, 0.05, 0.15,0.25. On the horizontal axis, the time
is made dimensionless with the oscillatory frequency o,
whereas, on the vertical axis, oxy is normalized by the loss
modulus of the pure suspending liquid nw.

For every ¢ considered, the shear stress undergoes a brief
transient, before reaching a periodic regime. In addition,
it can be observed that the maximum (respectively, the
minimum) stress level increases (respectively decreases)
with increasing ¢ and that the stresses corresponding to the
different volume fractions are not synchronous; indeed, the
greater ¢, the more the stress curve ‘lags’ with respect to the
applied deformation.

The vertical grey dashed line marks a dimensionless time
equal to 4m, i.e. the time needed to the moving walls to
perform two oscillatory cycles. Such a time is shown here to
be sufficient for the system to reach the periodic regime; for
the analysis, we therefore perform regression of the stress
data using Eq. 8 starting from the stress value at tw = 4.

The results of this regression procedure, yielding the
moduli introduced above and applied to the different oy (7)
time-traces obtained from the simulations at varying St, are
reported in Fig. 4. In panel a, the dimensionless storage

0.02

$=0.01
$=0.05
$=0.15
=02
0.01 4 =025
g
< 0001
b
-0.01
-0.02

30

to

Fig.3 Shear stress in a suspension oscillating at y = 0.005 and St'/?
= 0.5 for 4 different values of the volume fraction ¢ as indicated in the
legend
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Fig.4 a Dimensionless storage modulus G’/ (nw) and b loss modulus
G’ /(nw) as a function of the particle volume fraction ¢ for a
suspension subjected to SAOS flow at yp = 0.005. The data pertain the
different values of St'/? indicated in the legend. The empty symbols
represent the theoretical values for a single-phase fluid given by
Bohme and Stenger (1990)

modulus of the suspension, G'/(nw), is displayed as a
function of the particle volume fraction ¢ for the different
values of the square root of the Stokes number, St'/2, under
investigation. As mentioned above, this dimensionless
number quantifies the role of inertia. The data in the figure
show that for a suspension of rigid particles in a Newtonian
liquid, a non-zero storage modulus is always detected when
St is not zero. In particular, G’ significantly increases with
St, whereas it is substantially independent of the particle
concentration. In other words, the value of St dictates the
level of the modulus G’, which is almost constant with ¢
once St is fixed. This suggests that corrections for inertia
may be more easily obtained from measurements at a single
volume fraction. It is also noteworthy that the plateau values
of G’ are almost coincident with the theoretical prediction
for a single-phase fluid reported by Bohme and Stenger
(1990), which is represented on the vertical axis by empty
symbols. We point out that, for a single-phase fluid in the

presence of inertia, one can obtain analytically the flow
inside the Couette cell and the storage modulus is

nwy —ipwH?/n
sinh(/ipwH?2/n) |~

with i the imaginary unit.

The fact that when inertia is non-negligible, the
oscillatory measurement ‘reads’ a non-null value of the
storage modulus even in Newtonian fluids/suspensions can
be interpreted in terms of inertia acting as an apparent
elasticity. Indeed, an analogy can be drawn between inertia
and elasticity, because both quantities are related to the idea
of ‘memory’. In oscillatory flows of viscoelastic fluids, the
Deborah number can be defined as the ratio of the liquid
relaxation time A and the flow characteristic time ™!, i.e.
De = Aw. In the limit of vanishing De, fluid relaxation is
immediate as compared with the process characteristic time,
so no elastic effects can be observed; on the other hand, at
non-vanishing De-values, the fluids preserve a ‘memory’ of
its stress state; thus, it is elastic. In the case of a Newtonian
fluid in the presence of inertia, the Stokes number is the ratio
between the time scale of momentum diffusion prg /n and

G' =TRe an

[
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Fig. 5 a Dimensionless storage modulus G’/(nw) and loss modulus
G” /(nw) as a function of St'/2 for a suspension subjected to SAOS
flow at yp = 0.005.a ¢ =0.01, b ¢ =0.25
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the flow characteristic time w~!. In the limit of vanishing
inertia, St — 0, momentum diffusion is immediate with
respect to the process characteristic time; thus, only a non-
null loss modulus can detected, whereas, if the diffusion
time is comparable with the oscillatory characteristic time,
velocity oscillations in the bulk of the fluid are not in
phase with the wall motion and the fluid has ‘memory’
of the deformation history. On the other hand, there are
also some differences between momentum transport in the
inertial and the elastic case, which result, e.g. in different
effects of normal stresses on the pressure fields (compare,
for example, the works from Kulkarni and Morris (2008)
and Snijkers et al. (2011)).

In Fig. 5, the dimensionless storage and loss moduli are
plotted against St!/2 for ¢ = 0.01 (a) and ¢ = 0.25 (b),
showing that at low particle concentration there is an inertial
frequency where G’ overlaps with G” at O(St) = 1, even if
there is not a true cross-over as it would occur in viscoelastic
liquids at O (Wi) = 1; on the other hand, this is not observed

‘To J

Glmo)
S}

8
0+o2 . . , .
5
o $=0.01
A $=0.05
B $=0.15
410 =025
2
< 31
© <
o <@ &
2 5]
S} =
v, = 0.005
1 A A 8 (b)
0.0 0.2 0.4 0.6 0.8 1.0
st'2

Fig.6 a Dimensionless storage modulus G’/(nw) and b loss modulus
G” /(nw) as a function of St'/2 for a suspension subjected to SAOS
flow at 9 = 0.005. The data pertain the different values of the volume
fraction ¢ indicated in the legend. The empty symbols represent the
results of the numerical simulations performed by Schaink et al. (2000)
and D’ Avino et al. (2013) in the inertialess case
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Fig. 7 Temporal evolution of the normalized vertical position of the
particles in a suspension with ¢ = 0.15 oscillating at 9 = 0.005 and
St'/2=0.5
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Fig.8 a Dimensionless storage modulus G’/(nw) and b loss modulus
G’ /(nw) as a function of the particle volume fraction ¢ for a
suspension with p,/p = 10 subjected to SAOS flow at yp = 0.005
and St'/2 = 0.5, 1.0
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at high particle volume fraction, where G” always stays
above G’ due to extra dissipation from the particles. The
dimensionless loss modulus of the suspension, G”/(nw),
is displayed in Fig. 4b: this is quantitatively influenced
by both ¢ and St, being an increasing function of both.
Moreover, for any fixed St!/2, the numerical value of G”
clearly approaches the theoretical value

nwy/ —ipwH? /n
sinh(\/ipoH2 /) |’

when the particle volume fraction tends to zero (see the
empty symbols in Fig. 4b).

The values of the linear viscoelastic moduli shown in
Fig. 4 are rearranged and plotted in Fig. 6 as a function
of St'/? for the different values of ¢ under consideration.
Panel a confirms that G’ only depends on St, as the data

G"=1Im 12)

at different ¢ collapse on each other. The data in panel
b also provide an additional validation of our numerical
simulations: indeed, for all the concentration regimes, when
St!/2 tends to zero, the values of G” tend to the numerical
values computed in the inertialess case by Schaink et al.
(2000) by means of Stokesian dynamics and by D’Avino
et al. (2013) with a finite element implementation of the
Stokes equations. The data in Fig. 6b also show that, for
every particle volume fraction, G” is almost constant for
St!/2 below about 0.2, which identifies, then, the threshold
above which inertial effects actually affect the loss modulus
of the suspension.

In the literature, it is well known that, in the presence of
inertia, cross-streamline migration occurs to rigid particles
in sheared Newtonian fluids (see, for example, McLaughlin
1993). As a consequence, inertia is expected to alter the
particle random distribution in the flow cell, since all the

Fig.9 a Shear stress in a | @
suspension at ¢ = 0.25 and 34 & vo =0.005
St'/2 = 0.5 for $3 6% g & 8% $% 0_01
yo = 0.005, 0.1, 1.0. b Lissajous d 3 5 o o S 3 $ : ® v,=0.
curves at ¢ = 0.25 and St'/% = 29[ 3} o & I ? % o |1,=10
0.5 for yo = 0.005, 1.0 | o : 3 ! $ 3
B [ g
:C' L o N ! 1% >
s 0 ' 3 8 2
b>< o 4 Y & : :' O
PR B S G B fo
2 A 1 ¢ Bl , } 1
3 A 4 88 | g 8 p s
© | ¥ ® 4
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particles would be deterministically pushed towards two  play any role for the oscillatory shear flow considered here.
equilibrium heights along the channel gap, thus influencing ~ As an illustrative example, we show in Fig. 7 the temporal
the shear stress in the suspension. However, due to the very ~ evolution of the vertical positions of all the particles in
little amplitude of the oscillations, lateral migration does not  the flow cell normalized over the available space along the

Fig. 10 Temporal evolution of
the normalized vertical positions
of the particles in a suspension
with ¢ = 0.25 oscillating at
St!/2 = 0.5 and ¥ = 0.005 (a),
0.1 (b), 1.0 (¢).
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0.005

channel gap (yp — rp)/(H (1 — B)) in a suspension with

2&20;23.5 ¢ = 0.15 oscillating at yp = 0.005 and St'/? = 0.5. No
00044 ¥, = 0005 \ displacement in the wall-normal direction can be detected

. —— %=0l | / \f \ for any of the particles in the flow cell.
”é ws | % =10 rool \/\\’ In the cases shown and discussed above, G’ does not
~ iy \/ ! depend on ¢: this is probably due to the fact that, for
S Y \\/ v suspensions of neutrally buoyant particles, inertia acting on
Elhaed o\ ' the scale of the suspension volume has always the same
v . l’ \ /4 effect on the apparent elastic modulus of the system. In
0001 1 /\ A // \\ ) L~ Fig. 8, we plot G’ and G” as a function of ¢ at St'/? = 0.5
// \\ I\ \J and 1.0 for a suspension of particles ten times denser than
0.000 Y ‘ ‘ the suspending liquid. In Fig. 8a, it is apparent that in the
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Fig. 11 Temporal evolution of the mean square normalized vertical
displacement of the particles in a suspension with ¢ = 0.25 oscillating
at St'/2 = 0.5 and y = 0.005, 0.1, 1.0

Fig. 12 Temporal evolution of 1.0

dilute regime, the storage modulus is slightly larger than
in the case of a density-matched suspension (see Fig. 4a),
then, when ¢ increases, there is a non-trivial concentration-
dependent effect due to additional inertial contributions
on the scale of the particles. Indeed, at St'/? = 0.5, G’
increases with ¢, whereas it decreases with ¢ at St'/? = 1.0.

the normalized vertical positions

of the particles in a suspension
with ¢ = 0.05 oscillating at

St!/2 = 0.5 and y = 1.0 (a) and
a suspension with ¢ = 0.25
oscillating at St'/2 = 1.0 and g

=1.0(b)
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On the other hand, it can be seen from Fig. 8b that at o, /0 =
10, G” has an analogous behaviour than at pp/p = 1 for
both St'/2 = 0.5 and 1.0, though with larger values.

Large amplitude oscillatory shear flow

In this section, we extend our study to suspensions subjected
to LAOS flow.

Figure 9 a reports the dimensionless shear stress
oxy/(nw) normalised by the oscillatory amplitude yq as a
function of the dimensionless time tw in a suspension with
¢ = 0.25 oscillating at St'/? = 0.5. Values of yy varying
by three orders of magnitude are considered, i.e. yo = 0.005
(SAOS regime), 0.1, and 1.0. It can be inferred from the

data in Fig. 9 that at g 0.1, the system is still in
the SAOS regime, because the red circles pertaining this
amplitude collapse on the black curve pertaining the stress
for y9 = 0.005 (see Eq. 10). The condition on linear stress
in Eq. 10, on the other hand, does not hold for the stress time
traces at Y9 = 1.0 (green diamonds); thus, the system is in
the LAOS regime for this value of the oscillatory amplitude.
As a further proof, we display in Fig. 9b the Lissajous curve
for yp = 0.005, which appears elliptical, and yp = 1.0, which
is no longer elliptical and does not superimpose to the one
at yo = 0.005, even if the discrepancy is not very large.
Such loss of linearity can be investigated by looking
at the temporal evolution of the particle vertical positions
displayed in Fig. 10. As discussed above, no lateral
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Fig. 13 Dimensionless storage modulus G’/(nw) (left column) and
loss modulus G”/(nw) (right column) as a function of the oscillatory
amplitude yp. a Top row: Dilute suspension at ¢ = 0.05, b middle
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migration is observed for small deformations, see data for
yo = 0.005 in Fig. 10a. Conversely, for yo = 0.1, we do
not observe any migration only for some of the particles,
whereas others exhibit oscillations of their vertical position
with the same frequency as the applied shear, yet such
oscillations yield no net displacement in the wall-normal
direction over our observation time (see Fig. 10b.

However, as deduced from Fig. 10c, the particle
vertical positions considerably oscillate and display a net
displacement over several periods for yy = 1.0. Moreover,
both the oscillations and the net wall-normal displacement
appear irregular, which could be ascribed to the complex
hydrodynamic interactions mediated by fluid inertia arising
among the particles while they travel back and forth along
the streamwise direction. Hence, the microstructure of the
system changes in time.

A quantitative measure of the irreversible net displace-
ment of the particles in the wall-normal direction is given
in Fig. 11, where the temporal evolution of the mean square
normalized vertical displacement of the particles is plot-
ted parametric in the oscillatory amplitude. Such quantity
is obtained by computing at each time value the average of
the square vertical displacements of all the particles appear-
ing in the computational domain with respect to their initial
vertical positions. It is apparent that at yp = 0.005 and
0.1, the mean square displacement of the particles is null,
namely, the beads keep their vertical positions along the
cycles, whereas in the non-linear regime, i.e. at yy = 1.0,
it has an irregular oscillatory behaviour (see above) with
its value increasing in time, which indicates an irreversible
displacement of the particles from their initial vertical posi-
tions. Something analogous had been observed by Pine et al.
(2005) for suspensions of rigid particles under steady shear
flow (with no oscillations), yet in that case, since inertia
is negligible, the irreversible displacement of the particles
only occurs above a certain threshold in concentration due
to multiple particle interactions that break the symmetry of
the system.

In order to further elucidate the effects of solid volume
fraction and fluid inertia on the aforementioned oscillations,
we report in Fig. 12 the temporal evolution of the vertical
positions of the particles at yp = 1.0 for ¢ = 0.05, St'/?>=0.5
(a) and ¢ = 0.25, St'/? = 1.0 (b). By comparing Fig. 12a-b
with Fig. 10c, it is apparent that decreasing the solid volume
fraction from 0.25 to 0.05 at yp = 1.0 and St'/? = 0.5 has
no particular qualitative effect on the particle oscillations,
whereas increasing St!/? from 0.5 to 1.0 at yo = 1.0 and
¢ = 0.25 significantly enhances the irregularity of particle
oscillations and their net displacement in the wall-normal
direction; thus, inertia has a much more relevant effect on
the time evolution of the microstructure of the suspension.

We perform a regression of the stress data in Fig. 9
starting from t@w = 4m. However, it should be noted

that, while in the SAOS regime the definition of (and the
procedure to compute) the moduli G’ and G” is univocal
(see Eq. 9), this is not the case in the LAOS regime. Indeed,
the way of determining G’ and G” in LAOS is still debated
(see, for example, the review by Hyun et al. 2011, and
references therein). In this work, we adopt the procedure
proposed by D’Avino et al. (2013), namely, we calculate
the moduli of the suspension by fitting the oscillatory stress
curves through the single-harmonic wave given by Eq. 9
also in the LAOS regime.

In Fig. 13, we display the values of the dimensionless
storage modulus G'/(nw) (left column) and loss modulus
G"/(nw) (right column) as a function of the oscillatory
amplitude yy for three values of the particle volume fraction
¢, namely, ¢ = 0.05 (top row), 0.15 (middle row), and 0.25
(bottom row), for different values of St!/2.

First, we note that large amplitude effects are negligible

for the dilute suspension at ¢ = 0.05, i.e. the moduli
are almost independent of yq for every value of St'/2. For
the medium-concentration suspension at ¢ = 0.15, some
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Fig. 14 Dimensionless storage modulus G’/(nw) (a) and loss modulus
G’ /(nw) (b) as a function of St!/2 for a concentrated suspension at
¢ = 0.25 parametric in the oscillatory amplitude yy
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effects of yy can be seen at St'/2 = 0.5 and 1.0, i.e. the
cases where inertia is more relevant; in particular, both the
moduli have an overshoot at 9 = 1.0, then decrease as the
deformation amplitude is further increased. Such effect is
mostly visible on G” at St'/? = 1.0. Again, an analogy can
be found with viscoelastic systems, since a non-monotonic
behaviour of G”(yp) has been reported by D’Avino et al.
(2013) for LAOS flow of suspensions of rigid spheres in a
viscoelastic liquid. When the solid concentration is equal to
0.25, this behaviour of the moduli is enhanced and it can be
(moderately) seen even at lower inertia, i.e. already at St'/ 2
= 0.22. In summary, since the non-linear effects detected
in LAOS flow are related to the hydrodynamic interactions
among particles mediated by fluid inertia, those effects are
enhanced when hydrodynamic interactions are enhanced,
thus at increasing particle concentration (¢) and inertia (St).
This is also shown in Fig. 14, where the dimensionless
values of the storage modulus and the loss modulus are
plotted for a concentrated suspension at ¢ = 0.25 as a
function of St'/? parametric in the oscillatory amplitude yy.

Conclusions

In this paper, we investigate by means of interface-resolved
numerical simulations the effects of inertia, quantified by
the Stokes number St, on the measured apparent viscoelastic
moduli of suspensions of mono-disperse non-colloidal rigid
spherical particles in a Newtonian liquid from the dilute to
the concentrated regime. We first consider the SAOS flow
and then extend the analysis to LAOS flow.

In the SAOS regime, even if the system is constituted
by rigid particles in a Newtonian liquid, we always detect a
non-zero storage modulus, i.e. viscous momentum diffusion
acts as an apparent elasticity in an inertial flow. An
analogy can be made between momentum diffusion time
scale and elastic time scale, because both are related to
the idea of memory, so that the Stokes number can be
interpreted in analogy to the Deborah number defined for
oscillatory flow of a viscoelastic liquid; indeed, it relates
a relaxation time scale (here, the momentum diffusion
time) and a flow time scale. In particular, G’ significantly
increases with the Stokes number St, whereas it depends
on the particle volume fraction only in suspensions of
particles denser than the fluid. On the other hand, the loss
modulus of the suspension G” increases with both ¢ and
St. When the particle volume fraction tends to zero, our
numerical results approach the theoretical values given by
Bohme and Stenger (1990), whereas, when St vanishes,
they tend to the numerical results computed by Schaink
et al. (2000) and D’Avino et al. (2013) in the inertialess
case.

@ Springer

The amplitude of the imposed oscillations is then
increased to investigate the suspension behavior in LAOS
flow. Our data indicate that the moduli are almost indepen-
dent of the deformation amplitude for a dilute suspension,
¢=0.05. For a suspension of medium concentration, ¢=0.15,
G’ and G” change non-monotonically with the deforma-
tion yp at high St, namely, when inertia is more relevant.
When the concentration is further increased, such effects
are enhanced. In addition, our simulations show that, when
the oscillatory amplitude is large, particles display a wall-
normal net displacement from their initial position due to
hydrodynamic interactions mediated by fluid inertia, which
changes the system microstructure.

In summary, our simulations show that suspended
particles increase the measured loss modulus in small-
amplitude oscillatory shear, while only inertia affects
the storage modulus in this regime. In large-amplitude
oscillatory shear, however, we show that both storage and
loss moduli are increasingly affected when Stokes number
and particle concentration increase due to particle-particle
interactions.
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