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Sedimentation of a dispersed solid phase is widely encountered in applications
and environmental flows, yet little is known about the behaviour of finite-size
particles in homogeneous isotropic turbulence. To fill this gap, we perform direct
numerical simulations of sedimentation in quiescent and turbulent environments
using an immersed boundary method to account for the dispersed rigid spherical
particles. The solid volume fractions considered are φ = 0.5–1 %, while the solid to
fluid density ratio ρp/ρf = 1.02. The particle radius is chosen to be approximately
six Kolmogorov length scales. The results show that the mean settling velocity is
lower in an already turbulent flow than in a quiescent fluid. The reductions with
respect to a single particle in quiescent fluid are approximately 12 % and 14 % for
the two volume fractions investigated. The probability density function of the particle
velocity is almost Gaussian in a turbulent flow, whereas it displays large positive tails
in quiescent fluid. These tails are associated with the intermittent fast sedimentation
of particle pairs in drafting–kissing–tumbling motions. The particle lateral dispersion
is higher in a turbulent flow, whereas the vertical one is, surprisingly, of comparable
magnitude as a consequence of the highly intermittent behaviour observed in the
quiescent fluid. Using the concept of mean relative velocity we estimate the mean
drag coefficient from empirical formulae and show that non-stationary effects, related
to vortex shedding, explain the increased reduction in mean settling velocity in a
turbulent environment.
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1. Introduction
The gravity-driven motion of solid particles in a viscous fluid is a relevant process

in a wide number of scientific and engineering applications (Guazzelli & Morris 2012).
Among these we recall fluvial geomorphology and chemical engineering systems, as
well as pollutant transport in underground water and settling of micro-organisms such
as plankton.

The general problem of sedimentation is very complex due to the high number of
factors on which it depends. Sedimentation involves large numbers of particles settling
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in different environments. The fluid in which the particles are suspended may be
quiescent or turbulent. Particles may differ in size, shape, density and stiffness. The
range of spatial and temporal scales involved is wide and the global properties of these
suspensions can be substantially different from one case to another. Because of these
complexities, our general understanding of the problem is still incomplete.

1.1. Settling in a quiescent fluid

One of the earliest investigations on the subject at hand is Stokes’ analysis of the
sedimentation of a single rigid sphere through an unbounded quiescent viscous fluid
at zero Reynolds number. This led to the well-known formula that links the settling
velocity to the sphere radius, the solid to fluid density ratio and the viscosity of
the fluid that bears his name. Later, the problem was studied both theoretically and
experimentally. Hasimoto (1959) obtained expressions for the drag force exerted by
the fluid on three different cubic arrays of rigid spheres. These relate the drag force
only to the solid volume fraction, but were derived under the assumption of very dilute
suspensions and Stokes flow. The formulae were later revisited by Sangani & Acrivos
(1982). A different approach was instead pursued by Batchelor (1972), who found a
relation between the mean settling velocity and the solid volume fraction by using
conditional probability arguments. When the Reynolds number of the settling particles
(Ret) becomes finite, the assumption of Stokes flow is less acceptable (especially for
Ret > 1). The fore–aft symmetry of the fluid flow around the particles is broken,
and wakes form behind them. Solutions should be derived using the Navier–Stokes
equations, but the nonlinearity of the inertial term makes the analytical treatment
of such problems extremely difficult. For this reason, theoretical investigations have
progressively given way to experimental and numerical approaches.

The first remarkable experimental results obtained for creeping flow were those
by Richardson & Zaki (1954). These authors proposed an empirical formula relating
the mean settling velocity of a suspension to its volume fraction and to the settling
velocity of an isolated particle. This formula is believed to be accurate also for
concentrated suspensions (up to a volume fraction φ of approximately 25 %) and
for low Reynolds numbers. Subsequent investigations improved the formula so that
it could also be applied in the intermediate-Reynolds-number regime (Garside &
Al-Dibouni 1977; Di Felice 1999).

Efficient algorithms and sufficient computational power have become available only
relatively recently, and since then many different numerical methods have been used to
improve our understanding of the problem (Prosperetti 2015). Among others we recall
the dynamical simulations of Ladd (1993), the finite-element simulations of Johnson &
Tezduyar (1996), the force-coupling method simulations by Climent & Maxey (2003),
the lattice-Boltzmann simulations of Yin & Koch (2007), the Oseenlet simulations
of Pignatel, Nicolas & Guazzelli (2011) and the immersed boundary simulations of
Kempe & Fröhlich (2012) and Uhlmann & Doychev (2014). Thanks to the most recent
techniques it has become feasible to gain more insight into the interactions among
the different phases and the resulting microstructure of the sedimenting suspension
(Yin & Koch 2007; Uhlmann & Doychev 2014). Uhlmann & Doychev (2014), most
recently, simulated the settling of dilute suspensions with particle Reynolds numbers
in the range 140–260 and studied the effect of the Archimedes number (namely the
ratio between gravitational and viscous forces) on the microscopic and macroscopic
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properties of the suspension. These authors observed an increase of the settling
velocity at higher Archimedes number, due to particle clustering in a regime where
the flow undergoes a steady bifurcation to an asymmetric wake. Settling in stratified
environments has also been investigated experimentally, i.e. by Bush, Thurber &
Blanchette (2003), and numerically, i.e. by Doostmohammadi & Ardekani (2015).

1.2. Sedimentation in an already turbulent flow
The investigations reported previously consider the settling of particles in quiescent
or uniform flows. There are many situations though where the ambient fluid is in fact
non-uniform or turbulent. As in the previous case, the first approach to this problem
was analytical. In the late 1940s and 1950s Tchen (1947) and later Corrsin & Lumley
(1956) proposed an equation for the motion of a small rigid sphere settling in a non-
uniform flow. In the derivation, they assumed the particle Reynolds number to be very
low so that the viscous Stokes drag for a sphere could be applied. The added mass and
the augmented viscous drag due to a Basset history term were also included. Maxey
& Riley (1983) corrected these equations including also the Faxen forces due to the
unsteady Stokes flow.

In a turbulent flow many different spatial and temporal scales are active. Therefore,
the behaviour and motion of one single particle does not only depend on its
dimensions and characteristic response time, but also on the ratios among these
and the characteristic turbulent length and time scales. The turbulent quantities
usually considered are the Kolmogorov length and time scales, which are related
to the smallest eddies. Alternatively, the integral length scale and the eddy turnover
time can also be used. It is clear that a particle smaller than the Kolmogorov length
scale will behave differently from a particle of size comparable to the energetic
flow structures. A sufficiently large particle with a characteristic time scale larger
than the time scale of the velocity fluctuations will definitely be affected by and
affect the turbulence. A smaller particle with a shorter relaxation time will more
closely follow the turbulent fluctuations. When particle suspensions are considered,
the situation becomes even more complicated. If the particles are solid, smaller
than the Kolmogorov length scale and dilute, the turbulent flow field is unaltered
(i.e. one-way coupling). Interestingly, the turbulent dynamics is instead altered by
microbubbles. The presence of these microbubbles leads to relevant drag reduction in
boundary layers and shear flows (e.g. Taylor–Couette flow) (Sugiyama, Calzavarini &
Lohse 2008; Ceccio 2010). If the mass of the dispersed phase is similar to that of the
carrier phase, the influence of the solid phase on the fluid phase cannot be ignored
(i.e. two-way coupling). Interactions among particles (such as collisions) must also
be considered in concentrated suspensions. This last regime is described as four-way
coupling (Elgobashi 1991; Balachandar & Eaton 2010).

Because of the difficulty of treating the problem analytically, the investigations
of the last three decades have mostly been either experimental or numerical. In
most of the numerical studies heavy and small particles were considered. The reader
is referred to Toschi & Bodenschatz (2009) for a more detailed review than the
short summary reported here. Wang & Maxey (1993) studied the settling of dilute
heavy particles in homogeneous isotropic turbulence. The particle Reynolds number
based on the relative velocity was assumed to be much less than unity so that the
Stokes drag force could be used to determine the particle motion. These authors
showed that heavy particles smaller than the Kolmogorov length scale tend to move
outward from the centre of eddies and are often swept into regions of downdrafts (the
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so-called preferential sweeping later renamed fast tracking). In doing so, the particle
mean settling velocity is increased with respect to that in a quiescent fluid. A series
of studies confirmed and extended these results, examining particle clustering (Bec,
Homann & Ray 2014; Gustavsson, Vajedi & Mehlig 2014), preferential concentration
(Aliseda et al. 2002), the effects of the particle shape, orientation and collision rates
(Siewert, Kunnen & Schröder 2014), as well the effects of one- or two-way coupling
algorithms (Bosse, Kleiser & Meiburg 2006), to mention a few aspects. Numerous
experimental studies were also performed in order to confirm these results and to
study the turbulence modulation due to the presence of particles (Hwang & Eaton
2006).

The results on the mean settling velocities of particles of the order of or larger than
the Kolmogorov scale are not conclusive. Good et al. (2014) studied particles smaller
than the Kolmogorov scale and with density ratio O(1000), whereas E. A. Variano
(experiments; private communication, 2015) and Byron (2015) studied finite-size
particles at density ratios comparable to ours. Good et al. (2014) found that the
mean settling velocity is reduced only when nonlinear drag corrections are considered
in a one-way coupling approach when particles have a long relaxation time (a linear
drag force would always lead to a settling velocity enhancement). For finite-size
almost neutrally buoyant particles, Variano (private communication, 2015) and Byron
(2015) observed instead that the mean settling velocity is smaller than in a quiescent
fluid. In relative terms, the settling velocity decreases more and more as the ratio
between the turbulence fluctuations and the terminal velocity of a single particle in a
quiescent fluid increases. It is generally believed that the reduction of settling speed
is due to the nonlinear relation between the particle drag and the Reynolds number.
Nonetheless, unsteady and history effects may also play a key role (Bergougnoux et al.
2014; Olivieri et al. 2014). Tunstall & Houghton (1968) had already demonstrated in
1968 that the average settling velocity is reduced in a flow oscillating about a zero
mean, due to the interactions of the particle inertia with a nonlinear drag force. Stout,
Arya & Genikhovich (1995) tried to motivate these findings in terms of the relative
motion between the fluid and the particles. When the period of the fluid velocity
fluctuations is smaller than the particle response time, a significant relative motion is
generated between the two phases. Due to the drag nonlinearity, appreciable upward
forces can be produced on the particles, thereby reducing the mean settling velocity.

Unsteady effects may become important when considering suspensions with
moderate particle–fluid density ratios, as suggested by Mordant & Pinton (2000) and
Sobral, Oliveira & Cunha (2007). The former studied the motion of a solid sphere
settling in a quiescent fluid experimentally and explained the transitory oscillations
of the settling velocity found at Re ≈ O(100) by the presence of a transient vortex
shedding in the particle wake. The latter, instead, analysed an equation similar to
that proposed by Maxey & Riley (1983), and suggested that unsteady hydrodynamic
drags might become important when the density ratio approaches unity.

1.3. Fully resolved simulations
As already mentioned, most of the numerical studies of settling in turbulent flows
used either one- or two-way coupling algorithms. In order to properly understand the
microscopical phenomena at play, it would be ideal to use fully resolved simulations.
An algorithm often used to accomplish this is the immersed boundary method with
direct forcing for the simulation of particulate flows originally developed by Uhlmann
(2005). This code was later used to study the clustering of non-colloidal particles
settling in a quiescent environment (Uhlmann & Doychev 2014). With a similar



644 W. Fornari, F. Picano and L. Brandt

method, Lucci, Ferrante & Elghobashi (2010) studied the modulation of isotropic
turbulence by particles of Taylor length scale size. Recently, Homann, Bec & Grauer
(2013) used an immersed boundary Fourier-spectral method to study finite-size effects
on the dynamics of single particles in turbulent flows. These authors found that
the drag force on a particle suspended in a turbulent flow increases as a function
of the turbulent intensity and the particle Reynolds number. We recently used a
similar algorithm to examine turbulent channel flows of particle suspensions (Picano,
Breugem & Brandt 2015).

The aim of the present study is to simulate the sedimentation of a suspension
of particles larger than the Kolmogorov length scale in homogeneous isotropic
turbulence with a finite-difference immersed boundary method. We focus on particles
slightly denser than the suspending fluid (ρp/ρf = 1.02) and investigate particle
and fluid velocity statistics, nonlinear and unsteady contributions to the overall
drag and turbulence modulation. The suspensions considered in this work are dilute
(φ = 0.5–1 %) and monodispersed. The same simulations are also performed in the
absence of turbulence to appreciate differences in the particle velocity statistics in
the two different environments. Due to the size of the particles considered it has
been necessary to consider very long computational domains in the settling direction,
especially for the quiescent environment. In the turbulent cases, smaller domains
provide converged statistics since the particle wakes are disrupted more rapidly. The
parameters of the simulations have been inspired by the experiments by Variano,
Byron (2015) and co-workers at UC Berkeley. These authors investigated Taylor-scale
particles in turbulent aquatic environments using refractive-index-matched hydrogel
particles to measure particle linear and angular velocities.

Our results show that the mean settling velocity is lower in an already turbulent
flow than in a quiescent fluid. The reductions are approximately 12 % and 14 %
for the two volume fractions investigated. By looking at probability density functions
(p.d.f.s) of the settling velocities, we observe that the p.d.f. is well approximated by a
Gaussian function centred around the mean in the turbulent cases. In the laminar case,
instead, the p.d.f. shows a smaller variance and a larger skewness, indicating that it
is more probable to find particles settling more rapidly than the mean value rather
than more slowly. These events are associated with particle–particle interactions,
in particular with the drafting–kissing–tumbling motion of particle pairs. We also
calculate mean relative velocity fields and notice that vortex shedding occurs around
each particle in a turbulent environment. Using the concept of mean relative velocity
we calculate a local Reynolds number and the mean drag coefficient from empirical
formulae to quantify the importance of unsteady and history effects on the overall
drag, thereby explaining the reduction in mean settling velocity. In fact, these terms
become important only in a turbulent environment.

2. Methodology
2.1. Numerical algorithm

Different methods have been proposed in recent years to perform direct numerical
simulations of multiphase flows. The Lagrangian–Eulerian algorithms are believed to
be the most appropriate for solid–fluid suspensions (Ladd & Verberg 2001; Lucci et al.
2010; Zhang & Prosperetti 2010; Uhlmann & Doychev 2014). In the present study,
simulations have been performed using a triperiodic version of the numerical code
originally developed by Breugem (2012) which models the coupling between the solid
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and fluid phases. The Eulerian fluid phase is evolved according to the incompressible
Navier–Stokes equations,

∇ · uf = 0, (2.1)
∂uf

∂t
+ uf · ∇uf =− 1

ρf
∇p+ ν∇2uf + f , (2.2)

where uf , ρf and ν = µ/ρf are the fluid velocity, density and kinematic viscosity
respectively (µ is the dynamic viscosity), while p and f are the pressure and the force
field used to maintain turbulence and model the presence of particles. The particle
centroid linear and angular velocities, up and ωp, are instead governed by the Newton–
Euler Lagrangian equations,

ρpVp
dup

dt
= ρf

∮
∂Vp

τ · n dS+ (ρp − ρf )Vpg, (2.3)

Ip
dωp

dt
= ρf

∮
∂Vp

r× τ · n dS, (2.4)

where Vp= 4πa3/3 and Ip= 2ρpVpa2/5 are the particle volume and moment of inertia,
with a the particle radius; g is the gravitational acceleration; τ = −pI + 2µE is the
fluid stress, with I the identity matrix and E = (∇uf +∇uT

f )/2 the deformation tensor;
r is the distance vector from the centre of the sphere while n is the unit vector
normal to the particle surface ∂Vp. Dirichlet boundary conditions for the fluid phase
are enforced on the particle surfaces as uf |∂Vp = up +ωp × r.

In the numerical code, the coupling between the solid and fluid phases is obtained
by using an immersed boundary method. The boundary condition at the moving
particle surface (i.e. uf |∂Vp = up + ωp × r) is modelled by adding a force field on the
right-hand side of the Navier–Stokes equations. The problem of remeshing is therefore
avoided and the fluid phase is evolved in the whole computational domain using a
second-order finite-difference scheme on a staggered mesh. The time integration is
performed by a third-order Runge–Kutta scheme combined with a pressure correction
method at each substep. The same integration scheme is also used for the Lagrangian
evolution of (2.3) and (2.4). The forces exchanged by the fluid and the particles are
imposed on NL Lagrangian points uniformly distributed on the particle surface. The
force Fl acting on the lth Lagrangian point is related to the Eulerian force field f by
the expression f (x)=∑NL

l=1 Flδd(x− Xl)1Vl. In the latter, 1Vl represents the volume
of the cell containing the lth Lagrangian point while δd is the Dirac delta. This force
field is obtained through an iterative algorithm that maintains second-order global
accuracy in space. Using this immersed boundary method force field, (2.3) and (2.4)
are rearranged as follows to maintain accuracy:

ρpVp
dup

dt
=−ρf

Nl∑
l=1

Fl1Vl + ρf
d
dt

∫
Vp

uf dV + (ρp − ρf )Vpg, (2.5)

Ip
dωp

dt
=−ρf

Nl∑
l=1

rl ×Fl1Vl + ρf
d
dt

∫
Vp

r× uf dV, (2.6)

where the second terms on the right-hand sides are corrections to account for the
inertia of the fictitious fluid contained within the particle volume. In (2.5) and (2.6),
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rl is simply the distance from the centre of a particle. Particle–particle interactions are
also considered. When the gap distance between two particles is smaller than twice the
mesh size, lubrication models based on Brenner’s asymptotic solution (Brenner 1961)
are used to correctly reproduce the interaction between the particles. A soft-collision
model is used to account for collisions among particles with an almost elastic rebound
(the restitution coefficient is 0.97). These lubrication and collision forces are added to
the right-hand side of (2.5). More details and validations of the numerical code can be
found in Breugem (2012), Lambert et al. (2013), Lashgari et al. (2014) and Picano
et al. (2015).

2.2. Parameter setting
Sedimentation of dilute particle suspensions is considered in an unbounded computa-
tional domain with periodic boundary conditions in the x, y and z directions. Gravity
is chosen to act in the positive z direction. A zero mass flux is imposed in the
simulations. A cubic mesh is used to discretize the computational domain, with eight
points per particle radius, a. Non-Brownian rigid spheres are considered with solid
to fluid density ratio ρp/ρf = 1.02. Hence, we consider particles slightly heavier than
the suspending fluid. Two different solid volume fractions, φ = 0.5 % and 1 %, are
considered. In addition to the solid to fluid density ratio ρp/ρf and the solid volume
fraction φ, it is necessary to introduce another non-dimensional number. This is the
Archimedes number (or alternatively the Galileo number Ga=√Ar),

Ar=

(
ρp

ρf
− 1
)

g(2a)3

ν2
, (2.7)

a non-dimensional number that quantifies the importance of the gravitational forces
acting on the particle with respect to viscous forces. In the present case the
Archimedes number Ar= 21 000. Using the particle terminal velocity vt we define the
Reynolds number Ret = 2avt/ν. This can be related by empirical relations to the drag
coefficient of an isolated sphere when varying the Archimedes number, Ar. Different
versions of these empirical relations giving the drag coefficient as a function of Ret
and Ar have been proposed. Like Yin & Koch (2007) we will use the following
relations:

CD =


24
Ret
[1+ 0.1315Re(0.82−0.05 log10 Ret)

t ], 0.01< Ret 6 20,

24
Ret
[1+ 0.1935Re0.6305

t ], 20< Ret < 260.
(2.8)

Since CD = 4Ar/(3Re2
t ) (Yin & Koch 2007), we finally write

Ar=
{

18Ret[1+ 0.1315Re(0.82−0.05 log10 Ret)
t ], 0.01< Ret 6 20,

18Ret[1+ 0.1935Re0.6305
t ], 20< Ret < 260.

(2.9)

The Reynolds number calculated from (2.9) is approximately 188 for Ar= 21 000.
In order to generate and sustain an isotropic and homogeneous turbulent flow

field, a random forcing is applied to the first shell of wavevectors. We consider
a δ-correlated in time forcing of fixed amplitude f̂0 (Vincent & Meneguzzi 1991;
Zhan et al. 2014). The turbulent field, alone, is characterized by a Reynolds number
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η/(2a) u′ k λ/(2a) Reλ ε Te ReL0

0.084 0.30 0.13 1.56 90 0.0028 46.86 1205

TABLE 1. Turbulent flow parameters in particle units, where k is the turbulent kinetic
energy, λ is the Taylor microscale, Te = k/ε is the eddy turnover time and ReL0 is the
Reynolds number based on the integral length scale L0 = k3/2/ε.

based on the Taylor microscale, Reλ = λu′/ν, where u′ is the fluctuating velocity
and λ =√15νu′2/ε is the transverse Taylor length scale. This is approximately 90
in our simulations. The ratio between the grid spacing and the Kolmogorov length
scale η= (ν3/ε)1/4 (where ε is the energy dissipation) is approximately 1.3 while the
particle diameter is circa 12η. Finally, the ratio between the expected mean settling
velocity and the turbulent velocity fluctuations is vt/u′ = 3.4. The parameters of the
turbulent flow field are summarized in table 1. For the definition of these parameters,
the reader is referred to Pope (2000).

2.3. Validation
To check the validity of our approach we performed simulations of a single sphere
settling in a cubic lattice in boxes of different sizes. Since this is equivalent to
changing the solid volume fraction, we compared our results with the analytical
formula derived by Hasimoto (1959) and Sangani & Acrivos (1982),

|Vt| = |vt|
|Vs| = 1− 1.7601φ1/3, (2.10)

where

|Vs| = 2
9

(
ρp

ρf
− 1
)

ga2

ν
(2.11)

is the Stokes settling velocity. In terms of the size of the computational domain, lz,
(2.10) can also be rewritten as Vt = 1 − 1.7601(2a/lz)(π/6)1/3. In figure 1 we show
the results obtained with our code for Ret = 1 together with the data by Yin & Koch
(2007) and the analytical solution. Although the analytical solution was derived with
the assumption of vanishing Reynolds number, we find good agreement among the
various results.

The actual problem arises when considering particles settling at relatively high
Reynolds numbers. If the computational box is not sufficiently long in the gravity
direction, a particle will fall inside its own wake (due to periodic boundary conditions),
thereby accelerating unrealistically. Various simulations of a single particle falling in
boxes of different size were preliminarily carried out, in particular for 48a×48a×48a,
32a× 32a× 96a and 32a× 32a× 320a. The first two boxes turn out to be unsuitable
for our purposes. We find a terminal Reynolds number Ret = 200 in the longest
domain considered, which corresponds to a difference of approximately 6 % with
respect to the value obtained from the empirical relations (2.9). As reference velocity
we use the value obtained from simulations performed in the largest box at a solid
volume fraction two orders of magnitude smaller than the cases under investigation,
φ= 5× 10−5 (as in Uhlmann & Doychev 2014), corresponding to a terminal velocity
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FIGURE 1. (Colour online) Terminal velocity of a periodic array of spheres. The present
results for Ret = 1, denoted by red circles, are compared with the ones obtained by Yin
and Koch at the same Ret, denoted by black squares, and with the analytical solution for
Ret = 0 of (2.10).

such that Ret = 195, 4 % larger than the value from the empirical relations (2.9).
Further increasing the length in the z direction would make the simulations prohibitive.
It should be noted also that simulations in a turbulent environment turn out to be less
demanding, as turbulence disrupts and decorrelates the flow structures induced by the
particles. The final choice was therefore a computational box of size 32a× 32a× 320a
with 256 × 256 × 2560 grid points, 391 particles for φ = 0.5 % and 782 particles
for φ = 1 %. In all cases, the particles are initially distributed randomly in the
computational volume with zero initial velocity and rotation.

A snapshot of the suspension flow for φ = 0.5 % is shown in figure 2. The
instantaneous velocity component perpendicular to gravity is shown on different
orthogonal planes.

The simulations were run on a Cray XE6 system at the PDC Center for High
Performance Computing at the KTH, Royal Institue of Technology. The fluid phase
is evolved for approximately six eddy turnover times before adding the solid phase.
The simulations for each solid volume fraction are performed for both quiescent fluid
and turbulent flow cases in order to compare the results. Statistics are collected after
an initial transient phase of approximately four eddy turnover times for the turbulent
case and 15 relaxation times (Tp = 2ρpa2/(9ρfν)) for the quiescent case. Defining as
reference time the time it takes for an isolated particle to fall over a distance equal
to its diameter, 2a/vt, the initial transient corresponds to approximately 170 units.
Statistics are collected over time intervals of 500 and 300 in units of 2a/vt for the
quiescent and turbulent cases respectively. Differences between the statistics presented
here and those computed from half of the samples are below 1 % for the first and
second moments.

3. Results
We investigate and compare the behaviour of a suspension of buoyant particles in

quiescent and turbulent environments. The behaviour of a suspension in a turbulent
flow depends on both the particle and turbulence characteristic time and length scales:
homogeneous and isotropic turbulence is defined by the dissipative, Taylor and integral
scales, whereas the particles are characterized by their settling velocity vt and by
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FIGURE 2. (Colour online) Instantaneous snapshot of the velocity component
perpendicular to gravity on different orthogonal planes, together with the corresponding
particle position for φ = 0.005. A zoomed view of a particular section is also shown.

their Stokesian relaxation time Tp = 2ρpa2/(9ρfν) = 11.1 (time is scaled by (2a/vt)

throughout the paper). A comparison between characteristic time scales is given by
the Stokes number, i.e. the ratio between the particle relaxation time and a typical
flow time scale Stf = Tp/Tf . In the present cases, the Stokes number based on the
dissipative scales (time and velocity) is Stη = Tp/TK = 8.1, so the particles are inertial
on this scale. In addition, because the particles are approximately 12 times larger than
the Kolmogorov length and fall approximately 16 times faster than the Kolmogorov
velocity scale, we can expect that motions at the smallest scales will weakly affect
the particle dynamics.

Considering therefore the large-scale motions, we introduce an integral-scale Stokes
number StTe = Tp/Te = 0.24. This value of StTe reflects the fact that the particles are
approximately 20 times smaller than the integral length scale L0. The strong coupling
between particle dynamics and turbulent flow field occurs at scales of the order of the
Taylor scale for the present cases. Indeed, the Taylor Stokes number is Stλ= Tp/Tλ=
2.1, with Tλ = λ/u′. It should be noted that the Taylor length is slightly larger than
the particle size, 3.1a, while particles fall approximately 3.4 times faster than typical
fluid velocity fluctuations, vt/u′ = 3.4. Hence, particles are strongly influenced by the
fluid fluctuations occurring at scales of the order of λ.

3.1. Particle statistics
We start by comparing the single-point flow and particle velocity statistics for the
two cases studied, i.e. quiescent and turbulent flow. The results are collected when
a statistically steady state is reached. Due to the axial symmetry with respect to the
direction of gravity, we consider only two velocity components for both phases, the
components parallel and perpendicular to gravity, Vα,τ and Vα,n respectively, where
α = f , p indicates the solid and fluid phases.

In figure 3 we report the p.d.f.s of the particle velocities for both volume fractions
investigated here, φ = 0.5 % and 1 %; the moments extracted from these distributions
are summarized in table 2. The data in figure 3(a) show the p.d.f. for the component
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FIGURE 3. (Colour online) The p.d.f.s of the particle velocities along the directions
(a) parallel, Vp,τ , and (b) perpendicular, Vp,n, to gravity for φ = 0.5 % and 1 %. The
velocities are normalized by vt. Quiescent fluid cases are denoted by a blue curve with
squares for φ = 0.5 % and a green curve with triangles for φ = 1 %, and turbulent flow
data by a red curve with circles for φ= 0.5 % and a black curve with downward-pointing
triangles for φ = 1 %. In the insets we show the p.d.f.s in lin–log scale.

Quiescent φ = 0.5 % Turbulent φ = 0.5 % Quiescent φ = 1 % Turbulent φ = 1 %

〈Vp,τ 〉 +0.96 +0.88 +0.93 +0.86
σVp,τ +0.15 +0.23 +0.17 +0.23
SVp,τ +1.26 +0.01 +0.70 +0.01
KVp,τ +9.65 +2.92 +6.01 +3.15

〈Vp,n〉 +0.33× 10−4 −1.93× 10−3 −8.78× 10−4 −0.97× 10−3

σVp,n +0.06 +0.31 +0.08 +0.31
SVp,n −1.22× 10−3 +0.04 −3.17× 10−3 +0.07
KVp,n +8.95 +2.78 +5.55 +2.80

TABLE 2. First four central moments of the p.d.f.s of Vp,τ and Vp,n normalized by vt. Here,
SVp,τ (SVp,n ) and KVp,τ (KVp,n ) are respectively the skewness and the flatness of the p.d.f.s.

of the velocity aligned with gravity, Vp,τ , normalized by the settling velocity for φ→0
in a quiescent environment, vt. This is extracted from the simulation of a very dilute
suspension discussed in § 2.3.

In the quiescent cases, the mean settling velocity slightly reduces on increasing the
volume fraction φ, in agreement with the findings of Richardson & Zaki (1954) and
Di Felice (1999), among others. The sedimentation velocity decreases to 0.96 at φ =
0.5 % and 0.93 at φ = 1 %. Di Felice (1999) investigated experimentally the settling
velocity of dilute suspensions of spheres (φ=0.5 %) with density ratio 1.2 in quiescent
fluid, for a large range of terminal Reynolds numbers (from 0.01 to 1000). Following
the empirical fit proposed in Di Felice (1999), we obtain 〈Vf ,τ 〉 ' 0.98 at φ = 0.5 %,
approximately 1 % larger than our result. On the other hand, the formula suggested
for the intermediate regime in Di Felice (1999) and Yin & Koch (2007), Ret < 150,
would give an estimated value of 0.88, 6 % lower than our result.

The mean settling velocity for the quiescent case at φ=0.5 % is instead close to the
estimated value from (2.9). This is in agreement with what was reported in Uhlmann
& Doychev (2014). These authors found that the particle mean settling velocity of
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a dilute suspension increases above the reference value only when the Archimedes
number Ar is larger than approximately 24 000 and clustering occurs. In our case,
Ar' 21 000 and no clustering is noticed, according with their findings.

Interestingly, we observe an additional non-negligible reduction when a turbulent
background flow is considered, in our opinion the main result of this paper. The
reduction of the mean settling velocity 〈Vp,τ 〉 is 12 % at φ = 0.5 % and 14 % at
φ = 1 %, see table 2. This result unequivocally shows that the turbulence reduces
the settling velocity of a suspension of finite-size buoyant particles, in agreement
with the experimental findings by Variano and co-workers (E. A. Variano, private
communication) and Byron (2015). We also note that the reduction of the settling
velocity with the volume fraction is less important for the turbulent cases.

Looking more carefully at the p.d.f.s, we note that fluctuations are, as expected,
larger in a turbulent environment. In addition, the vertical particle velocity fluctuations
are the largest component in a quiescent fluid, whereas in a turbulent flow the
fluctuations are largest in the horizontal directions, as summarized in table 2. In the
quiescent case, the root mean square (r.m.s.) of the tangential velocity σVp,τ is 0.15
and 0.17 for φ = 0.5 % and φ = 1 % respectively, while it increases up to 0.23 in the
corresponding turbulent cases. The difference in the width of the p.d.f. is particularly
large in the directions normal to gravity, where the r.m.s. of the variance σVp,n is
0.3 for both turbulent cases, while it is 5 and 4 times smaller for the quiescent
flows at φ = 0.5 % and φ = 1 %. We believe that the interactions among the particle
wakes, mainly occurring in the settling direction, promote the higher vertical velocity
fluctuations found in the quiescent cases. The shape of the p.d.f. is essentially
Gaussian for the turbulent cases, showing vanishing skewness and normal flatness.
Interestingly, an intermittent and skewed behaviour is exhibited in the quiescent cases.
The flatness K is approximately 9 for both components at φ = 0.5 % and slightly
reduces to 5.5 at φ = 1 %. The settling velocity of the quiescent cases is skewed
towards intense fluctuations in the direction of the gravity. The skewness S is higher
for the more dilute case, being 1.26 at φ = 0.5 % and 0.7 at φ = 1 %.

We interpret the intermittent behaviour suggested by values of K > 3 by the
collective dynamics of the particle suspension. The significant tails of the p.d.f.s
shown in figure 3(a) are indeed associated with a specific behaviour: as particles
fall, they tend to be accelerated by the wakes of other particles, before showing
drafting–kissing–tumbling behaviour (Fortes, Joseph & Lundgren 1987). Snapshots of
the drafting–kissing–tumbling behaviour between two spherical particles are shown in
figure 4. When this close interaction occurs, particles are found to fall with velocities
that can be more than twice the mean settling velocity 〈Vp,τ 〉. In the quiescent case,
the fluid is still, the wakes are the only perturbation present in the field and are
long and intense, so their effect can be felt far away from the reference particle.
The more dilute the suspension is the more intermittent the particle velocities are.
On the contrary, when the flow is turbulent, the wakes are disrupted quickly and
therefore fewer particles feel the presence of a wake. The velocity disturbances are
now mainly due to turbulent eddies of different size that interact with the particles
to increase the variance of the velocity homogeneously along all directions, leading
to the almost perfect normal distributions shown above, with variances similar to
those of the turbulent fluctuations. The features of the particle wakes will be further
discussed in this paper to support the present explanation.

We also note that the sedimenting speed in the quiescent fluid is determined by two
opposite contributions: the excluded volume effect, which contributes to a reduction
of the mean settling velocity with respect to an isolated sphere, and the pairwise
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FIGURE 4. (Colour online) Drafting–kissing–tumbling behaviour among two spherical
particles in the quiescent case with φ=0.5 %, at a) t=1789; (b) t=1794; (c) t=1799; (d)
t= 1801. The particles are coloured with the absolute value of their velocity component
in the direction of gravity. Three particles are labelled with ‘A, B, C’ in order to show
how accelerated the two interacting particles are compared with the others.

interactions (the drafting–kissing–tumbling), which increase the mean velocity of the
two particles involved in the encounter. To try to identify the importance of the
drafting–kissing–tumbling effect, we fit the left part (where no intermittent behaviour
is found) of the p.d.f. pertaining to the quiescent case at φ = 0.5 % with a Gaussian
function. The mean of Vp,τ is reduced to approximately 0.93 (value due only to
the hindrance effect) instead of 0.96 in the full simulation; thereby the increment
in mean settling velocity due to drafting–kissing–tumbling can be estimated to be
approximately 3 %.

The p.d.f.s of the particle angular velocities are also different in quiescent and
turbulent flows. These are shown in figure 5(a,b) for rotations about axes parallel to
gravity, |ωp,τ | = |ωp,z|, and orthogonal to it,

√
ω2

x +ω2
y . In the settling direction, the

peak of the p.d.f. is always at |ωp,z| = 0. For the translational velocities, the p.d.f.s are
broader in the turbulent cases. Due to the interaction with turbulent eddies, particles
tend also to spin faster around axes perpendicular to gravity. From figure 5(b) we
see that the modal value increases slightly in the quiescent cases on increasing the
volume fraction. In the turbulent cases, the modal values are more than three times
the values of the quiescent cases and the variance is also increased. Unlike the
quiescent cases, the curves almost perfectly overlap for the two different values of
φ, meaning that turbulent fluctuations dominate the particle dynamics. Turbulence
hinders particle hydrodynamic interactions.
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FIGURE 5. (Colour online) The p.d.f.s of (a) |ωp,z| and (b)
√
ω2

p,x +ω2
p,y for φ = 0.5 %

and 1 %. The angular velocities are normalized by vt/(2a), the settling velocity of a single
particle in a quiescent environment and its diameter. Quiescent fluid cases are denoted by
a blue curve with squares for φ = 0.5 % and a green curve with triangles for φ = 1 %,
and turbulent flow data by a red curve with circles for φ= 0.5 % and a black curve with
downward-pointing triangles for φ = 1 %.

Figure 6 shows the temporal correlations of the particle velocity fluctuations,

Rvτ vτ (1t)= 〈V
′
p,τ (p, t)V ′p,τ (p, t+1t)〉

σ 2
Vp,τ

, (3.1)

Rvnvn(1t)= 〈V
′
p,n(p, t)V ′p,n(p, t+1t)〉

σ 2
Vp,n

, (3.2)

for the turbulent and quiescent cases at φ = 0.5 % and φ = 1 %. Focusing on the
data at the lower volume fraction, we observe that the particle settling velocity
decorrelates much faster in the turbulent environment, within 1t∼ 50, while it takes
approximately one order of magnitude longer in a quiescent fluid. Falling particles
may encounter intense vortical structures that change their settling velocity. The
turbulence strongly alters the fluid velocity field seen by the particles, which in
the quiescent environment is only constituted by coherent long particle wakes. This
results in a faster decorrelation of the velocity fluctuations along the settling direction
in the turbulent environment. Moreover, Rvnvn crosses the null value earlier than for
the settling velocity component. This result is not surprising since the particle wakes
develop only in the settling direction.

The normal velocity correlation Rvnvn of the turbulent case oscillates around zero
before vanishing at longer times. We attribute this to the presence of the large-scale
turbulent eddies. As a settling particle encounters sufficiently strong and large eddies,
its trajectory is swept on planes normal to gravity in an oscillatory way. To provide an
approximate estimate of this effect, we consider as a first approximation the turbulent
flow seen by the particles as frozen, since the particles fall at a higher velocity than
the turbulent fluctuations (3.4 times). Since the strongest eddies are of the order of the
transverse integral scale we can presume that these structures are responsible for this
behaviour. In particular, the transverse integral scale LT = L0/2' 8 and u′rms = 0.3, so
we expect a typical period of t=LT/u′rms' 26, which is of the order of the oscillations
found for both turbulent cases, i.e. t≈ 20. It should be noted that a similar behaviour
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FIGURE 6. (Colour online) Time correlations of the particle velocity fluctuations. The
blue curve with circles represents the correlation of V ′p,τ (Rvτ vτ ), while the red curve with
diamonds is used for the correlation of V ′p,n (Rvnvn ). (a) Quiescent case with φ = 0.5 %,
(b) turbulent case with φ = 0.5 %, (c) quiescent case with φ = 1.0 % and (d) turbulent
case with φ = 1.0 %.

has been observed by Wang & Maxey (1993) for sufficiently small and heavy particles,
termed the preferential sweeping phenomenon.

The same process can be interpreted in terms of crossing trajectories and continuity
effects, as described by Csanady (1963). An inertial particle falling in a turbulent
environment changes its fluid–particle neighbourhood continuously. It will fall
out from the eddy where it was at an earlier instant and will therefore rapidly
decorrelate from the flow. In order to accommodate the back flow necessary to satisfy
continuity, the normal correlations must then contain negative loops (like those seen
in figure 6b,d). Following Csanady (1963), we define the period of oscillation of
the fluctuations as the ratio of the typical eddy diameter in the direction of gravity
(i.e. the longitudinal integral scale L0) and the particle terminal velocity vt, obtaining
t = L0/vt ' 16. This value is similar to the period of oscillations in the correlations
in figure 6.

As shown in figure 6(c), the quiescent environment presents a peculiar behaviour
of the settling velocity correlation at φ = 1 %. In particular, we observe oscillations
around zero of long period, T = 160–180. From the analysis of particle snapshots
at different times (not shown), we observe that these seem to be correlated to the
formation of regions of different density of the particle concentration. Hence, a particle
crossing regions with different local particle concentrations may experience a varying
settling velocity.

To further understand the particle dynamics, we display in figure 7(a,b) the single-
particle dispersion, i.e. the mean square displacement, for both quiescent and turbulent
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FIGURE 7. (Colour online) Mean square particle displacement in the directions parallel
and perpendicular to gravity for both quiescent and turbulent cases for (a) φ= 0.5 % and
(b) φ = 1 %. The mean particle displacement 〈Vp,τ 〉t in the settling direction is subtracted
from the instantaneous displacement when computing the statistics. In the inset, we show
〈1x2

i 〉/t as a function of time as well as the diffusion coefficients De for the turbulent
cases.

cases at φ = 0.5 % and 1.0 %. The mean displacement, 〈Vp,τ 〉t, is subtracted from the
instantaneous displacement in the settling direction, 1z(t), to highlight the fluctuations
with respect to the mean motion. For all cases we found initially a quadratic scaling
in time (〈1x2

i 〉∼ t2) typical of correlated motions, while the linear diffusive behaviour
takes over at longer times (〈1x2

i 〉 ∼ 2Det, with De the diffusion coefficient).
The turbulent cases show a similar behaviour for both volume fractions. The

crossover times when the initial quadratic scaling is lost and linear scaling occurs are
approximately t' 10 and t' 50 for the normal and tangential components respectively.
This difference is consistent with the correlation time scales previously discussed. The
dispersion rates are similar in all directions in a turbulent environment. The quiescent
cases present different features. First of all, dispersion is much more effective in
the settling direction than in the normal one. The dispersion rate is smaller than in
the turbulent cases in the horizontal directions, while, surprisingly, the mean square
displacement in the settling direction is similar to that of the turbulent cases, being
even higher at φ = 0.5 %, something we relate to the drafting–kissing–tumbling
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Quiescent, φ = 0.5 % Turbulent, φ = 0.5 % Quiescent, φ = 1 % Turbulent, φ = 1

σVf ,τ +0.18 +0.28 +0.25 +0.29
σVf ,n +0.04 +0.27 +0.06 +0.27

TABLE 3. Fluctuation r.m.s. of the fluid velocities parallel, σVf ,τ , and perpendicular, σVf ,n ,
to gravity. The turbulent fluid velocity undisturbed r.m.s. is ∼0.3.

behaviour discussed above. The crossover time scale is similar to that of turbulent
cases, with the exception of the most dilute case which does not reach a fully
diffusive behaviour at t ' 500. This long correlation time makes the mean square
displacement of this case higher than for the corresponding turbulent case at long
times.

In the insets of figure 7(a,b) we show 〈1x2
i 〉/t as a function of time. In all cases

except the quiescent one at φ=0.5 %, the diffusive regime is reached and it is possible
to calculate the diffusion coefficients De = 〈1x2

i 〉/(2t). For the turbulent case with
φ= 0.5 % we obtain De= 0.52 and 0.28 in the directions parallel and perpendicular to
gravity, while for φ = 1 % we obtain De = 0.57 and 0.32. In the quiescent cases, the
diffusion coefficients in the horizontal directions are approximately 0.03, whereas the
coefficient in the gravity direction at φ = 1 % is approximately 0.40. Csanady (1963)
proposed a theoretical estimate of the diffusion coefficients for pointwise particles.
Using these estimates, we obtain approximately De = 1.4 and 0.7 in the directions
parallel and perpendicular to gravity. These are approximately 2.5 times larger than
those found here for finite-size particles.

3.2. Fluid statistics
Table 3 reports the fluctuation intensities of the fluid velocities for all cases considered.
These are calculated by excluding the volume occupied by the spheres at each time
step and averaging over the number of samples associated with the fluid phase volume.
As expected, the fluid velocity fluctuations are smaller in the quiescent cases than
in the turbulent regime. In the quiescent case, the r.m.s. of the velocity fluctuations
is approximately 50 % larger in the settling direction than in the normal direction
because of the long-range disturbance induced by the particle wakes. The increase
of the volume fraction enhances the fluctuations in both directions. Fluctuations are
always larger in the turbulent case, with the most significant differences compared
with the quiescent cases in the normal direction, where the presence of the buoyant
solid phase breaks the isotropy of the turbulent velocity fluctuations.

Hence, the solid phase clearly affects the turbulent flow field. Although the present
study focuses on the settling dynamics, it is interesting to briefly discuss how
turbulence is modulated. Modulation of isotropic turbulence by neutrally buoyant
particles is examined in Lucci et al. (2010); however, the results change due to
buoyancy, as investigated here. Typical turbulent quantities are reported in table 4,
where they are compared with the unladen case at φ = 0. The energy dissipation ε
increases with φ, becoming almost double at φ = 1 %. This behaviour is expected
since the buoyant particles inject energy into the system which is transformed into
kinetic energy of the fluid phase that has to be dissipated. The higher energy flux,
i.e. dissipation, is reflected in a reduction of the Kolmogorov length η. The particles
reduce the velocity fluctuations, decreasing the turbulent kinetic energy level. The
combined effect on k and ε results in a decrease of the Taylor microscale λ and of
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FIGURE 8. (Colour online) Contours of the mean fluid dissipation, 〈ε〉 (v3
t /(2a)),

averaged in the particle frame of reference.

φ η/(2a) k λ/(2a) Reλ ε Te ReL0

0.000 0.084 0.13 1.56 90 0.0026 47.86 1205
0.005 0.077 0.10 1.19 62 0.0037 27.97 570
0.010 0.069 0.11 1.01 54 0.0055 19.88 435

TABLE 4. Turbulent flow parameters in particle units for φ = 0, φ = 0.5 % and φ = 1 %.

Reλ; likewise, the integral length L0 and ReL0 also decrease. The reduction of the large
and small turbulence scales is associated with the additional energy injection from the
settling particles. Energy injection occurs at the size of the particles, which is below
the unperturbed integral scale L0, explaining the lowering of the effective integral L0

and of Taylor λ length scales. This additional energy is transferred to the bulk flow
in the particle wake. Associated with this energy input there is a new mechanism
for dissipation, which is the interaction of the flow with the no-slip surfaces of
the particles. The mean energy dissipation field in the particle reference frame for
the turbulent case with φ = 0.5 % is therefore shown in figure 8. After a statistically
steady state is reached, the norm of the symmetric part of the velocity gradient tensor
E ij and the dissipation ε = 2νE ijE ij are calculated at each time step on a cubic mesh
centred around each particle; the dissipation is calculated on the grid points outside
the particle volume. The data presented have been averaged over all particles and time
to get the mean dissipation field displayed in the figure. The maximum 〈ε〉 is found
around the particle surface, with maximum values in the front; the mean dissipation
drops down to the values found in the rest of the domain on the particle rear. The
overall energy dissipation is therefore made up of two parts, the first associated with
the dissipative eddies far from the particle surfaces and the second associated with
the mean and fluctuating flow field near the particle surface. To conclude, the settling
strongly alters the typical turbulence features via an anisotropic energy injection and
dissipation, thus breaking the isotropy of the unladen turbulent flow. The energy is
injected by the fluctuations into the particle wake, whereas stronger energy dissipation
occurs at the front of each particle. As a consequence, the fluid velocity fluctuations
change in the directions parallel and perpendicular to gravity, as shown in table 3.
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FIGURE 9. (Colour online) The component of Urel aligned with gravity as a function of
the inner radii of the shells, ∆/(2a), for the four cases studied. The dashed lines represent
instead the mean particle velocities in the direction of gravity, 〈Vp,τ 〉.

3.3. Relative velocity
An important quantity for understanding and modelling the settling dynamics is the
particle to fluid relative motion. Although it is still unclear how to properly calculate
the slip velocity between the two phases, we consider spherical shells around each
particle, centred on the particle centroids, inspired by the works of Bellani & Variano
(2012) and Cisse, Homann & Bec (2013). We calculate the mean difference between
the particle and fluid velocities in each shell as

〈Urel〉x,t,NP =
〈

up − 1
Ω(∆)

∫
Ω(∆)

uf dV

〉
t,NP

, (3.3)

where Ω(∆) is the volume of a shell of inner radius ∆. A parametric study on the slip
velocity is performed by changing the inner radii of these spherical shells from ∆=
0.75 particle diameters to ∆= 5.0 particle diameters, while keeping the shell thickness
δ constant and equal to 0.063 in units of 2a. In figure 9 we report the component of
Urel parallel to gravity as a function of the inner radii of the shells, ∆/(2a). As the
inner radii of the shells increase, |Urel,τ | tends exponentially to an asymptotic value
which corresponds to the mean particle velocity in the same direction, 〈Vp,τ 〉. This is
expected since the correlation between the fluid and particle velocities goes to zero at
large distances. The quiescent cases still show a 0.5 % difference between |Urel,τ | and
〈Vp,τ 〉 at ∆/(2a) = 5. This difference is again attributed to the long coherent wakes
of the particles.

The p.d.f.s of these relative velocities, Urel,τ , and their first four central moments
are computed and reported in tables 5 and 6 as a function of ∆/(2a) for the quiescent
fluid and turbulent cases at φ = 0.5 %. In the turbulent case, the moments approach
those of a Gaussian distribution, with vanishing skewness and flatness close to 3,
especially at large ∆. In the quiescent case, the third and fourth moments display
higher values that decrease as ∆ is increased, tending to the values of the particle
velocities. The p.d.f.s pertaining to the four cases considered, calculated in spherical
shells with inner radii of 1.5 and 2.5 particle diameters, are compared in figure 10.
A second axis, reporting the particle Reynolds number Rep based on Urel,τ , is also
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FIGURE 10. (Colour online) Comparison of the p.d.f.s of tangential relative velocity and
corresponding particle Reynolds number Rep. The colours and symbols are the same as
in the previous figures. In (a) the cases for ∆/(2a)= 1.5 are reported, while in (b) we
show the results for ∆/(2a)= 2.5.

∆/(2a) 〈Urel,τ 〉 σUrel,τ SUrel,τ KUrel,τ

0.75 +0.81 0.06 +8.040 123.29
1.00 +0.88 0.09 +5.655 68.26
1.25 +0.92 0.10 +4.547 47.66
1.50 +0.93 0.11 +3.912 37.69
1.75 +0.94 0.12 +3.482 31.83
2.50 +0.95 0.13 +2.919 24.34
4.00 +0.95 0.14 +2.18 16.25
5.00 +0.96 0.14 +2.22 17.09

TABLE 5. Moments of the p.d.f.(Urel,τ ) for φ = 0.5 % in the quiescent case. The
thickness of the shell used to compute the slip velocity is δ/(2a)= 0.063.

∆/(2a) 〈Urel,τ 〉 σUrel,τ SUrel,τ KUrel,τ

0.75 +0.76 0.07 +0.072 3.90
1.00 +0.83 0.09 +0.010 4.28
1.25 +0.85 0.10 +0.087 4.56
1.50 +0.86 0.11 +0.128 4.54
1.75 +0.87 0.11 +0.117 4.32
2.50 +0.87 0.13 +0.054 3.91
4.00 +0.88 0.16 +0.046 3.32
5.00 +0.88 0.18 +0.047 3.10

TABLE 6. Moments of the p.d.f.(Urel,τ ) for φ = 0.5 % in a turbulent environment. The
thickness of the shell used to compute the slip velocity is δ/(2a)= 0.063.

displayed in each figure. In the former case, ∆/(2a) = 1.5, the shell radius is of
the order of the Taylor scale to highlight the particle dynamics, while the relative
velocity is approaching asymptotic values for the larger shell. The p.d.f.s of the
relative velocity appear to be narrower than those of the particle absolute velocity,
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FIGURE 11. (Colour online) Joint probability distributions of Vf ,τ and Vp,τ evaluated in
spherical shells located at 1.75 particle diameters from each particle. We report in (a,c) the
quiescent cases for φ = 0.5 % and 1 %, while the respective turbulent cases are reported
in (b,d). The continuous lines represent the integrals of the joint probability distributions.
In the turbulent cases the dashed lines represent the best fit of these integrals.

indicating that the particles tend to be transported by the large-scale motions, filtering
the smallest scales.

The distributions pertaining to the simulations in a turbulent environment are
nearly Gaussian, with modal values well below one. The quiescent cases show
skewed distributions with long tails at high velocities, as observed for the particle
velocities in figure 3(a). The particles settle on average with a velocity close to
that of a single particle, with occasional events of higher velocity due to the
drafting–kissing–tumbling dynamics. The lower the volume fraction is the more
intermittent the dynamics is.

Knowing the tangential fluid velocity 〈Vf ,τ 〉r(p, t), averaged in each shell and at
each time step, and the corresponding tangential particle velocities Vp,τ (p, t), it is
then possible to find their joint probability distribution P(Vf ,τ , Vp,τ ) (for the sake of
simplicity we write 〈Vf ,τ 〉r as Vf ,τ ). These are evaluated in shells at ∆/(2a)= 1.75 for
each case studied and reported in figure 11. In each case, the integral of P(Vf ,τ ,Vp,τ ),

〈Vp,τ |Vf ,τ 〉 =
∫ ∞
−∞

P(Vf ,τ , Vp,τ )Vf ,τ dVf ,τ , (3.4)

is also reported (continuous lines). This represents the most probable particle velocity
Vp,τ given a certain fluid velocity Vf ,τ , or, equivalently, the most probable fluid velocity
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FIGURE 12. (Colour online) Contour plot of the velocity component in the direction of
gravity for a single sphere settling in a quiescent fluid.

surrounding a particle settling with velocity Vp,τ . In the turbulent cases, these integrals
are well approximated by straight lines (displayed with dashed lines in the figure),

Vp,τ =C1Vf ,τ +C2. (3.5)

In both cases, C1 is approximately 1 while C2 is approximately 0.86 for φ = 0.5 %
and 0.84 for φ = 1 %. These values are in agreement with the values found for the
average relative velocities of shells at ∆/(2a)= 1.75. In a quiescent flow, conversely,
the integral in (3.4) gives a curved line and no best fit is therefore reported. In these
cases, the joint probability distribution is broader, particularly in the region of higher
particle velocities, Vp,τ . This is again due to the intense particle interactions and the
drafting–kissing–tumbling behaviour described in figure 4, which confirms the high
flatness of the p.d.f.s of the relative particle velocities.

Further insight can be obtained by plotting isocontours of the average particle
relative velocities and their fluctuations, in both quiescent and turbulent flows. To
this end, we follow the approach of Garcia-Villalba, Kidanemariam & Uhlmann
(2012). We place a uniform and structured rectangular mesh around each particle,
with origin at the particle centre. By means of trilinear interpolations we find the
fluid and relative velocities on this local mesh and average over time and the number
of particles to obtain the mean relative velocity field and its fluctuations.

The vertical velocity of a single sphere settling in a quiescent fluid is reported
in figure 12. The relative normal and tangential velocities and their fluctuations are
displayed in figure 13 for suspensions with φ= 0.5 % in both quiescent and turbulent
environments. In the quiescent fluid simulations, a long wake forms behind the
representative particle and, as seen from the single-point particle velocity correlations,
it takes a long time for the velocity fluctuations to decorrelate. In the turbulent case
instead, the wakes are disrupted by the background fluctuations.

Interesting observations can be drawn from the relative velocity fluctuation fields.
Comparing figures 13(c) and 13(d) we note that intense vortex shedding occurs
around the particles in the turbulent case, with important fluctuations of Urel,τ .
From figure 13(e,f ) we also see that the relative velocity fluctuations are drastically
increased in the horizontal directions in a turbulent environment. It is noteworthy that
vortex shedding occurs at particle Reynolds numbers below the critical value above
which this is usually observed (Bouchet, Mebarek & Dušek 2006). Vortex shedding is
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FIGURE 13. (Colour online) Fields of 〈Urel,τ 〉, U′rel,τ and U′rel,n for the quiescent (a,c,e)
and turbulent (b,d,f ) cases.

unsteady in nature, and unsteady effects may therefore play an important role in the
increase of the overall drag, as further discussed below. Lower fluctuation intensities
are found on the front parts of the particles, where the energy dissipation is highest,
and in the immediate wake in the recirculating region where the instability is found
to develop.

3.4. Drag analysis
As in Maxey & Riley (1983), we write the balance of the forces acting on a single
sphere settling through a turbulent flow. The equation of motion for a spherical
particle reads

4
3
πa3ρp

dVp

dt
= 4

3
πa3(ρp − ρf )g+

∮
∂Vp

τ · n dS, (3.6)

where the integral is over the surface of the sphere ∂Vp, n is the outward normal and
τ = −pI + 2µE is the fluid stress. As commonly done in aerodynamics, we replace
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the last term of (3.6) with a term depending on the relative velocity Urel and a drag
coefficient CD,

4
3
πa3ρp

dVp

dt
= 4

3
πa3(ρp − ρf )g− 1

2
ρf πa2|Urel|UrelCD, (3.7)

with πa2 the reference area. Generally, the drag coefficient CD is a function of a
Reynolds number and a Strouhal number which accounts for unsteady effects. In the
present case, we consider it to be a function of the Reynolds number based on the
relative velocity Rep = 2a|Urel|/ν (in a turbulent field it is proper to define Rep in
terms of the relative velocity between the particle and the fluid) and of the Strouhal
number defined as

St=
dVp

dt
(2a)

|Urel|2 . (3.8)

The drag on the particle depends on both nonlinear and unsteady effects (such
as the Basset history force and the added-mass contribution) through these two
non-dimensional numbers.

Commonly, the unsteady contribution is neglected and CD is assumed to depend
only on the Reynolds number. Since we want to investigate both nonlinear and
unsteady effects, we decide to express the drag coefficient as CD(Rep, St) =
CD0(Rep)[1+ψ(Rep, St)], yielding

4
3
πa3ρp

dVp

dt
= 4

3
πa3(ρp − ρf )g− 1

2
ρf πa2|Urel|UrelCD0(Rep)[1+ψ(Rep, St)], (3.9)

where ψ = 0∀Rep if St= 0 (steady motion). We can therefore identify a quasi-steady
term and the extra term that accounts for unsteady phenomena.

By ensemble averaging equation (3.9) over time and the number of particles, and
assuming the settling process to be at statistically steady state, we can find the most
important contributions to the overall drag. The steady-state average equation reads

0= 4
3πa3(ρp − ρf )g− 1

2ρf πa2〈|Urel|UrelCD0(Rep)[1+ψ(Rep, St)]〉. (3.10)

Denoting the entire time-dependent term simply as Ψ (t) and rearranging, we obtain
the following balance:

4
3
πa3

(
ρp

ρf
− 1
)

g= 1
2
πa2〈|Urel|UrelCD0(Rep)〉 +Ψ (t). (3.11)

The term on the left-hand side is known, whereas the time-dependent term Ψ (t) is of
difficult evaluation. The nonlinear steady term can be calculated using the approach
described in § 2.2. At each time step we calculate the relative velocity in the spherical
shells surrounding each particle. From these we compute the particle Reynolds number
Rep = 2a|Urel|/ν, and using (2.8) (where we replace the terminal Reynolds number
with the new particle Reynolds number) we obtain the drag coefficient. The first term
on the right-hand side can therefore be evaluated by averaging over the number of
particles and time steps considered. Finally, we divide everything by the buoyancy
acceleration to estimate the relative importance of each term,

100 %=S (Rep)+Ψ (t), (3.12)
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Case (%) S (Rep) (%) Ψ (t) (%)

Quiescent, φ = 0.5 99.5 0.5
Turbulent, φ = 0.5 90.4 9.6
Quiescent, φ = 1.0 94.1 5.9
Turbulent, φ = 1.0 87.8 12.2

TABLE 7. Percentage contributions of the nonlinear and unsteady terms for the quiescent
and turbulent cases with φ = 0.5 %. The data are normalized by the mean drag from the
simulation of a single sphere in quiescent fluid.

where S (Rep) represents the nonlinear steady term, while the unsteady term has been
denoted again as Ψ (t) for simplicity.

This approach is applied to the results of the simulations of a single sphere and
to the quiescent and turbulent cases with φ = 0.5 % and 1 %. The inner radius of the
sampling shells is chosen to be 5 particle radii, and the results obtained are reported
in table 7. The single-sphere simulation provides an estimate of the error of the
method. Since our terminal Reynolds number is smaller than the critical Reynolds
number above which unsteady effects become important, and our velocity field is
indeed steady, the term Ψ (t) should be negligible. The critical Reynolds number Rec
has been found to be approximately 274 by Bouchet et al. (2006), while we recall
that our terminal Reynolds number for the isolated particle is 200. The nonlinear
steady term provides in this case, however, an overestimated value of the drag, with
a percentage error of approximately +3 % with respect to the buoyancy term. The
possible causes of this error are the long wake and the fact that (2.8) is empirical.
The data from the single-particle simulations are used to correct the results from
the other runs, i.e. the data are normalized with the total drag obtained in this case.
In the quiescent case at φ = 0.5 %, unsteady effects are negligible (approximately
0.5 % of the total drag), while they increase to approximately 6 % on increasing the
particle evolve fraction to 1 %. In a turbulent flow, importantly, we notice that the
contribution of Ψ (t) adds up to approximately 10 % of the total at φ = 0.5 % and to
approximately 12 % of the total at φ = 1 %.

It should be noted that one can write the steady drag as mean and fluctuating
components,

S (Rep)= 〈|Urel|UrelCD0(Rep)〉 = 〈Urel〉2CD0(〈Rep〉)+S ′(〈Rep〉). (3.13)

The fluctuations S ′(〈Rep〉) would be responsible for the reduction of the settling
velocity if this were to be attributed to nonlinear drag effects only (see also Wang &
Maxey 1993). We verified that for our results the total and mean components differ
by approximately 2 %, 〈|Urel|UrelCD0(Rep)〉 ≈ 〈Urel〉2CD0(〈Rep〉). This leads us to the
conclusion that the main contribution to the overall drag is due to the steady term,
but the reduction of the mean settling velocity in a turbulent environment is almost
entirely due to the various unsteady effects. These can be related to unsteady vortex
shedding, see figure 13, as in the experiments on a single sphere by Mordant &
Pinton (2000). These observations are also in agreement with the results of Homann
et al. (2013). These authors observed that the enhancement of the drag of a sphere
towed in a turbulent environment can be explained by the modification of the mean
velocity and pressure profile, and thus of the boundary layer around the sphere, by
the turbulent fluctuations.
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4. Final remarks
We report numerical simulations of a suspension of rigid spherical slightly heavy

particles in a quiescent and turbulent environment using a direct-forcing immersed
boundary method to capture the fluid–structure interactions. Two dilute volume
fractions, φ = 0.5 % and 1 %, are investigated in quiescent fluid and homogeneous
isotropic turbulence at Reλ = 90. The particle diameter is of the order of the Taylor
length scale and approximately 12 times the dissipative Kolmogorov scale. The ratio
between the sedimentation velocity and the turbulent fluctuations is approximately
3.4, so that the strongest fluid–particle interactions occur at approximately the Taylor
scale.

The choice of the parameters is inspired by the reduction in sedimentation velocity
observed experimentally in a turbulent flow by Byron (2015) and in the group of
Professor Variano at UC Berkeley. In the experiment, the isotropic homogeneous
turbulence is generated in a tank with dimensions of several integral length scales by
means of two facing randomly actuated synthetic jet arrays (driven stochastically). The
Taylor microscale Reynolds number of the experiment is Reλ = 260. Particle image
velocimetry using refractive-index-matched hydrogel particles is used to measure the
fluid velocity and the linear and angular velocities of finite-size particles of diameter
of approximately 1.4 Taylor microscales and density ratios ρp/ρf = 1.02, 1.006 and
1.003. The ratio between the terminal quiescent settling velocity vt and the turbulence
fluctuating velocity u′ is approximately 1, higher than in our simulations where this
ratio is 3.3. Byron (2015) observes reductions of the slip velocity of between 40 %
and 60 % on varying the shape and density of the particles. As suggested by Byron
(2015), the larger reduction in settling velocity observed in the experiments is most
likely explained by the larger turbulence intensity.

The new findings reported here can be summarized as follows. (i) The reduction
of settling velocity in a quiescent flow due to the hindering effect is reduced at
finite inertia by pair interactions, e.g. drafting–kissing–tumbling. (ii) Due to these
particle–particle interactions, sedimentation in a quiescent environment presents
significant intermittency. (iii) The particle settling velocity is further reduced in a
turbulent environment due to unsteady drag effects. (iv) Vortex shedding and wake
disruption are observed also in subcritical conditions in an already turbulent flow.

In a quiescent environment, the mean settling velocity slightly decreases from the
reference value pertaining to a few isolated particles when the volume fraction φ =
0.5 % and φ = 1 %. This limited reduction of the settling velocity with the volume
fraction is in agreement with previous experimental findings in inertialess and inertial
flows. The Archimedes number of our particles is 21 000, in the steady vertical regime
before the occurrence of a first bifurcation to an asymmetric wake. In this regime,
Uhlmann & Doychev (2014) observe no significant particle clustering, which is is
confirmed by the present data.

The skewness and flatness of the particle velocity reveal large positive values in a
quiescent fluid, and accordingly the velocity probability distribution functions display
evident positive tails. This indicates a highly intermittent behaviour. In particular, it
is most likely to see particles sedimenting at a velocity significantly higher than the
mean; this is caused by the close interactions between particle pairs (and more seldom
triplets). Particles approaching each other draft–kiss–tumble while falling faster than
the average.

In a turbulent flow, the mean sedimentation velocity further reduces, to 0.88 and
0.86 at φ = 0.5 % and φ = 1 %. The variances of both the linear and the angular
velocity increase in a turbulent environment, and the single-particle time correlations
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decay faster due to the turbulence mixing. The velocity p.d.f.s are almost symmetric
and tend towards a Gaussian of corresponding variance. The particle lateral dispersion
is, as expected, higher in a turbulent flow, whereas the vertical one is, surprisingly,
of comparable magnitude in the two regimes; this can be explained by the highly
intermittent behaviour observed in the quiescent fluid.

We compute the averaged relative velocity in the particle reference frame and
the fluctuations around the mean. We show that the wake behind each particle is
on average significantly reduced in the turbulent flow, and large-amplitude unsteady
motions appear on the side of the sphere in the regions of minimum pressure where
vortex shedding is typically observed. The effect of a turbulent flow on the damping
of the wake behind a rigid sphere has been discussed, for example, by Bagchi &
Balachandar (2003), while the case of a spherical bubble has been investigated by
Merle, Legendre & Magnaudet (2005). Using the slip velocity between the particle
and the fluid surrounding it, we estimate the nonlinear drag on each particle from
empirical formulae and quantify the relevance of non-stationary effects on the particle
sedimentation. We show that these become relevant in the turbulent regime, amount
to approximately 10–12 % of the total drag, and are responsible for the reduction of
settling velocity with the respect to the quiescent flow. This can be compared with the
simulations of Good et al. (2014), who attribute the reduction of the sedimentation
velocity of small (2a<η) heavy (ρp/ρf ≈ 900) spherical particles in turbulence to the
nonlinear drag. Here, we show that non-stationary effects become relevant for larger
particles at lower density ratios.

The present investigation could be extended in a number of interesting directions.
Preliminary simulations reveal that variations of the density ratio at constant
Archimedes number do not significantly modify the results presented here. It would
therefore be interesting to investigate the effect of the Galileo number on the particle
dynamics and of the ratio between turbulent fluctuations and sedimentation velocity.
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