
J. Fluid Mech. (2017), vol. 818, pp. 623–645. c© Cambridge University Press 2017
doi:10.1017/jfm.2017.148

623

Turbulent channel flow of a dense binary mixture
of rigid particles

Iman Lashgari1,†, Francesco Picano2, Pedro Costa3, Wim-Paul Breugem3

and Luca Brandt1

1Linné FLOW Centre and SeRC (Swedish e-Science Research Centre), KTH Mechanics,
SE-100 44 Stockholm, Sweden

2Department of Industrial Engineering, University of Padova, Padova, Italy
3Laboratory for Aero and Hydrodynamics, Delft University of Technology, Delft, The Netherlands

(Received 22 August 2016; revised 28 February 2017; accepted 1 March 2017;
first published online 5 April 2017)

We study turbulent channel flow of a binary mixture of finite-sized neutrally buoyant
rigid particles by means of interface-resolved direct numerical simulations. We
fix the bulk Reynolds number and total solid volume fraction, Reb = 5600 and
Φ = 20 %, and vary the relative fraction of small and large particles. The binary
mixture consists of particles of two different sizes, 2h/dl = 20 and 2h/ds = 30 where
h is the half-channel height and dl and ds the diameters of the large and small
particles. While the particulate flow statistics exhibit a significant alteration of the
mean velocity profile and turbulent fluctuations with respect to the unladen flow, the
differences between the mono-disperse and bi-disperse cases are small. However, we
observe a clear segregation of small particles at the wall in binary mixtures, which
affects the dynamics of the near-wall region and thus the overall drag. This results
in a higher drag in suspensions with a larger number of large particles. As regards
bi-disperse effects on the particle dynamics, a non-monotonic variation of the particle
dispersion in the spanwise (homogeneous) direction is observed when increasing the
percentage of small/large particles. Finally, we note that particles of the same size
tend to cluster more at contact whereas the dynamics of the large particles gives the
highest collision kernels due to a higher approaching speed.

Key words: multiphase and particle-laden flows, turbulent flows

1. Introduction
The turbulent flow of particle suspensions is a complicated problem in fluid

mechanics because both turbulence and the behaviour of particles in suspensions are
not completely understood and the combination of the two raises new significant
challenges (Balachandar & Eaton 2010; Prosperetti 2015). Despite its complexity, this
flow serves many natural and practical applications from pyroclastic and sedimentation
flows to fluidised beds, hopper dredgers and slurry transports (Eckstein, Bailey
& Shapiro 1977). In this work, we employ direct numerical simulations to study
turbulent particulate channel flow where the particles have two different sizes, i.e.
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binary mixtures. The fully resolved simulation of the dispersion of thousands of rigid
particles in a turbulent flow enables us to gain new understanding of the microphysics
of the problem, developing theories and predicting the complex behaviour of the
system, (Campbell 1990; Lucci, Ferrante & Elghobashi 2010).

The interactions between the particles and fluid depend strongly on the characteri-
stics of both the disperse and the continuous phases. If the volume fraction of the
particles is larger than a certain threshold, e.g. 10−3 according to the analysis in
Elghobashi (1994), full interactions between the two phases take place, leading to
the so-called four-way coupling regime. This condition is typical in many industrial
processes such as crystallisation and fluidised beds. To study numerically the fully
coupled regime of a suspension the classical point-particle models, based on Maxey
and Riley’s model (Maxey & Riley 1983), are no longer valid and direct numerical
simulations resolving the flow around each individual particle should be employed.
The same holds when the particle size is larger than the smallest scale in the flow,
even for dilute suspensions.

As regards suspensions of finite-sized particles, most of the previous studies are
conducted at zero or low inertia with the main focus on the rheological aspects of
the flow, in particular the particle distribution, effective viscosity and normal stress
differences (see Hampton et al. 1997; Stickel & Powell 2005; Brown & Jaeger 2009;
Morris 2009; Yeo & Maxey 2011, 2013). When inertia at the particle scale is large
enough, the symmetry of the flow around the particles is broken and this affects the
rheological behaviour of the suspension (Kulkarni & Morris 2008; Picano et al. 2013;
Haddadi & Morris 2014). Given the range of applications, suspensions flowing in the
inertial regime have been studied for a long time, starting from the seminal work
of Bagnold (1954) who performed experiments with suspensions of rigid particles
between two cylindrical drums. Bagnold defines two regimes at low and high shear
rates, the macro-viscous and grain inertia regimes, where the effective viscosity of
the suspension, measured by the wall shear stress, varies linearly and quadratically
with shear rate, respectively. Several decades later, Matas, Morris & Guazzelli (2003)
conducted experiments on suspensions of finite-sized particles in a pipe and reported
the critical threshold for the transition from the laminar to the turbulent regime as
a function of the particle size and volume fraction. Most importantly, these authors
observe that the critical threshold first decreases and then increases with the volume
fraction of the dispersed phase when the particles are large enough with respect to
the pipe diameter. The transition promotion is attributed to the disturbances induced
by the particles as well as to the breakdown of the flow coherent structures (see
Loisel et al. 2013; Lashgari, Picano & Brandt 2015). The simulations in Lashgari
et al. (2014) aimed to reproduce the experiments in Matas et al. (2003); these
allow the authors to introduce three different regimes: laminar, turbulent and inertial
shear thickening for channel flow laden with finite-sized neutrally buoyant particles
when varying the Reynolds number, Re, and the particle volume fraction, Φ. These
regimes are identified considering the different contribution of the viscous, Reynolds
and particle stresses to the stress budget of the two phase flow. The regimes are
characterised by different mechanisms governing the particle dynamics and present
different dispersion features (see Lashgari et al. 2016).

The recent advancement of computational resources and the improvement of the
numerical algorithms have allowed the scientific community to address turbulent flows
laden with thousands of finite-sized particles. In this respect, the early work of Ten
Cate et al. (2004) employs a lattice-Boltzmann scheme to simulate the motion of
finite-sized particles in an isotropic turbulent flow. These authors show that the kinetic
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energy and energy dissipation at wavelengths close to the particle size increase. This
finding has been confirmed experimentally by Bellani et al. (2012) for both spherical
and non-spherical particles. We use here the immersed boundary method, which was
first adopted by Uhlmann (2005) to simulate flow of rigid particles in suspension.
Uhlmann (2008) simulated thousands of finite-sized particles at moderately high
particle Reynolds number in a vertical turbulent channel flow mimicking the flow
in a fluidised bed. In this study, the appearance of large structures in the flow is
related to the instabilities induced by the particles while an apparent segregation of
the particles is not observed. Later, the same numerical approach has been employed
to simulate flow in other configurations such as turbulent particulate flow in an open
channel and sedimentation (Kidanemariam et al. 2013; Fornari, Picano & Brandt
2016b).

As regards turbulent channel flow laden with finite-sized particles, Picano, Breugem
& Brandt (2015) study the flow of neutrally buoyant particles at volume fractions
up to 20 %. They report that the particles alter the near-wall dynamics by increasing
the spacing of the streaks and reducing their velocity contrast. More importantly, the
log region in the mean fluid velocity profile changes considerably in the presence
of the particles. Despite the monotonic increase in the overall drag with the particle
concentration, these authors report a reduction of the turbulence activity at high
volume fractions. Recently, Fornari et al. (2016a) extended this first study considering
dense suspensions with different particle-to-fluid density ratios, R, up to 1000, yet
neglecting settling. This study shows that the excluded volume effect, i.e. the particle
volume fraction, determines the turbulence statistics, while the particle-to-fluid inertia
has negligible effect when R < 10. In addition, it is shown that strong particle
shear-induced migration to the channel centreline occurs for the case of R= 10 and
the particle dynamics decouples from the fluid at R= 1000, but not vice versa.

Theoretical analysis of the multi-scale dynamics of the unladen turbulent channel
flow in the framework of the so-called ‘law of the wall’ results in a reasonable
prediction of the wall shear stress as a function of bulk Reynolds number; a commonly
used approximate relation for the friction Reynolds number is Reτ = 0.09(Reb)

0.88

(Pope 2000). Being able to extend this law to the turbulent particulate channel flow
is desirable to avoid the massive numerical and experimental investigations needed to
understand the characteristics of the flow in different conditions. Recently Costa et al.
(2016) proposed a new theoretical framework to estimate the bulk behaviour, overall
drag and mean velocity profile of turbulent channel flow laden with mono-disperse
neutrally buoyant rigid particles. These authors show that the channel can be divided
into a near-wall region where the particles form an evident layer and the rest of
the channel where the particle distribution is homogenised. The thickness of the
near-wall region is modelled as a function of particle size and volume fraction. As
we will show here, the proposed model contributes directly to the understanding of
the behaviour of the wall friction in a bi-disperse turbulent suspension as well, when
properly accounting for the particle size distribution.

In almost all of the studies mentioned above, either in the laminar or turbulent
regime, the particle phase is mono-disperse, i.e. particles have the same size. This
assumption is not valid in many applications where suspensions contain a wide
range of particle sizes. Polydispersity introduces additional non-uniformity in the
flow that may affect the particle dynamics as well as turbulent flow dynamics
(Marchioro, Tanksley & Prosperetti 2000). Hence, the aim of the present study is to
assess similarities and differences between mono-disperse and bi-disperse turbulent
suspensions. As a first step, we therefore consider the simpler case of binary mixtures
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and perform simulations of turbulent channel flow of bi-disperse particle suspensions
at fixed bulk Reynolds number, Reb = 5600, and total volume fraction, Φ = 0.2. At
this concentration, the effect of the particle-induced stress on the momentum transfer
across the channel becomes important, as shown by Picano et al. (2015). We vary
the ratio between the relative volume fraction of small and large particles. We focus
on the analysis of the bulk behaviour of the suspension flow and on the particle
dynamics providing local concentration, dispersion and collisions to compare with
the studies by Picano et al. (2015), Lashgari et al. (2016). This work can be seen
as a step forward in exploring the wide parameters space of particulate flows in the
journey towards the more realistic simulations of suspensions (Prosperetti 2015).

The paper is organised as follows. We discuss the governing equations and
numerical method in § 2, whereas the flow configuration and simulation specifications
are reported in § 3. The results of the simulations are presented in § 4 with conclusions
and final remarks discussed in § 5. Results pertaining binary mixtures in the laminar
regime are reported in the appendix and used as a reference when discussing the
results for the turbulent flow.

2. Governing equations and numerical method
We study a turbulent channel flow laden with a binary suspension of finite-sized

particles where the carrier phase is a Newtonian and incompressible fluid and the solid
phase is constituted by rigid, neutrally buoyant spheres. The fluid flow is governed by
Navier–Stokes and continuity equations,

ρ

(
∂u
∂t
+ u · ∇u

)
=−∇P+µ∇2u+ ρf , ∇ · u= 0, (2.1)

where µ and P indicate the fluid dynamic viscosity and pressure and ρ is the density
of both fluid and particles. The coordinate system and velocity components are
denoted by X = (x, y, z) and u= (u, v, w) corresponding to streamwise, wall-normal
and spanwise directions. A localised force f is added on the right-hand side of
the Navier–Stokes equation to treat the presence of finite-sized particles by means
of an immersed boundary method. The motion of the particles is governed by the
Newton–Euler equations,

mp dUp
c

dt
=
∮
∂Vp

[−PI+µ(∇u+∇uT)] · ndS+Fc,

Ip dΩΩΩp
c

dt
=
∮
∂Vp

r× {[−PI+µ(∇u+∇uT)] · n} dS+ Tc,

 (2.2)

where the mass, moment inertia, centroid velocity and angular velocity of the particle
p are denoted by mp and Ip, Up

c and ΩΩΩp
c , respectively. The surface of the particles

and unit normal vector are denoted by ∂Vp and n, whereas the vector connecting
the centre to the surface of the particles is indicated by r. The first term on the
right-hand side of these equations represents the net force/moment on the particle
p resulting from the surrounding flow. The second term, Fc and Tc, represent the
force and torque resulting from short-range interactions, lubrication and collisions. The
interface condition is introduced to enforce the fluid velocity at each point on the
particle surface to be equal to the particle velocity at that point, u(X) = Up(X) =
Up

c +ΩΩΩp
c × r. The immersed boundary method (IBM) with direct forcing developed
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by Uhlmann (2005) and modified by Breugem (2012) is employed to integrate the
particle motion and satisfy the interface condition by the forcing f in the vicinity of
each particle surface.

The fluid flow dynamics is solved by discretising the incompressible Navier–Stokes
equations with a second-order finite difference method on a staggered grid. The solver
is based on the discrete forcing method to simulate neutrally buoyant particles with
second-order spatial accuracy (Mittal & Iaccarino 2005; Breugem 2012). Two sets of
grid points are considered: an Eulerian fixed and equispaced three-dimensional mesh
and a set of Lagrangian points uniformly distributed on the surface of each particle.
The Eulerian and Lagrangian grid points communicate to compute the immersed
boundary (IB) forcing and ensure the no-slip and no-penetration boundary conditions
on the surface of the particles. The IB force is then applied on both fluid and solid
phases to evolve velocities and positions.

When the gap width between two particles (or particle–wall) becomes less than a
threshold value, ε, the IBM underestimates the actual lubrication force. Therefore, a
resolution-dependent lubrication correction is included at small ε as a function of the
gap width. This correction is kept constant below a second threshold to represent the
surface roughness. When ε 6 0, a collision takes place; in this case, the lubrication
correction is turned off and a collision force is activated (see the appendix of Lambert
et al. 2013, for more details). The collision force is computed based on the particle
relative velocity and overlap. We use here the soft-sphere collision model described
in the recent work by Costa et al. (2015) where a mass–spring–damper system in
the directions normal and tangential to the contact line between the two overlapping
spheres (or sphere–wall) governs the dynamics of the collision. Since the collision
time is generally much smaller than the viscous relaxation time, even for a wet
collision, the collision model allows us to stretch the collision time artificially so
as to avoid the limiting restrictions of the numerical time step. The accuracy of
the collision model has been tested against several benchmark cases in Costa et al.
(2015).

3. Computational set-up

We simulate suspensions of neutrally buoyant finite-sized particles in a plane
channel with periodic boundary conditions imposed in the streamwise and spanwise
directions. The computational domain has size 6 h × 2 h × 3 h in the streamwise,
wall-normal and spanwise directions where h is the half-channel height. We simulate
the flow at bulk Reynolds number, Re = 2h Ub/ν = 5600, where Ub is the bulk
velocity of the entire mixture and ν the fluid kinematic viscosity. The simulations are
performed forcing the bulk velocity to Ub= 1. This corresponds to a friction Reynolds
number, Reτ = 180 in the unladen case. We use a resolution of 1440× 480× 720 grid
points in the streamwise, wall-normal and spanwise directions. For all the particulate
cases this gives a grid spacing of 1x+ =1y+ =1z+ 6 1, a value below the criteria
to ensure fully resolved simulation of the turbulent flow in a channel. The choice
of the number of grid points is determined by the minimum resolution required to
resolve the flow around the smallest particle in the domain.

The solid phase consists of spherical particles of two different sizes, 2h/ds = 30
and 2h/dl= 20, where ds and dl are the diameter of the small and the large particles.
The two type of particles considered have therefore a ratio of diameters of 1.5, which
corresponds to larger particles with volume 3.375 times that of the small particles.
These values of the particle diameter correspond to 16 and 24 Eulerian grid points,
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Case name 0–100 25–75 50–50 75–25 100–0

Φs 0.2 0.15 0.1 0.05 0
Φl 0 0.05 0.1 0.15 0.2
nps 46 140 34 807 23 205 11 602 0
npl 0 3 438 6 875 10 313 13 751

TABLE 1. Parameters of the five simulations of turbulent flow of bi-disperse suspensions;
Φs: volume fraction of small particles, Φl: volume fraction of large particles, nps: number
of finite-sized small particles and npl: number of finite-sized large particles. The solid
volume fraction is fixed to Φ = 20 % for all cases.

respectively. The communication between the solid surface and the surrounding flows
occurs via 746 and 1721 Lagrangian grid points located on the particle surface. The
number of Lagrangian grid points provides a similar spacing on the surface of the
particles as the one of the Eulerian points, which contributes to an accurate exchange
of the forces between the two phases. The total particle volume fraction is kept
constant to Φ = 0.2, while the ratio between the volume fraction of the small-to-large
particles is changed in the different simulations performed. The details of the five
simulations of a particle-laden flow presented in the present work are reported in
table 1; the case names reflect the percentage of the volume fraction occupied by
large and small particles. The two cases 0–100 and 100–0 correspond therefore to
mono-disperse suspensions of only small and large particles, respectively.

The simulations are initialised with a semi-organised (lattice-like) arrangement of
the particles in the entire domain together with a high amplitude localised disturbance
in the form of two counter-rotating streamwise vortices (Henningson & Kim 1991).
These vortices efficiently trigger transition to turbulence in the domain and mix the
small and large particles. Each simulation is run using 480 cores for approximately 4
weeks. The statistics are computed after the initial transient phase using 100 snapshots
over approximately 230 bulk-flow time units, 2h/Ub. We display in figure 1, the time
history of the box-averaged fluid velocity fluctuations for the case 0–100. Velocity
fluctuations are scaled by Ub whereas time is shown in bulk-flow units, 2h/Ub. The
statistics are calculated using the data after the initial transients, indicated by the
vertical dashed line. Convergence tests are carried out by comparing the statistics
calculated with half of the number of data points.

4. Results
First we show in figure 2 a visualisation of the instantaneous flow for a binary

mixture with equal volume fraction of small and large particles: case 50–50. We
display the colour contours of the streamwise velocity of the mixture in a wall-normal
and wall-parallel plane. The mixture velocity is obtained averaging the fluid and
particle velocities in the domain. In the wall-parallel plane close to the bottom wall
of the channel we observe the classical streaky structures, elongated in streamwise
directions. These streaks are created by the lift-up mechanism and serve as engine
for sustaining the turbulence (Brandt 2014). The presence of the particles alters the
features of the streaks by increasing the spacing and decreasing the contrast between
the region of high and low velocities, see also Picano et al. (2015) for mono-disperse
suspensions. In the figure, we also display the particle position over one-fourth
of the domain for the sake of clarity. The distribution of both the small and the
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FIGURE 1. (Colour online) Time history of the fluid velocity fluctuations for the case
0–100. The velocity fluctuations are scaled by Ub whereas time is shown in bulk-flow
units, 2h/Ub.

FIGURE 2. (Colour online) Instantaneous flow visualisation for a binary mixture with
equal volume fraction of small and large particles: case 50–50. The contour plot shows
the streamwise velocity of the mixture in a wall-normal and wall-parallel plane. The
arrangement of the particles is shown only over one-fourth of the domain for the sake of
clarity. The ratios between the channel height and the diameter of green and pink particles
are 20 and 30 respectively.

large particles is almost uniform in the middle of the channel. However, stronger
segregation of small particles in the near-wall region is evident as we will show in
more detail in the following. A similar behaviour is observed by visualising the flow
from the other simulations (not shown here).

4.1. Mean velocity and particle distribution
In figure 3(a,b), we display the mean streamwise fluid velocity profile for the five
cases under investigation. We also include the velocity profile of an unladen turbulent
channel flow at the same bulk Reynolds number, Reb = 5600, indicated with the
dashed line. We recall that all the simulations are performed by enforcing a constant
mass flux. The fluid statistics are obtained by averaging in the streamwise and
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FIGURE 3. (Colour online) Mean fluid and particle velocity profiles of particulate and
unladen turbulent flow cases, (a,c) in outer scaling (b,d) in inner scaling.

spanwise directions over the points outside the particles and by temporal averaging.
Although the mean velocity profile for the particle-laden turbulent flows exhibit a
strong modification with respect to the case of turbulent unladen flows, the difference
between the particulate cases is not significant. In figure 3(a) we note that the mean
velocity profile of the particulate flow is less blunt and more similar to a laminar flow
with higher velocity toward the channel centre. This behaviour is slightly accentuated
in suspensions with higher concentration of large particles. This suggests that the
turbulent activity is reduced in the presence of the solid phase, the more so for
larger particles. In figure 3(b) we present the mean velocity profile of particulate and
unladen cases scaled in inner units, i.e. U+f =Uf /uτ and y+= yuτ/ν with uτ =√τw/ρ

the friction velocity and τw the wall shear stress. The inner-scaled velocity profiles of
the particulate cases are lower than those of the unladen flow indicating an increase
in the wall shear stress in the presence of particles. The log profile in the classical
unladen turbulent flow reads U+= (1/κ)ln y++B where κ is the von Kármán constant
and B is an additive coefficient (Pope 2000). Here we obtain, similar to Picano et al.
(2015), that the slope of the log region increases while the additive constant reduces
significantly, which results in an overall drag enhancement. No significant differences
emerge among the different cases. We therefore conclude that the mean flow velocity
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of the turbulent channel flow is definitely controlled by the volume fraction of the
solid phase, while the bi-dispersity of the suspensions plays a minor role.

Figure 3(c) shows the mean velocity of the dispersed solid phase. Particle statistics
are obtained by spatial averaging over the points inside the particles and then by
temporal averaging. The data in the figure reveal, overall, a similar behaviour for the
different particle-laden flows. Comparing with the data in figure 3(a) one finds that
slip between the fluid and particle velocities is evident close to the wall whereas this is
almost zero in the core of the channel. The slip velocity is thus driving the dynamics
near the wall, as further discussed below. As shown in the inset of figure 3(d), the
particle slip velocity at the wall increases monotonically when increasing the ratio
between the volume fraction of large-to-small particles. This is attributed to the fact
that larger particles forming the near-wall layer reach larger distances from the wall
where they are exposed to higher flow velocity (see Picano et al. 2015; Costa et al.
2016).

We employ a phase indicator function to calculate the local volume fraction profile
across the channel. The indicator function assumes for each computational cell in
the domain values of Ψ = 1, Ψ = 0 or 0 < Ψ < 1 if the cell is located inside
the particle, in the fluid phase or is cut by the interface. Taking average of the
phase indicator function in the streamwise and spanwise (homogenous) directions
followed by a time averaging, we obtain the particle concentration profile across
the channel. We normalise the profile such that its mean value is equal to the total
particle concentration. Although the particle centre cannot get closer than a particle
radius to the wall, we still have non-zero values of the indicator function close to
the wall, and thus non-zero local volume fraction. The wall-normal profile of local
mean solid volume fraction φ(y) is displayed in figure 4(a) for the five suspensions
considered here. Note that the horizontal axis is shown in logarithmic scale to ease
the comparison in the near-wall region. For all cases the local concentration is
characterised by a homogenous particle distribution in the bulk of the flow due to
the action of turbulent mixing. A different behaviour is observed in the near-wall
region where an inhomogeneous distribution occurs. In particular, we find a local
maximum of φ(y) close to the wall, lower than the value of the bulk concentration,
followed by a local minimum. In mono-disperse suspensions, the location of the
maximum occurs at a wall distance slightly larger than a particle radius, while
the minimum of φ occurs around one particle diameter away from the wall. This
behaviour is attributed to the formation of a near-wall layer induced by the planar
wall symmetry and the excluded finite volume of the rigid particles, as noted in
Picano et al. (2015). Bi-disperse suspensions show a progressive modification from
the case of mono-disperse suspensions of small particles to that of large particles; in
particular the location of the first maximum of φ(y) indicates that smaller particles
show a higher accommodation at the wall. The bi-dispersity however tends to smear
out the near-wall volume fraction profile.

In figure 4(b) we show, separately, the concentration profile of small and large
particles for all the cases. We note that the smaller particles tend always to form a
layer, while layering is absent for the larger particles when these are in a bi-disperse
suspensions and for lower values of their volume fraction. To better understand the
effect of the bi-dispersity on the particle layering we show in figure 4(c) the local
volume fraction of small and large particles normalised by their bulk values. It is
clear from this figure that bi-dispersity tends to reduce or even destroy the wall layer
of the larger particles while promoting the layering of the smaller particles near the
wall. Hence for bi-disperse cases the near-wall dynamics tends to be controlled by the
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FIGURE 4. (Colour online) Profile of local volume fraction for the five simulated
suspensions: (a) total volume fraction, (b) volume fraction of small and large particles
separately, (c) volume fraction of small and large particles normalised by their bulk value.

smaller particles that concentrate more at the wall. As we will discuss in analogy with
the work by Costa et al. (2016), the near-wall layering dynamics plays a crucial role
in determining the overall suspension drag.

Segregation of small and large particles in different spatial locations is a well-known
phenomenon and has been already explored in the seminal experimental study of
Bagnold (1954). Performing an experiment on the slope of falling sand with mixed
sizes, it is observed that the smaller grains tend to migrate towards regions of
highest shear while the larger particles accumulate in regions of lower shear. This
has been attributed to the proportionality of the disperse phase pressure to the square
of the grain diameter. Larger particles will be pushed away from regions of high
shear rate by the stronger dispersive pressure (see Schlick et al. 2016, for recent
theoretical analysis on this aspect). Even though a turbulent flow tends to redistribute
the particles and to weaken this effect, we still observe segregation of small/large
particles at the wall/centre region of the channel, an observation consistent with the
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FIGURE 5. (Colour online) (a) Profiles of the mean particle number density, n̄, (b)
normalised mean particle number density, n̄/n0, across the channel at Reb = 5600.

findings by Bagnold. To further support this, we discuss the concentration profile of
binary mixture suspensions in laminar flows, Reb = 1000, in appendix appendix A.

Here, we also examine the particle number density across the channel as an
alternative measure of the particle distribution. In this case, we consider only particle
centres and compute the spatial and time average of their wall-normal positions. In
figure 5(a), we show the profile of the mean particle number density, n̄, of small and
large particles for the five turbulent cases studied. This is computed by counting the
mean number of particle centres at each wall-normal station per unit volume. For
each case, the peak of the mean number density occurs at a distance to the wall
equal to the particle radius. Small particles are predominant close to the wall in cases
25–75 and 50–50. This is not true for the case 75–25 where the number of small
and large particles close to the wall is of the same order. This result is in line with
that of the local volume fraction reported in the previous figure. In panel (b) we
normalise the data of panel (a) by the corresponding bulk value, n̄/n0. Similarly the
high traffic of small particles close to the wall is evident.

4.2. Overall drag
The mean velocity profile and the overall drag of a turbulent channel flow are directly
connected to the inhomogeneous multi-scale dynamics of the turbulent flow. In wall
turbulence, it is common to define a bulk Reynolds number, Reb, representing a
dimensionless form of the flow rate and the friction Reynolds number, Reτ = uτh/ν,
as a dimensionless measure of the overall drag. Based on well-established empirical
correlations, (e.g. Pope 2000), it is possible to relate the two numbers for the case
of the unladen turbulent plane channel flow,

Reτ = uτh/ν = 0.09(Reb)
0.88. (4.1)

When a turbulent flow with suspended particles is considered, the relation (4.1) needs
to be modified to consider the rheological properties of the suspension. Laminar
suspensions are characterised by a monotonic increase of their effective viscosity as
a function of the volume fraction of the dispersed phase. The effective viscosity
of the suspension in laminar condition has been first predicted in the seminal
work by Einstein (1906) for the dilute regime in the form of a linear correction,
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νe = ν(1 + 2.5Φ). Later on Batchelor & Green (1972) considered pair interactions
and derived a second-order correction in the volume fraction valid for semi-dilute
suspensions. In the dense regime, however, only empirical fits are available, among
others the Eilers fit,

νe = ν
(

1+ 5/4
Φ

1−Φ/Φmax

)2

, (4.2)

where Φmax ≈ 0.6 is the maximum packing fraction of particles (Stickel & Powell
2005). Note that Mwasame, Wagner & Beris (2016) have recently introduced a
weighting function β, describing the effects of size ratio and volume fraction ratio on
the effective viscosity of binary suspensions. Interestingly, this model shows that for
concentrations Φ < 0.3, the effect of particle bi-dispersity on the effective viscosity
of the suspension is negligible, i.e. β ≈ 1. Thus, in our study at Φ = 0.2, we safely
estimate the effective viscosity using (4.2). When inertia dominates the dynamics,
deviations from the empirical fits valid in viscous regimes have been reported by
several authors, e.g. inertial shear thickening (e.g. Kulkarni & Morris 2008; Yeo &
Maxey 2011; Picano et al. 2013).

The situation becomes even more complicated in turbulent flows laden with particles
larger than the smallest hydrodynamic scales. As discussed in Picano et al. (2015),
Prosperetti (2015), the turbulent friction Reynolds number cannot be predicted by only
taking into account the effective viscosity of the suspension,

Ree,exp
τ = 0.09(Rebν/νe)

0.88, (4.3)

where Ree,exp
τ is the expected suspension friction Reynolds number which accounts

for the suspension dynamics only by considering the suspension effective viscosity.
Applying the formula above, the friction Reynolds number pertaining the cases
considered here would be Ree,exp = 101.7, obtained using νe ' 1.9ν. This should be
compared with the values of the effective friction Reynolds number Ree

τ = uτh/νe
extracted from direct numerical simulation (DNS) of the present bi-disperse cases and
reported in figure 6 where all values are higher than what is predicted from (4.3). In
addition, the flow shows a dependence on the particle size which is not accounted for
by (4.3). As shown here and in the previous works mentioned above, the presence of
finite-sized spherical particles increases the overall drag more than what is predicted
considering only the effective viscosity. An interesting exception is provided by the
case of oblate disc-like particles, see Ardekani et al. (2016).

To explain these observations, a new theoretical framework has been recently
proposed by Costa et al. (2016) to extend the law of the wall for the turbulent
channel flow of finite-sized mono-disperse rigid spheres. The underlying idea is that
the formation of a particle layer at the wall creates an additional source of drag. In
the formula proposed by these authors, the overall stress is assumed to depend on the
Reynolds number, the volume fraction and the particle size that together determine
the wall layer thickness (for the details of the derivations we refer the readers to
Costa et al. 2016). The formula reads

ReS
τ = Ree,exp

τ

(
1− δpw

h

)−3/2+0.88

, (4.4)

where the particle layer thickness δpw = C(Φ/Φmax)
(1/3)Dp and C ≈ 1.5. This has

been found to provide a good fit of data from simulations of particle-laden turbulent
channel flow for a reasonable range of volume fractions and Reynolds numbers.
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FIGURE 6. (Colour online) Effective friction Reynolds number pertaining the different
cases Ree

τ considered here and the predictions by the model of Costa et al. (2016).

Case name 0–100 25–75 50–50 75–25 100–0

De
p/h 0.066 0.066 0.071 0.081 0.1

TABLE 2. Effective particle diameter based on the location of local maximum in the
profile of the local concentration.

To extend this formula to bi-disperse suspensions we need to provide an ‘effective’
particle size in order to characterise the wall layer. Examining the local volume
fraction profiles in figure 4, we note that the distance between the local maximum
and the wall is proportional to the particle diameter for mono-disperse cases. In our
simulations the constant of proportionality is obtained equal to 1.37. We therefore
assume the effective particle size, De

p, of the binary mixtures as the product of the
location of the local maximum in the concentration profile with the constant of
proportionality, 1.37. In table 2 we report the values of the effective particle diameter
pertaining each simulation normalised with half the channel height.

Using this definition, we note that De
p almost coincides with the smallest particle

diameter for the cases 0–100, 25–75 and 50–50; it then increases and reaches the
largest particle diameter for the 100–0 case, as expected. In figure 6, we report the
effective friction Reynolds number ReS

τ estimated from (4.4) with C' 1.33. We note
that the predicted values are in very good agreement with the DNS data. This analysis
also explains the trend for the variation of the overall drag observed in bi-disperse
suspensions when increasing the percentage of large particles.

4.3. Turbulent statistics
Next we examine the statistics of the turbulent flow. Figure 7 shows the root mean
square (r.m.s.) of the fluid velocity fluctuations for the five particulate cases in inner
units, together with the corresponding statistics for the unladen turbulent channel
flow at the same bulk Reynolds number, Reb = 5600. Comparing the statistics of the
particulate and the unladen flow we observe that the turbulence activity reduces in
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FIGURE 7. (Colour online) Profiles of the intensity of the fluid velocity fluctuation
components in (a) streamwise, (b) wall-normal and (c) spanwise directions scaled in inner
units. The data pertain to the different cases under investigation as indicated in the legend.

all the particulate flows, with lowered peaks. The mechanisms responsible for this
have been discussed in detail in the previous studies by Lashgari et al. (2014) and
Picano et al. (2015) for mono-disperse suspensions: this reduction is connected to
the increasing importance of particle stresses with respect to Reynolds stresses in the
momentum transfer. The profiles of the streamwise velocity fluctuations u′+, displayed
in figure 7(a), reveal that the wall-normal location of the peak is shifted toward the
channel centreline for the particulate flows. This can be explained by the formation
of the particle layers close to the wall that hinder the production of perturbation
kinetic energy from the mean flow. The maximum streamwise velocity fluctuation
is reduced for all cases and appear to be slightly higher for bi-disperse suspensions
with larger percentages of small particles. The opposite behaviour is observed for the
cross-stream velocity fluctuations, figure 7(b,c) where the peaks move toward the wall
with respect to the unladen flow. For these components, we note the opposite trend as
that of the streamwise fluctuations when varying the relative amount of large-to-small
particles. We infer that large particles arriving to or departing from the wall layer
induce a higher level of fluctuations in the cross-stream directions. Finally, we note
that very close to the wall higher fluctuations are present in the particle-laden cases,
which is attributed to the relatively large particle slip velocity and the squeezing
motion of the fluid between the wall and the particles.

The r.m.s. velocity fluctuations of the particle phase are shown in figure 8 in inner
units in order to have a direct comparison with those pertaining the fluid phase. First,
we observe that the fluctuations do not vanish at the wall, unlike those of the fluid
phase with the only exception of the wall-normal component. In the region close
to the wall where the first layer of particles is formed the streamwise and cross-
stream fluctuations of the case with all large/small particles are the largest/smallest,
see figure 8(a–c). This is attributed to the higher/lower slip velocity of the large/small
particles in the near-wall region. The opposite behaviour is observed in the core of
the channel where small particles are subjected to more agitation due to the turbulent
activity. Away from the near-wall region, the level of fluctuations of the particle phase
is generally lower than that of the fluid phase.
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FIGURE 8. (Colour online) Profiles of the intensity of the particle velocity fluctuation
components in (a) streamwise, (b) wall-normal and (c) spanwise directions scaled in inner
units. The data pertain to the different cases under investigation as indicated in the legend.
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FIGURE 9. (Colour online) (a) Particle mean square displacement 〈1z2
p〉 for the different

cases under investigation. (b) Dispersion coefficient, Dzz, in the spanwise direction versus
the relative particle volume fraction.

4.4. Particle dynamics
In this last part we focus on the particle dispersion dynamics by measuring the particle
lateral displacement, which results from particle–particle and particle–fluid interactions.
In this work we examine only the particle mean square displacement in the spanwise
direction to avoid inhomogeneous and mean flow effects that determine the motion
in the wall-normal and streamwise directions. We analyse separately the behaviour of
small and large particles in the binary suspensions. The mean square displacement
in the spanwise direction is defined by 〈1z2

p〉(1t) = 〈[zp(t + 1t) − zp(t)]2〉p,t where
zp is the vector containing the spanwise position of the particle centres and 1t is the
time interval. The ensemble average, 〈〉p,t is taken over all the particles and times after
a fully developed flow is established. For more details about particle dispersion and
diffusion we refer the readers to the works by Da Cunha & Hinch (1996) and Sierou
& Brady (2004).

The particle mean square displacement is shown in figure 9(a) versus time. Note
that the mean square displacement, 〈1z2

p〉, is normalised by (2h)2 whereas the time
is expressed in units of tref = dl/Ub. For all the cases, as expected, the particle mean
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square displacement varies initially quadratically in time, 〈1z2
p(1t)〉 ∝1t2, indicating

a high correlation in the particle trajectories at small intervals. Later on, the classical
diffusive behaviour takes over: the particle trajectories de-correlate and the mean
square displacement varies linearly with time. In the inset of the figure we report the
regime behaviour, the linear diffusive part, for the different particle-laden flows.

To better highlight the differences we provide in figure 9(b), the value of the
dispersion coefficient, Dzz, obtained by fitting the diffusive, long-time regime to a
straight line. As appreciated from the figure, a non-monotonic behaviour is observed.
Mono-disperse suspensions of either small or large particles show a similar value
of the diffusion coefficient. In bi-disperse suspensions, interestingly, the diffusion
coefficient of large and small particles is always close, with a slightly higher value
for the largest particles. We explain this non-monotonic behaviour by the following
arguments. Adding a small amount of bigger particles in a mono-disperse suspension
of small particles, as in the 25–75 case, we expect that the disturbances induced by the
large particles enhance the particle dispersion. Conversely, adding a small amount of
smaller particles to a mono-disperse suspension of large particles, as in the 75–25 case,
will reduce the overall dispersion because of the reduced mobility induced by the
smaller particles that are positioned among the larger ones. The peculiar picture of
the diffusion coefficient for bi-disperse suspensions can be explained considering
that these opposite trends need to match when the concentration of the two particles
are similar. Finally, we note that the non-monotonic behaviour of the dispersion
coefficient is observed for the particle size distribution studied here and may need
further investigations for different size distributions.

One interesting aspect of dense bi-disperse suspensions is the probability of
collision, which, in turns, depends on the particle-pair relative distribution and the
first-order velocity structure functions. For binary mixtures, we report the particle-pair
statistics by considering pairs consisting of (i) only two small particles, (ii) only
two large particles and (iii) one small and one large particle. The first step is to
examine the radial distribution function, g(r), as a function of the distance between
the centres of the particle pairs, r. The radial distribution function is a measure of
the non-uniformity of the particle distribution and is obtained by counting the average
number of particle pairs whose centres are at distance r with respect to the value
of a corresponding random distribution (see for more details Reade & Collins 2000;
Gualtieri et al. 2012). In mathematical form, g(r)= 1/An0dNr/dr, where A= 4πr2 is
the area of the shell around the reference particle, Nr is the number of the particle
pairs within a sphere of radius r and n0 = Np(Np − 1)/2V the density of the particle
pairs in the volume V with Np the total number of particles.

The relative position between the particles in the flow determines part of the
collision dynamics, but the full scenario becomes clear when considering also
the particle-pair relative velocity in the normal direction. The normal relative
velocity between the particle pair as a function of the distance r reads, dvn(r) =
(ui − uj) · ri − rj/|ri − rj|, where ui and ri are the velocity and position vector of
particle i. The multiplication of the ensemble average of the negative part of the
normal relative velocity, dv−n (r)= dvn(r)|<0, and the radial distribution function gives
the collision kernel: κ(r) = 〈dv−n (r)〉 · g(r). Note that the collision kernel is properly
defined at the pair contact; however here we use the extended formula as a function
of r to understand how the approaching dynamics governs the collisions.

We display the radial distribution function (RDF) pertaining the different bi-disperse
cases under investigation in figure 10(a). In this work, the particle-pair statistics are
reported only for the region in the middle of the channel, in the range 0.25< y/2h<
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FIGURE 10. (Colour online) (a) Radial distribution function (RDF) g(r) and (b) RDF at
pair contact for the five cases under consideration.

0.75, in order to exclude wall effects. We thus compare the particle dynamics in the
homogenous region of the channel. Note that here the average density of particle pairs
in this region is used in the calculation of n0. All the profiles are characterised by
strong segregation at r ' 2a where a is defined by the distance between the particle
pairs at contact in each case; i.e. all the profiles start at r= 2a corresponding to the
contact between the pairs. As r increases g(r) decreases and tends to unity when
r � 2a denoting a random distribution. As it can be seen in figure 10(b) where
the RDF is shown at r = 2a, increasing the percentage of large particles generally
increases the segregation at contact for all possible pairs. We note that for the
mono-disperse cases, the RDF at contact is higher for larger particles. For bi-disperse
suspensions, the pairs formed by large–large and small–small particles show higher
segregation than mixed pairs. Hence particles tend to cluster more with those of the
same size, probably because their dynamics is more similar.

The collision kernels for particles at contact are depicted in figure 11(a). The trend
is not the same as for the particle-pair segregation, indicating the importance of the
relative velocity for a collision to occur. In particular, we note that the normalised
probability of collisions is the highest for pairs of large particles, followed by the
probability of collisions between particles of different sizes and finally lowest for
pairs of only small particles. Since the collision kernel is determined by the RDF
times the average approaching velocity at contact, the observed differences are due
to the pair dynamics. In figure 11(b) we therefore show the absolute value of the
negative normal relative velocity as a function of the distance between particles. As
expected, the absolute relative velocities increases monotonically with r, see also
Lashgari et al. (2016); however the rate is different for different particle sizes. Large
particles exhibit the highest normal relative velocities at all separation distances
while the opposite is true for small particles. This result is not surprising since
large particles have more inertia and are expected to collide even when starting at
larger separations, and the dynamics at larger separation is dominated by the most
energetic large-scale turbulent fluctuations. As mentioned above, the product of the
relative approaching velocity and the RDF determines the collision kernel, whose
scale-by-scale behaviour is shown in figure 11(c). This quantity reduces decreasing
inter-particle distances until it reaches the value at contact shown in the panel (a).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

14
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 K
TH

 K
un

gl
ig

a 
Te

kn
is

ka
 H

og
sk

ol
an

, o
n 

30
 M

ay
 2

01
7 

at
 0

8:
56

:2
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

:/w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.148
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


640 I. Lashgari, F. Picano, P. Costa, W.-P. Breugem and L. Brandt

Small particles

Large particles

Small/Large particles

 0

0.005

0.010

0.015

0.020

 0.002

0.006

0.008

0.012

0.016

0.004

0.010

0.014

0.0180.025(b)

(a)

(c)

2 3 4 5 6 7 8 2 3 4 5 6 7 8

25

25

50

50

75

75

100

100

0

0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

(big particles)
(small particles)
(big particles)
(small particles)
(big particles)
(small particles)

Large particles

Small particles

FIGURE 11. (Colour online) (a) Collision kernel at contact, (b) particle relative normal
velocity and (c) extended collision kernel of the different particle pairs as a function of
the distance between the particle surfaces.

Finally we note that the negative (approaching) relative velocity of pair particles at
r ≈ 2a is small but not negligible. The relative velocities are reduced by the strong
lubrication force acting when the distance between the two particles is small. On the
other hand, the probability of finding pair particles at contact is high as shown in the
plot of the radial distribution function. Thus, on average, a third particle approaching
a pair feels the variation in the particle dynamics at r= 4a. This explains the change
in the slope of the relative velocity and collision kernel around r= 4a.

5. Conclusion and discussion
We study turbulent channel flow of binary mixtures of finite-sized particles

numerically. An immersed boundary method is employed to simulate the motion of
finite-sized neutrally buoyant spheres by ensuring that the no-slip and no-penetration
boundary conditions are satisfied on the surface of each particle. Short-range
interactions are modelled with an analytical lubrication force correction and a
soft-sphere collision model. The bulk Reynolds number and the total volume fraction
of the solid phase are kept constant, Reb= 5600 and Φ = 0.2, while the ratio between
the volume fraction of the small and large particles is varied. The ratio between
the channel height and the diameter of the large and small particles are 2h/ds = 30
and 2h/dl = 20, respectively. Five different particulate cases are simulated, denoted
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as 0–100, 25–75, 50–50, 75–25 and 100–0 according to the percentage of volume
fraction of small and large particles in the flow. In this study we have reported the
bulk behaviour of the flow, wall shear stress, turbulent statistics and particle dynamics
for the different cases considered.

The presence of the solid phase significantly alters the fluid mean velocity with
respect to that pertaining the unladen flow. In particular, the mean velocity profile
is less blunt and the additive constant, B, of the log profile, U+ = (1/κ)ln y+ + B,
decreases considerably. This indicates drag enhancement, as shown in Picano et al.
(2015) for mono-disperse particle suspensions. The particle mean velocity profile
shows large slip with respect to the fluid phase in the near-wall region and almost
no-slip in the bulk of the channel. The slip at the wall increases with the relative
percentage of large particles. Overall, the difference between the mean velocities of
the binary mixtures and of the two mono-disperse flows at the same total volume
fraction is small. A similar behaviour has also been observed by Richter, Garcia &
Astephen (2016) in simulations of dilute particulate turbulent flow with a two-way
coupling model. Therefore, we expect that the total particle volume fraction, and not
the bi-dispersity of the particles, plays a major role in the bulk-flow properties even
at low particle concentrations.

The profile of the local volume fraction is characterised by a homogenous particle
distribution in the main body of the flow due to the turbulent mixing, while an
inhomogeneous distribution is found near the wall where particle layering occurs.
Considering the distribution of large and small particles separately, we observe a
more intense layering of small particles. We remark that even in the case denoted
50–50, i.e. with equal volume fraction of small and large particles, the layering
appears essentially only in the small particle statistics, which therefore control the
near-wall dynamics. Similar observations are made when considering the profile of
the mean particle number density.

We observe that the wall shear stress of the suspension parameterised by the
friction Reynolds number does not change monotonically from the case of only
small to only large particles, at same total volume fraction. The three cases 0–100,
25–75, 50–50 share similar values, which are the lowest, while the case 100–0
exhibits the highest value of wall friction. Recently, a theoretical model has been
proposed by Costa et al. (2016) to predict the wall shear stress and the mean velocity
profile of turbulent suspensions of mono-disperse rigid particles. In the model two
modifications are considered with respect to the unladen turbulent channel flow, the
effective suspension viscosity and the formation of the particle layer at the wall,
whose thickness scales with the particle size. Here, we apply the same model to
estimate the friction Reynolds number of the binary mixtures. To this end, we define
an effective particle size responsible for the wall layering proportional to the distance
from the wall of the local maximum of the volume fraction. For all the cases under
investigation, the prediction obtained with this estimate of the thickness of the particle
layer shows a good agreement with the simulation data. We finally remark that just
using the effective viscosity the prediction is significantly underestimated, which
confirms the key role of the particle layer on the drag increase.

As concerns the fluid and particle velocity fluctuations, we observe that the
flow statistics vary monotonically between the two mono-disperse particulate
cases. Comparing the statistics of particulate and unladen flows, we note that the
turbulent activity reduces in the particulate cases when the particle stress becomes
non-negligible. The peak of the streamwise velocity fluctuations is shifted away from
the wall due to the formation of the particle layer that hinders the production of
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turbulent kinetic energy. The opposite is true for the wall-normal component since
the interactions between the particles and the wall increase the level of fluctuations
close to the wall. As regards the statistics of the particle phase, we note that the
fluctuations do not vanish at the wall; however similar to the fluid the particle
statistics change monotonically between the two mono-disperse particulate cases.

We also study the particle dynamics, i.e. particle dispersion and collisions for the
different particle-laden flows. We observe that the two mono-disperse cases show a
similar rate of particle dispersion in the spanwise direction, whereas a non-monotonic
behaviour characterises the bi-disperse mixtures. This is explained by the disturbances
introduced by the presence of particles of different sizes. We also study the particle
collision dynamics by computing the radial distribution function and average normal
relative velocity in the middle region of the channel, 0.25 6 y/2h 6 0.75. These
quantities are obtained separately for pairs consisting of two small, two large and one
small and one large particle. The highest collision kernel is obtained for large–large
particle pairs, followed by the mixed pairs and finally by the small–large particle
pairs. This trend is determined by the relative velocity of approaching particles that
is highest for larger particles. Conversely, we note from the RDF that particles of the
same size tend to be more clustered at contact.

To conclude, we observe that the major effect of bi-dispersity is in the near-wall
dynamics and in particular in the wall layering. This aspect has macroscopic
consequences such as the non-monotonic variation of the overall drag when changing
the relative percentage of small and large particles.
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Appendix A. Laminar flow of binary mixture of spheres
In this appendix, we discuss the results of simulations of binary mixtures in laminar

channel flow; i.e. we use the same set-up and specifications used for the turbulent
cases presented above and decrease the bulk Reynolds number to Reb = 1000. The
simulations are initiated from the turbulent cases: we observe the level of fluctuation
to decrease in time and then to level off. Once the steady state laminar condition is
reached, we compute the statistics presented here.

The wall-normal profiles of the local volume fraction for the five particulate cases
at Reb = 1000 are shown in figure 12(a). Comparing this result with the one of the
turbulent flows we observe a significantly stronger segregation of small particles close
to the wall. The introduction of large particles in the suspension pushes the small
particles away from the bulk of the flow towards the near-wall region. Indeed the
concentration of small particles is maximum at the wall and decreases monotonically
towards the centre of the channel. The strong particle–particle and particle–wall
interactions in the dense suspension move the position of the peak from (slightly
closer to the wall in this case) the equilibrium of a single sphere in Poiseuille flow
at the same Reynolds number (Segré & Silberberg 1961; Asmolov 1999). As regards
the concentration profile of the large particles, we also observe a second peak in
the region between the wall and the core of the channel. This peak is more evident
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FIGURE 12. (Colour online) (a) Profile of local particle concentration and (b) friction
Reynolds number for the five bi-disperse flows in laminar regime (Reb= 1000). In (a) the
contributions of small and large particles are shown separately.

for the case 25–75, when the number of large particles is lower. This finding is
in line with the experimental data of Matas, Morris & Guazzelli (2004) where the
formation of a second peak in the local volume fraction profile, close to the pipe
centre, is reported for large particles. The formation of the second peak is attributed
to the concavity of the lift force profile which is predicted by asymptotic theory for
channel flow at large Reynolds numbers. Since we compute the statistics after the
flow reaches statistically steady state, we believe the formation of the second peak is
not a transient phenomenon as it is questioned in the final discussion by Matas et al.
(2004).

In figure 12(b) we show the friction Reynolds number of the laminar cases
normalised by the effective viscosity of the suspension. The normalised wall shear
stress of the laminar cases are significantly lower than those of the turbulent flows.
This is directly connected to the reduction of the fluid and particle Reynolds stresses
in laminar condition. Unlike in the turbulent cases, the largest wall shear stress is
obtained for the case 0–100, i.e., only small particles. This is attributed to the higher
dissipation induced by small particles as these are characterised by largest surface
area for the same volume fraction, as indicated by Elghobashi (1994).
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