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A transition scenario initiated by streamwise low- and high-speed streaks in a flat-plate
boundary layer is studied. In many shear flows, the perturbations that show the highest
potential for transient energy amplification consist of streamwise-aligned vortices.
Due to the lift-up mechanism these optimal disturbances lead to elongated streamwise
streaks downstream, with significant spanwise modulation. In a previous investigation
(Andersson et al. 2001), the stability of these streaks in a zero-pressure-gradient
boundary layer was studied by means of Floquet theory and numerical simulations.
The sinuous instability mode was found to be the most dangerous disturbance. We
present here the first simulation of the breakdown to turbulence originating from
the sinuous instability of streamwise streaks. The main structures observed during
the transition process consist of elongated quasi-streamwise vortices located on the
flanks of the low-speed streak. Vortices of alternating sign are overlapping in the
streamwise direction in a staggered pattern. The present scenario is compared with
transition initiated by Tollmien–Schlichting waves and their secondary instability and
by-pass transition initiated by a pair of oblique waves. The relevance of this scenario
to transition induced by free-stream turbulence is also discussed.

1. Introduction
1.1. Natural transition

Transition from laminar to turbulent flow has traditionally been studied in terms of
exponentially growing eigensolutions to the linearized disturbance equations. Equa-
tions for the evolution of a disturbance, linearized around a mean velocity profile
were first derived by Lord Rayleigh (1880) for an inviscid flow; later Orr (1907)
and Sommerfeld (1908) included the effects of viscosity, deriving independently what
we today call the Orr–Sommerfeld equation. Assuming a wave-like form of the ve-
locity perturbation and Fourier transforming, the equation reduces to an eigenvalue
problem for exponentially growing or decaying disturbances. The first solutions for
unstable waves, travelling in the direction of the flow (two-dimensional waves), were
presented by Tollmien (1929) and Schlichting (1933). The existence of such solutions
(later called Tollmien–Schlichting waves) was experimentally verified by Schubauer
& Skramstad (1947) in a zero-pressure-gradient boundary layer.

If an amplified Tollmien–Schlichting wave grows above an amplitude in urms of
about 1% of the free-stream velocity, the flow become susceptible to secondary
instability. Klebanoff, Tidstrom & Sargent (1962) observed that three-dimensional
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perturbations, which are present in any natural flow, were strongly amplified. The
three-dimensional structure of the flow was characterized by regions of enhanced and
diminished perturbation velocity amplitudes alternating in the spanwise direction,
denoted by them ‘peaks and valleys’. The spanwise scale of the new pattern was of
the same order as the streamwise wavelength of the Tollmien–Schlichting (TS) waves
and the velocity time signal showed the appearance of high-frequency disturbance
spikes at the peak position. This transition scenario was later denoted as K-type
after Klebanoff and also fundamental since the frequency of the secondary, spanwise-
periodic, fluctuations is the same as that of the TS-waves. In the nonlinear stages of
the K-type scenario, rows of ‘Λ-shaped’ vortices, aligned in the streamwise direction,
have been observed. Another scenario was also observed, first by Kachanov, Kozlov
& Levchenko (1977). This is denoted N-type after Novosibirsk, where the experiments
were carried out or H-type after Herbert, who performed a theoretical analysis of
the secondary instability of TS-waves (Herbert 1983). In this scenario, the frequency
of the secondary instability mode is half that of the TS-waves and, thus, this is also
known as subharmonic breakdown. ‘Λ-shaped’ vortices are also present in this case,
but they are arranged in a staggered pattern. Theoretically, this scenario is more likely
to occur than the fundamental or K-type, because of its higher growth rate for TS
amplitudes of the order of 1% of the free-stream velocity. The temporal calculations
by Spalart & Yang (1987) also showed that this was the case. In experiments, however,
K-type is often seen in many cases where H-type is theoretically favoured, due to
the presence of low-amplitude streamwise vorticity in the background flow (Herbert
1988). A review on the physical mechanisms involved can be found in Kachanov
(1994).

Transition originating from exponentially growing eigenfunctions is usually called
classical or natural transition. This is observed naturally in flows only if the back-
ground turbulence is very small. For higher values, the disturbances inside the bound-
ary layer are large enough that other mechanisms play an important role and the
natural scenario is by-passed.

1.2. By-pass transition

1.2.1. Transient growth of streamwise streaks

In 1969 Morkovin coined the expression ‘by-pass transition’, noting that ‘we can
by-pass the TS-mechanism altogether’. In fact, experiments reveal that many flows,
including channel and boundary layer flows, may undergo transition for Reynolds
numbers well below the critical ones from linear stability theory. Ellingsen & Palm
(1975) proposed a growth mechanism, considering the inviscid evolution of an in-
itial disturbance independent of the streamwise coordinate in a shear layer. These
authors showed that the streamwise velocity component may grow linearly in time,
producing alternating low- and high-velocity streaks. Moffatt (see the review article
by Phillips 1969) also identified such a streak growth mechanism in a model of
turbulent uniform shear flow. Later Hultgren & Gustavsson (1981) considered the
temporal evolution of a three-dimensional disturbance in a boundary layer and found
that in a viscous flow the initial growth is followed by a viscous decay (transient
growth).

Landahl (1975, 1980) extended this result to the linear evolution of localized dis-
turbances and formalized a physical explanation for this growth. A wall-normal
displacement of a fluid element in a shear layer will cause a perturbation in the
streamwise velocity, since the fluid particle will initially retain its horizontal momen-
tum. It was observed that weak pairs of quasi-streamwise counter-rotating vortices are
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able to lift up fluid with low velocity from the wall and bring high-speed fluid towards
the wall, and so they are the most effective in forcing streamwise-oriented streaks
of high and low streamwise velocity. This mechanism, denoted the lift-up effect, is
inherently a three-dimensional phenomenon. Some insight into it may also be gained
from the equation for the wall-normal vorticity of the perturbation (the Squire equa-
tion), which is proportional to the streamwise velocity for streamwise-independent
disturbances. The equation is, in fact, forced by a term due to the interaction between
the spanwise variation of the wall-normal velocity perturbation and the mean shear
of the base flow.

From a mathematical point of view, it is now clear that since the linearized
Navier–Stokes operator is non-normal for many flow cases (e.g. shear flows), a signif-
icant transient growth may occur before the subsequent exponential behaviour (see
Butler & Farrell 1992; Reddy & Henningson 1993; Schmid & Henningson 2001).
Such growth is larger for disturbances mainly periodic in the spanwise direction, i.e.
with low streamwise wavenumbers in a temporal formulation or low frequency in
a spatial one; it can exist for sub-critical values of the Reynolds number and it is
the underlying mechanism in by-pass transition phenomena. Andersson, Berggren &
Henningson (1999) and Luchini (2000) used an optimization technique to determine
which disturbance present at the leading edge of a flat plate will give the maxi-
mum spatial transient growth in a non-parallel boundary layer. They also found a
pair of counter-rotating streamwise vortices as the most effective in streak’s genera-
tion.

One of the most interesting cases in which disturbances originating from non-modal
growth are responsible for transition is in the presence of free-stream turbulence. Inside
the boundary layer the turbulence is highly damped, but low-frequency oscillations,
associated with long streaky structures, appear. The effect of free-stream streamwise
vorticity on a laminar boundary layer is studied in Wundrow & Goldstein (2001). As
the streaks grow downstream, they break down into regions of intense randomized
flow, turbulent spots. Experiments with flow visualizations by for example Matsubara
& Alfredsson (2001) report on the presence of a high-frequency ‘wiggle’ of the streak
before the subsequent breakdown into a turbulent spot. Numerical simulations of a
transitional boundary layer under free-stream turbulence are presented in Jacobs &
Durbin (2001).

Another case where transient growth plays an important role is in the so-called
oblique transition. In this scenario, streamwise-aligned vortices are generated by non-
linear interaction between a pair of oblique waves with equal angle but opposite sign
in the flow direction. These vortices, in turn, induce streamwise streaks, which may
grow past a certain amplitude and become unstable, initiating the breakdown to a
turbulent flow. Oblique transition has been studied in detail by Schmid & Henningson
(1992) and Elofsson & Alfredsson (1998) in a channel flow and both numerically and
experimentally by Berlin, Wiegel & Henningson (1999) for a boundary layer flow.

1.2.2. Secondary instability of streaks

If the disturbance energy of the streaks becomes sufficiently large, secondary in-
stability can take place and provoke early breakdown and transition, overruling
the theoretically predicted modal decay. Carefully controlled experiments on the
breakdown of streaks in channel flow were conducted by Elofsson, Kawakami &
Alfredsson (1999). They generated elongated streamwise streaky structures by apply-
ing wall suction, and triggered a secondary instability by the use of earphones. They
observed that the growth rate of the secondary instability modes was unaffected by
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a change of the Reynolds number of their flow and that the instability appeared as
spanwise (sinuous-type) oscillations of the streaks in cross-stream planes. For numer-
ical/theoretical studies on the instability in channel flows the reader is referred to
the works of Waleffe (1995, 1997) and Reddy et al. (1998). Flow visualizations of the
instability and breakdown of a near-wall low-speed streak in a boundary layer can
be found in the recent experiments by Asai, Minagawa & Nishioka (1999, 2002).

In Andersson et al. (2001), direct numerical simulations (DNS) were used to follow
the nonlinear saturation of the optimally growing streaks in a spatially evolving
zero-pressure-gradient boundary layer. The complete velocity vector field from the
linear results by Andersson et al. (1999) was used as input close to the leading edge
and the downstream nonlinear development monitored for different initial amplitudes
of the perturbation. Inviscid secondary instability calculations using Floquet theory
were performed on the mean flows obtained and it was found that the streak critical
amplitude, beyond which streamwise travelling waves are excited, is about 26% of
the free-stream velocity. The sinuous instability mode (either the fundamental or
the subharmonic, depending on the streak amplitude) represents the most dangerous
disturbance. Varicose waves are more stable, and are characterized by a critical
amplitude of about 37%.

In the present paper we study the transition process resulting from the sinuous
secondary instability using DNS. The late stages of the process are investigated and
flow structures identified. This is the first numerical study which accounts in detail
for the sinuous breakdown of streaks in boundary layers.

The paper is organized as follows. After an introduction in § 2, where the numerical
method employed is described, the features of this novel scenario are presented in
§ 3. In § 4 this is compared with the other well-known transition scenarios, such as
transition initiated by TS-waves, pairs of oblique waves and transition due to free-
stream turbulence. In addition there is a discussion regarding the relevance of the
reported results in the description of the dynamics of near-wall turbulent streaks. The
main conclusions of the paper are summarized in § 5.

2. Numerical method
2.1. Numerical scheme

The simulation code (see Lundbladh et al. 1999) employed for the present com-
putations uses spectral methods to solve the three-dimensional, time-dependent,
incompressible Navier–Stokes equations. The algorithm is similar to that of Kim,
Moin & Moser (1987), i.e. Fourier representation in the streamwise and spanwise
directions and Chebyshev polynomials in the wall-normal direction, together with a
pseudo-spectral treatment of the nonlinear terms. The time advancement used is a
four-step low-storage third-order Runge–Kutta method for the nonlinear terms and
a second-order Crank–Nicolson method for the linear terms. Aliasing errors from
the evaluation of the nonlinear terms are removed by the 3

2
-rule when the FFTs are

calculated in the wall-parallel plane. In the wall-normal direction it has been found
more efficient to increase resolution rather than using dealiasing.

To correctly account for the downstream boundary layer growth a spatial technique
is necessary. This requirement is combined with the periodic boundary condition in
the streamwise direction by the implementation of a ‘fringe region’, similar to that
described by Bertolotti, Herbert & Spalart (1992). In this region, at the downstream
end of the computational box, the function λ(x) in equation (2.1) is smoothly raised
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from zero and the flow is forced to a desired solution v in the following manner:

∂u

∂t
= NS(u) + λ(x)(v − u) + g, (2.1)

∇ · u = 0, (2.2)

where u is the solution vector and NS(u) the right-hand side of the (unforced)
momentum equations. Both g, which is a disturbance forcing, and v may depend
on the three spatial coordinates and time. The forcing vector v is smoothly changed
from the laminar boundary layer profile at the beginning of the fringe region to the
prescribed inflow velocity vector. This is normally a boundary layer profile, but can
also contain a disturbance. A convenient form of the fringe function is as follows:

λ(x) = λmax

[
S

(
x− xstart

∆rise

)
− S

(
x− xend

∆fall

+ 1

)]
, (2.3)

where λmax is the maximum strength of the damping, xstart to xend the spatial extent
of the region where the damping function is non-zero and ∆rise and ∆fall the rise and
fall distance of the damping function. S(a) is a smooth step function rising from zero
for negative a to one for a > 1. We have used the following form for S , which has
the advantage of having continuous derivatives of all orders.

S(a) =


0, a 6 0

1/

[
1 + exp

(
1

a− 1
+

1

a

)]
, 0 < a < 1

1, a > 1.

(2.4)

This method damps disturbances flowing out of the physical region and smoothly
transforms the flow to the desired inflow state, with a minimal upstream influence.

In order to set the free-stream boundary condition at some y = ymax closer to the
wall, a generalization of the boundary condition used by Malik, Zang & Hussaini
(1985) is implemented. Since it is applied in Fourier space with different coefficients
for each wavenumber, it is non-local in physical space and takes the following form:

∂û

∂y
+ |k|û =

∂v̂0

∂y
+ |k|v̂0, (2.5)

where k is the absolute value of the horizontal wavenumber vector and û is the
Fourier transforms of u. Here v0 denotes the local solution of the Blasius equation
and v̂0 its Fourier transform.

2.2. Disturbance generation and parameter setting

The presented numerical implementation provides several possibilities for disturbance
generation. The velocity vector field from the simulations presented in Andersson
et al. (2001, figure 9), is used as inflow condition. In those simulations a spanwise
antisymmetric harmonic volume force was added to the nonlinear streaks to trigger
their sinuous secondary instability. Here the saturated streaks, vs, and the secondary
instability mode, vd, obtained by filtering the velocity field at the frequency ω of the
forcing, are introduced in the fringe region by adding them to the Blasius solution to
give the forcing vector v = v0 + vs +Avde

iωt in equation (2.1). An amplification factor
A is used for the secondary instability to give transition within the computational box,
in the present case A = 103. The analysis of the fringe region technique by Nordström,
Nordin & Henningson (1999) shows that no error is introduced in the simulations if
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xl × yl × zl nx× ny × nz
δ∗0 (resolution) Reδ∗0

Box1 380× 10.7× 6.86 1024× 97× 96 875
Box2 380× 10.7× 6.86 1440× 97× 72 875
Box3 318× 9× 5.75 1440× 97× 72 1044

Table 1. Resolution and box dimensions for the simulations presented. The box dimensions include
the fringe region, and are made dimensionless with respect to δ∗0 , the displacement thickness at
the beginning of the computational box. Note that zl corresponds in all cases to one spanwise
wavelength of the streak. The total number of Fourier modes is indicated, corresponding to nx/2
or nz/2 conjugate pairs.

x y ωz ∆x/λx ∆y/3δ∗0 ∆ωz/ωz

205.60 1.57 −0.74 0.013 0.009 −0.013
210.51 1.2 −0.80 0.022 0.009 −0.008
215.86 0.8 −0.86 0.018 0.008 0.01
222.62 3.33 −0.66 0.00 0.043 0.0085
222.92 1.01 −1.42 0.021 0.033 0.0032
228.02 1.17 −1.45 0.034 0.053 0.0523
234.23 1.94 −0.86 0.008 0.00 0.02
238.64 2.74 −0.88 0.00 0.033 0.0054
247.39 0.93 −1.71 0.005 0.009 0.045

Table 2. Position of some local minima of the spanwise vorticity for the simulation with Box2
and the relative error with the same minima for the simulation with Box1. The difference in the
y position is divided by 3δ∗0 , the length of the structure in the wall-normal direction, while the
difference in the x position is related to the streamwise wavelength of the secondary instability
mode (λx = 11.9δ∗0 ).

the forcing is a solution to the Navier–Stokes equations. This is true in the present
case since the forcing vector is the result of previous direct numerical simulations
performed by means of the same numerical code.

The box sizes and resolutions used for the simulations presented in this paper are
displayed in table 1. The dimensions are reported in terms of δ∗0 which denotes the
Blasius boundary layer displacement thickness at the beginning of the computational
box. Box1 and Box2 follow the evolution of the secondary instability mode from
the same upstream station and differ only in the number of spectral modes. Box3
has a larger inlet Re and is used to provide some fully developed turbulence within
the computational box with a still feasible number of modes; the inflow of Box3
corresponds to x = 125 in Box1 and Box2. If not stated otherwise, in the results
presented the coordinates will be scaled with the displacement thickness δ∗0 of Box1
and Box2. The inflow position x = 0, Re = 875 in the present paper corresponds to
x/L = 1.03 in figure 9 in Andersson et al. (2001).

A check on the resolution of the present simulations is obtained comparing the
minima of the spanwise vorticity component in the transition region obtained using
Box1 and Box2. The data, extracted at the same phase angle during the period of
the secondary instability mode, are reported in table 2 while the isocontours of the
instantaneous spanwise vorticity are displayed in figure 1 in the (x, y)-plane located
at the centre of the low-speed region (z = 0). The difference in the y position of the
minima considered is divided by 3δ∗0 , the length of the structure in the wall-normal
direction, while the difference in the x position is related to the streamwise wavelength
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Figure 1. Isocontours of the instantaneous spanwise vorticity component at z = 0, Reδ∗0 = 875.

Contour levels: minimum −2.1, maximum 0.7, spacing 0.2 (dashed lines, negative values). The black
dots represent the points reported in table 2.
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Figure 2. Energy in four different modes (ω, β) = (0, 1), (1, 1), (2, 1) and (3, 1), from two different
simulations: ——, Box2; - - - -, Box3. The effect of the fringe region can be seen.

of the secondary instability mode (λx = 11.9δ∗0). The maximum of the difference in
the vorticity field between the two simulations is less than 6% for values of x less
than 250. This is a first confirmation that the periodicity of the flow is maintained
for x positions upstream of 250.

The resolution of Box3 is the same as Box2 in the y- and z-directions, while it is
slightly increased in the streamwise variable. To show that in the Box3 simulation we
are following the same phenomena from a position further downstream, the energy
in the different Fourier modes is compared with that obtained using Box2 in figure 2.
Sixteen velocity fields are saved during one period of the secondary instability mode.
These velocity fields are then transformed in time and in the spanwise direction to
Fourier space and the notation (ω, β), where ω and β are the frequency and spanwise
wavenumber, each normalized with the corresponding fundamental frequency and
wavenumber, is used. The same behaviour is observed for x . 250; hence we can
assume that the resolution is adequate also for the simulation with Box3, as confirmed
by plots of the energy spectra (not reported here). The evolution of the perturbation
in the fringe region can also be seen in figure 2: both in Box2 and Box3 the fringe is
60 units long, therefore one can estimate that the x interval not affected by the fringe
technique extends up to x ≈ 310 and x ≈ 445 respectively (see Nordström et al. 1999,
for the analysis of the upstream influence of the fringe region).
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Figure 3. Skin friction coefficient versus the streamwise position. Both the streamwise variable x
used throughout the paper and the corresponding Reynolds number based on the local Blasius
displacement thickness are displayed. —–, Present simulations; - - - -, laminar values; · · · ·, turbulent
coefficient according to the Prandtl–Schlichting formula.

3. Results
In the first part of this section we give an overview of the full transition scenario

of a streamwise streak subjected to sinuous secondary instability. Instantaneous flow
structures and mechanisms responsible for the breakdown are discussed in § 3.4. In
§ 4 we compare this new scenario with other known transition senarios.

3.1. Friction coefficient and predictability

The skin friction coefficient is shown in figure 3 versus the streamwise location; it is
obtained by averaging in time and in the spanwise direction. Also, the values for a
Blasius laminar flow and a turbulent boundary layer are displayed for comparison.
Cf starts to rise at x ≈ 190 and reaches two maxima at x ≈ 250 and x ≈ 310. The
streamwise location of maximum skin friction may be used to define the completion
of the transition process, and in fact, as will be shown in the next section, the flow
starts to lose its predictability and periodicity at x ≈ 250. Strong streaks are already
present at the beginning of the simulations, therefore the value of Cf is higher than in
the laminar case. The increase in wall shear stress is due to the nonlinear modification
of the mean velocity profile which is positive close to the wall and becomes negative
for higher y, see figure 13 in Andersson et al. (2001).

A characteristic of turbulent flows is its unpredictability. In fact two flows, initially
very close, will become completely uncorrelated as time goes on. Before discussing
the flow characteristics, we need to determine for which downstream positions the
flow may still be considered deterministic, i.e. determined by the periodic inflow
conditions, and where instead it can be seen as randomized. This would give us a
further indication of the transition location and help in identifying the flow structures
fundamental in the transition process.

A quantitative measure of the aperiodicity and loss of predictability can be defined
by a functional g, given by

g(f) = log10

[
1

N

∑
(f(t)− f(t+ mT ))2

]1/2

,

where f(t) and f(t+mT ) are the values of a quantity f at time t and after an integer
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Figure 4. The aperiodicity measure g for the streamwise velocity component u, showing the loss of
predictability during the transition process.

number m of periods (T ), and the summation is over the N = Ny×Nz points defining
an (y, z)-plane. In Sandham & Kleiser (1992) the authors define a similar quantity
for the case of temporal simulations of transition in a channel flow originating from
secondary instability of Tollmien–Schlichting waves. In that case the loss of symmetry
between the two halves of the channel is considered as time evolves. In our spatial
simulations the loss of time periodicity at the different x positions is studied as the
disturbance travels downstream.

The values of g obtained from the streamwise velocity component are shown in
figure 4. Expressing the growth of the aperiodicity as eσx, we can interpolate the data
to obtain a value of σ = 0.016 for x < 240, which is comparable with the growth of
the energy σe = 2σu = 0.033 of the secondary instability mode obtained from the
data shown in figure 2. In this region the flow is governed by the growth of the
secondary instability modes, so if a difference is present in two initial conditions it
will grow as the secondary instability itself. The loss of predictability occurs very
late in the transition process, noticed by the sharp change of slope at x ≈ 250. This
result is consistent with the location of maximum skin friction. At this location the
Reynolds numbers based on the friction velocity uτ and the momentum loss thickness
or the boundary layer thichness δ99 are respectively Reτ,θ ≈ 35 and Reτ,δ99

≈ 240.
For x ≈ 300 the decorrelation becomes larger and then stays constant with the
downstream position.

3.2. Spectral analysis and eigenmode structure

3.2.1. Development of Fourier components

The energy in some time and spanwise Fourier modes is displayed in figure 5,
where the zero frequency mode represents the streak. The secondary instability mode
(ω = 1) is present at the beginning of the computation, while the higher harmonics
are excited as the flow evolves downstream (compare figure 2). The energy growth is
exponential for a long streamwise distance and the growth rate of the first harmonic
(ω = 2) is twice that of the fundamental secondary instability and similarly for
higher frequencies the growth rate is proportional to the harmonic order. This is a
consequence of the fact that the first harmonic is forced by nonlinear interactions of
the fundamental mode and so its exponential behaviour is given by the sum of those
of the interacting modes. In the same way the mode with ω = 3 is induced by the
interaction of ω = 1 and ω = 2 modes and it is characterized by a growth rate that
is about 3σe. It is interesting to note that the energy content is of the same order
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Figure 5. Energy in different Fourier modes (ω, β) versus the streamwise position. Frequencies:
zero (streaks), one (secondary instability), two (higher harmonic). —–, β = 0; - - - -, β = 1; · · · ·,
β = 2.

for modes with different spanwise wavenumbers but with the same frequency. This
result is different from the one obtained when the same analysis is applied to a case
of transition initiated by two oblique waves (see Berlin et al. 1999) or by Tollmien–
Schlichting waves (see Laurien & Kleiser 1989; Rist & Fasel 1995, for example).
In these cases nonlinear interactions are important to select the modes dominating
the transition process, namely the streamwise-independent ones, while here streaks
are induced from the start and they develop to a highly nonlinear stage before they
become unstable to time-dependent disturbances; thus the harmonics in the spanwise
direction are generated during the streak growth and are responsible for the large
spanwise shear of the flow. The instability of such a flow is then characterized by
modes strongly localized in the spanwise direction so that a number of wavenumbers
β is needed to correctly capture them (see Andersson et al. 2001).

The growth in the different harmonics starts to saturate around position x = 200
and soon the energy becomes of the same order for the different ω values. From
this point (x ≈ 220) the Fourier transform in time of the whole velocity fields is no
longer accurate since not enough frequencies are resolved. In fact higher and higher
harmonics are excited until the energy spectra fill out, with increasing values in a large
low-frequency band, due to the now strong nonlinear interactions. Analysis of the
time signal of the streamwise velocity fluctuations at different locations thus reveals
some interesting features of the flow. In fact at positions further downstream of the
transition point and in the outer part of the boundary layer the flow still maintains
the dominating periodicity of the inflow perturbation, while close to the wall the time
traces look random and completely uncorrelated to the secondary instability mode. A
similar behaviour is observed in the natural transition scenario by Meyer et al. (1999).
They noted, in fact, that the growth of some non-periodic random perturbation occurs
in the near-wall region below the deterministic evolution of stable ring-like structures.
Finally, some features of the mean flow can be assessed by looking at the different
components of the stationary disturbance, in figure 5, i.e. (0, β) modes, recalling that
the (0, 1) and (0, 2) modes represent the spanwise modulation of the flow and (0, 0)
is the distortion from the Blasius profile. The energy in the first two decreases by a
factor of ten as soon as the late stages of the transition process are reached, indicating
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Figure 6. Isosurfaces of positive and negative values of the secondary instability eigenmode:
(a) streamwise velocity component; (b) wall-normal velocity component; (c) spanwise velocity
component; (d ) streamwise vorticity component. The streamwise coordinate x′ = x − 125 reflects
the local view of the figure.

that the mean flow is losing its modulation, while the latter mode is growing since
the mean laminar velocity profile is approaching its turbulent counterpart.

3.2.2. Eigenmode structure and streamwise vorticity generation

As observed in a number of experiments and numerical studies, see Swearingen &
Blackwelder (1987) and LeCunff & Bottaro (1993) for example, the sinuous instability
can be related to the spanwise inflectional points of the mean flow. Andersson et al.
(2001) have shown that the streamwise velocity of the secondary instability modes is
concentrated around the critical layer, i.e. the layer of constant value of the mean field
velocity corresponding to the phase speed of the disturbance which is u = 0.81U∞ in
the present case, thus confirming the inviscid nature of the instability considered. In
this work we extend the previous analysis to consider the complete three-dimensional
structure of the eigenfunction in order to investigate the instability mechanism leading
to the formation of streamwise vorticity.

A three-dimensional plot of the secondary instability mode is displayed in figure 6.
This is obtained from the Fourier-transformed velocity fields discussed in § 3.2.1,
filtering at the fundamental frequency. The mode is characterized by a streamwise
wavelength λx = 11.9 and a frequency ω = 0.43; only one wavelength λx is shown in
the plots around position x = 125. Isosurfaces of positive and negative streamwise
and wall-normal velocity are plotted in figures 6(a) and 6(b) and show the odd
symmetry of this kind of instability. The fluctuations are stronger around z = 0, i.e.
in the low-speed region. The result is the spanwise oscillation of the low-speed streak.
The spanwise velocity, seen in figure 6(c), is in fact characterized by alternating
positive and negative values, with a symmetric distribution of the disturbance with
respect to the streak. All the perturbation velocity components appear tilted towards
the streamwise direction.

In figure 6(d ) the streamwise disturbance vorticity is also shown. This is symmetric
with respect to the streak; structures of the same sign appear above the low- and high-
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Figure 7. Streamwise vorticity of the secondary instability mode during half a period of the
disturbance evolution at x = 125. From time t = 1T/10 to t = 6T/10 for (a) to ( f ). Contour
levels: min 0.019, max 0.019, spacing 4× 10−3.

speed streak, connected by legs situated along the flanks of the low-speed region. In
a similar manner to Kawahara et al. (1998) we analyse the production of streamwise
vorticity for the unstable sinuous eigenfunction. Since the structures observed at the
late stages of transition consist of elongated quasi-streamwise vortices, we focus our
study on the streamwise component only. The streamwise vorticity of the base flow
is initially very low so that its production is almost entirely related to the instability
features. Analysis of the wall-normal and spanwise vorticity showed in fact that
vorticity fluctuations are mainly induced by the periodic advection of the strong
shear layers of the streaky base flow by the velocity fluctuations.

To derive an equation for the streamwise vorticity perturbation, we consider a par-
allel base flow, consisting at leading order only of the streamwise velocity component,
i.e. U = (U(y, z), 0, 0). This is shown in Andersson et al. (2001) to describe correctly
the streak’s instability. This yields(

∂

∂t
+U

∂

∂x

)
ωx =

∂U

∂z

∂v

∂x
− ∂U

∂y

∂w

∂x
+

1

Re
∇2ωx, (3.1)

where the first two terms on the right-hand side represent vorticity production by
vortex tilting and the third represents viscous dissipation, which we will neglect. The
first of the two production terms is due to the tilting of the spanwise disturbance
vorticity (∂v/∂x) by the spanwise shear (∂U/∂z), while the second represents the
tilting of the wall-normal vorticity-perturbation (∂w/∂x) by the mean wall-normal
shear (∂U/∂y). In figures 7, 8, 9 we display contour levels of the streamwise vorticity
ωx and of the two production terms at position x = 125 during half a period of the
disturbance evolution, in such a way that the plot in the lower right-hand corner is
the exact opposite of the one in the upper left-hand corner (or they have a phase
difference of π). The wall-normal shear is larger than the spanwise shear; the former
is largest in the regions above the high-speed streak while the latter is largest on the
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Figure 8. Production of streamwise vorticity of the secondary instability mode due to spanwise
shear (∂U/∂z)(∂v/∂x), during half a period of the disturbance evolution at x = 125. From time
t = 1T/10 to t = 6T/10 for (a) to ( f ). Contour levels: min −6.5× 10−4, max 5.5× 10−4, spacing
1× 10−4.
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Figure 9. Production of streamwise vorticity of the secondary instability mode due to wall normal
shear −(∂U/∂y)(∂w/∂x), during half a period of the disturbance evolution at x = 125. From time
t = 1T/10 to t = 6T/10 for (a) to ( f ). Contour levels: min −1.2× 10−3, max 1.2× 10−3, spacing
2× 10−4.

flanks on the low-speed streak. Moreover the w velocity fluctuations are larger than
those of v, thus the −(∂U/∂y)(∂w/∂x) term is the largest one and attains its maximum
in the high-speed regions. In fact, one can note that the production of ωx driven
by ∂U/∂y (figure 9) is located in the regions on top of the low- and high-velocity
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Figure 10. Root-mean-square values of the three velocity components in the cross-stream plane at
position x = 175 at the frequency of the secondary instability mode and its first two harmonics.
Contour levels: u (ω = 1) min 2× 10−3, max 5.2× 10−2, spacing 1× 10−2; v (ω = 1) min 3× 10−3,
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streaks, while the tilting of ωz by ∂U/∂z (figure 8) is responsible for the ‘legs’ of the
ωx structures observed in figure 6(d ).

The physical mechanism responsible for streamwise vorticity generation can be
explained by considering the eigenmodes of the wall-normal and spanwise velocity,
which are both inclined towards the streamwise direction by the mean shear of the base
flow. For the first production term in equation (3.1) the inclined v structures directly
induce streamwise and spanwise vorticity. This is in turn tilted in the streamwise
direction by the mean spanwise shear, leading to the production of new streamwise
vorticity. The induced vorticity increases the oscillation of the streak and therefore the
wall-normal velocity fluctuations. Thus, the process is self-inducing, with increasing
values of the perturbation as it travels downstream. Similarly for the second term on
the right-hand side of equation (3.1), the induced streamwise vorticity creates new
spanwise velocity and the amplification can continue.

We finally note that the production of the perturbation kinetic energy in the linear
stages of the secondary instability is only due to the spanwise shear-driven term,
−(∂U/∂z) uw.

3.2.3. Weakly nonlinear stages of transition

In figure 10 the velocity fluctuation intensities of the fundamental mode and its
first two harmonics are shown in a cross-stream plane at position x = 175. At this
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Figure 11. Integral boundary layer parameters: —–, displacement thickness δ∗;
- - - -, momentum thickness θ; · · · ·, theoretical values for laminar Blasius profile.

point nonlinear interaction has begun to be relevant and the higher harmonics are
clearly distinguished in the frequency spectra. In the case of sinuous instability the
fundamental mode is characterized by fluctuations in the wall-normal and streamwise
velocities which are antisymmetric with respect to the line of symmetry of the
background streak, while the spanwise velocity is even. Considering that the harmonics
are forced by quadratic interactions, it is possible to show that the modes with
frequencies 3ω, 5ω, etc. have the same symmetry as the fundamental mode, while for
2ω, 4ω, 6ω, etc. the u, v fluctuations are symmetric and the spanwise antisymmetric.
One can also note that the v, w velocity fluctuations are stronger further from the
wall than the u component.

3.3. Time-averaged properties

We present here the results obtained by averaging the velocity over time, during
50 periods of the fundamental streak instability, and in the spanwise direction. We
first show in figure 11 the development of the boundary layer displacement (δ∗) and
momentum thickness (θ), together with the theoretical values for a Blasius laminar
flow. In the region 200 . x . 250, δ∗ decreases, whereas θ is still increasing. The latter
is related to the fact that the average skin friction increases. A similar behaviour of the
boundary layer thickness and of the momentum loss has been observed by Matsubara
& Alfredsson (2001) in a boundary layer subjected to free-stream turbulence. Note
also that, at the beginning of the computations, θ is already larger than the laminar
value due to the presence of a strong streak.

3.3.1. Transitional flow

Mean velocity profiles at various locations in the transitional zone are displayed in
figure 12, where the wall-normal coordinate is made non-dimensional with the local
displacement thickness δ∗. The evolution from the laminar flow to a turbulent one
can be seen. At position x = 215 a strong inflectional mean profile is present during
the large growth of the skin friction coefficient, see figure 3. In the outer part of the
boundary layer one can see an overshoot of the velocity before approaching the final
value. The same behaviour of the mean flow was observed by Wu et al. (1999) in
their simulations of transition induced by free–stream turbulence.

At the early stages of transition, the averaging of the streamwise velocity provides
information on the evolution of the streak during the process, since the spanwise
modulation dominates in the r.m.s. values. These are displayed in figure 13, together
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Figure 12. Average streamwise velocity in outer coordinates at different streamwise positions:
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Figure 13. Root-mean-square values of the three velocity components in outer coordinates at
different streamwise positions: —–, x = 126; - - - -, x = 185; –·–, x = 215; · · · ·, x = 268; --------,
x = 399.

with the other two velocity components. In the experiments of Matsubara & Al-
fredsson (2001) on transition induced by upstream-generated grid turbulence the urms
value attained by the streaky structure before the breakdown is about 11–12%. In our
case, instead, the streak amplitude at the beginning of transition is about 19%, but,
as observed in Wundrow & Goldstein (2001), the averaged values usually reported
in the experiments are likely to mask the stronger localized distortions which induce
the breakdown. However, the same qualitative behaviour of urms is observed as in
the experiments, i.e. the peak is sharpening, moving closer to the wall and reaching
values of approximately 12–13%.

As the flow develops downstream, the r.m.s. values of the wall-normal and spanwise
velocity components increase, especially in the outer part of the boundary layer,
around y ≈ 3. This corresponds to the wall-normal region where the secondary
instability is localized, see figure 10. One can also note that the spanwise velocity
fluctuations are larger than the wall-normal ones, and a considerable value of wrms ≈
11% is attained at x = 215. This result is not unexpected since the kind of instability
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Figure 14. Mean streamwise velocity profiles in inner scaling: - - - -, present simulations at Reθ = 845
(x = 360), Reθ = 875 (x = 375) and Reθ = 910 (x = 400); —–, Skote (2001) simulations at
Reθ = 685.

studied is characterized until its late stages by strong spanwise oscillations of the
low-speed streak. It is also interesting to notice that at x = 268 the mean velocity
profile, figure 12, and urms are very close to the turbulent ones, especially close to
the wall, but vrms and wrms are characterized by large values in the upper part of the
boundary layer. As we will see in a later section, these oscillations represent structures
formed in the transition region which survive downstream while the shear stress at
the wall increases and the near-wall flow may be considered turbulent.

3.3.2. Quasi-turbulent flow

In this section we discuss the results of the statistics obtained towards the down-
stream end of the simulations, where the flow becomes uncorrelated to the inflow
conditions and the skin friction coefficient approaches turbulent values, see figures 3
and 4.

The mean velocity profiles are displayed in inner coordinates in figure 14 at three
different downstream positions, together with the results from the spatial simulations
of a fully turbulent boundary layer with zero pressure gradient by Skote (2001)
are shown for comparison, although for a lower value of the momentum thickness
Reynolds number Reθ . Profiles of the time-averaged turbulence kinetic energy pro-
duction normalized with wall parameters are shown in figure 15 at the same three
streamwise stations and compared again with the DNS data of Skote (2001). Note
that all profiles show a maximum of P+ = 0.25 at y+ = 12, showing self-similarity.

The r.m.s. values for the three velocity components are displayed in figure 16. The
results show large differences compared to a fully turbulent flow in the outer part of
the boundary layer, where periodic flow structure are still present, as shown earlier.
Thus, analysis of the results indicates that the averaged quantities reproduce well
close to the wall the features of a turbulent flow.

3.4. Flow structures

3.4.1. Overall features

Before discussing in detail the instantaneous flow structures we first give a general
idea of the transition scenario by showing snapshots of the flow. In figure 17 the
instantaneous streamwise velocity component of the perturbation is shown in a
longitudinal plane perpendicular to the wall for z = 0, corresponding to the centre of
the undisturbed low-speed streak, and in a plane parallel to the wall, at y = 0.47. The
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perturbation velocity field is defined as the difference between the solution velocity
field and the mean value in the spanwise direction for each value of x and y. It
can be clearly seen that the sinuous instability consists of harmonic antisymmetric
streamwise oscillations of the low-speed region. In figure 17(a) one can note that the
perturbation is first seen in the outer part of the boundary layer. The disturbance
then moves towards the wall until the wall shear is considerably increased. At the
end of the computational box some periodicity can still be seen in the disturbance
in the outer part of the boundary layer, as discussed previously, while close to the
wall the flow is now turbulent. In figure 17(b) two streaks can be seen within one
computational domain at the end of the transition process; note that the spanwise
dimension of the box for x > 350 is less than 275 in wall units.

A three-dimensional picture of the flow field from the laminar to the turbulent
region is shown in figure 18. The lighter grey isosurface represents the low-speed



Transition of streamwise streaks in zero-pressure-gradient boundary layers 247

(a) (b)

x x

y z

Figure 17. Visualization of streak breakdown using the streamwise velocity component of the
perturbation in (a) a wall-normal (x, y)-plane at z = 0 and (b) a wall-parallel (x, z)-plane at
y = 0.45. x ∈ [185, 360]. Grey scale from dark to light corresponds to negative to positive values.
The flow is from bottom to top. In (b) two spanwise streaks are displayed.
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Figure 18. The flow field from the laminar to the turbulent region. The x-values correspond to the
range x ∈ [185, 360]. The grey structures are the low-speed streaks and the darker ones are regions
with low pressure. Contour levels are −0.14 for the streamwise velocity fluctuations and −0.014 for
the pressure for x < 268 and −0.0065 further downstream. The streamwise scale is one third of the
cross-stream scale.



Transition of streamwise streaks in zero-pressure-gradient boundary layers 249

streaks, while the dark grey represents regions of low pressure. These correspond to
strong rotational fluid motions and are used to identify vortices. Also, visualizations
using negative values of the second largest eigenvalue of the Hessian of the pressure
(see Jeong et al. 1997) are performed and no relevant differences are observed.
The main structures observed during the transition process consist of elongated
quasi-streamwise vortices located on the flanks of the low-speed streak. Vortices of
alternating sign are overlapping in the streamwise direction in a staggered pattern
and they are symmetric counterparts, both inclined away from the wall and tilted in
the downstream direction towards the middle of the undisturbed low-speed region.
The strength and extent of these vortices and the spanwise motion of the low-speed
streak increase downstream before the breakdown. Note also that the downstream
end of the streamwise vortices, located in the outer part of the boundary layer, is
tilted and propagates in the spanwise direction to form arch vortices. Towards the end
of the box the flow has a more turbulent nature and more complicated low-pressure
structures occur. It also seems that there is no connection between the laminar and
turbulent region low-speed streaks, since the streak is disrupted at transition and
those which appear downstream are not a continuation from upstream.

3.4.2. Late stages of transition

To study in detail the late stages of the streak breakdown, we plot in figure 19
the instantaneous flow in vertical planes at different streamwise positions, covering
a distance corresponding to about one half of the secondary instability wavelength.
The velocity vectors show the spanwise and wall-normal velocity. The thick black
isolines represent the streamwise velocity and the white line regions of low pressure.
In the background, the streamwise vorticity is shown from negative values (light
areas) to positive (dark areas). One can follow the evolution of one of the two quasi-
streamwise vortices observed in figure 18, namely the one characterized by negative
vorticity, located on the flank of the low-speed streak denoted by negative z. In
figure 19(a) one can note that the vortex with ωx > 0 is still visible in the upper
part of the boundary layer, where the pressure attains its minimum value. However
a negative vortex, i.e. with rotation in the counter-clockwise sense, is already formed
below this and is moving in the positive z-direction and towards the upper part of the
boundary layer. Regions of strong negative streamwise vorticity are associated with
vortices; positive values of ωx indicate instead regions of strong spanwise gradient
of the wall-normal velocity on the positive flank of the low-speed streak and region
of wall-normal gradient of the spanwise velocity in the dark area above the high-
speed streak. Similarly when the streak is moving in the negative z-direction, regions
of positive ωx are associated with vortices. By symmetry, the ωx distribution half
a wavelength away is obtained by reflection and sign inversion (apart from the
amplification downstream). Comparing the areas of negative streamwise vorticity of
the full velocity field with the isosurfaces of the same quantity displayed in figure 6(d ),
one can note that only one of the two legs observed in the secondary instability mode
is still present as the main feature of the breakdown. We note also that the leg which
is able to induce stronger streaks and then to create stronger mean shear is the
one which is still amplified and survive in the late stages. Its symmetric counterpart
is working to reduce the mean flow modulation and so it is reasonable to assume
that this is the reason for its disappearance. Analysis of the first harmonic of the
secondary instability mode shows in fact that the phase lock between the two is
such that negative ωx is increased for negative z. The odd symmetry of this mode
implies that at the same time positive ωx is balancing the negative leg located on the
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Figure 19. Vertical cross-stream planes at positions (a) x = 208, (b) x = 211, (c) x = 213. The
velocity vectors represent spanwise and wall-normal velocity. Thick black isolines represent the
streamwise velocity and the white line regions of low pressure. The background shows values of
streamwise vorticity from negative values (light areas) to positive (dark areas).

positive side of the low-speed streak. The first harmonic of the secondary instability
mode acts also to induce negative vorticity ahead of the V structure typical of the
fundamental mode, as can be observed in figure 19(c) where the negative vortex has
reached regions of positive z.

Following the evolution of the streamwise vorticity from the linear amplification to
the late stages, we note that at the early stages, the instability growth is characterized
by increasing values of the flattened ωx structures displayed in figure 6(d ), with the
spanwise symmetry of the eigenfunction slightly destroyed by the higher harmonic
and by the mean streamwise vorticity. At downstream position x ≈ 205 the negative
and positive ωx structures are located on the negative and positive flanks of the
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low-speed region and follow its oscillations (see figure 19). Note also that the low-
speed streak is becoming narrower. The final stages of the breakdown are shown in
figure 20, in plots similar to the ones of figure 19. In figure 20(a) one can see that as
the oscillation of the low-speed region is increased, the upper part of it is subjected
to strong motion in the negative direction while the lower part has begun to move
in the opposite direction. A similar phase delay between the top and bottom parts
of the streak during the sinuous breakdown was also observed in channel flow by
Elofsson et al. (1999). Considering the dark and light areas in figure 20(a), one can
note that the adjacent layers of positive and negative ωx, located in the low-speed
region, roll up to form an arc in the (y, z)-plane. As a result of this the upper
part separates and continues its periodic motion in the outer part of the boundary
layer. This can be seen in figure 20(b) where one can also note that the low-speed
region is now localized closer to the wall. This lower streak is still subjected to
sinuous instability and two vortices can be seen: a positive one similar to the ones
observed in figure 19, located on the flank of the streak, and a negative one further
away from the wall as a trace of the previous oscillation in the opposite direction.
The region of large ωx on the flank of the streak in figure 20 now appears much
more localized. The breakdown of the lower streak is then similar to the process
already observed. The higher and lower parts are moving in opposite directions
and the streak is disrupted. Finally, figure 20(c) shows an instantaneous plot of the
flow downstream of the breakdown, where many and disordered structures can be
observed.

In figure 21 we display at the actual scale a view from the top of isosurfaces of
positive and negative wall-normal vorticity, ωy , in the final stages of the breakdown.
This quantity is almost entirely determined by the mean spanwise shear, ∂U/∂z, so
that its downstream evolution is dominated by the spanwise motion of the low-speed
region. It is interesting to notice how the upper part separates and continues its
motion independently (see the tongue-like structures on the sides of the central low-
speed streak). We recall that structures of spanwise vorticity in a plane normal to
the wall at z = 0 are shown in figure 1. In this case it is the mean normal shear,
∂U/∂y, which determines the largest vorticity. The thin periodic structures represent
the shear induced by the motion of the low-speed streak. From this, we can conclude
that, except for the arch vortices displaced in the outer part of the boundary layer,
the structures of ωy and ωz are determined by the motion of the low-speed streak
and its associated strong shear layers.

Finally we analyse in detail the main structures detected at the late stages of the
transition process. In figure 22 we display a top and side view, at the actual scale,
of the low-pressure structures shown before. The region of instantaneous negative
streamwise velocity perturbation is also shown for reference. From the top view
one can note how the vortices form arches in the spanwise direction invading the
whole domain. The side view shows quasi-streamwise structures, tilted away from the
wall, which look similar to the leg of the Λ-vortex observed in transition initiated
by TS-waves, see Rist & Fasel (1995) for example. However, the top view clearly
reveals the staggered pattern of these structures. Figure 23 shows the flow pattern in a
smaller region, of streamwise extent equal to about one wavelength of the secondary
instability mode, just before the final breakdown. The low-speed region is now lower
than the original laminar unstable streak. It is still oscillating in the spanwise direction
and there are quasi-streamwise vortices located on its flanks in a staggered pattern.
In the outer part of the boundary layer, the arch vortices formed before can be seen.
They are now uncorrelated to the streak oscillation underneath.
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Figure 20. As figure 19 but at positions (a) x = 221, (b) x = 234, (c) x = 256.
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Figure 21. Top view of isosurfaces of positive (lighter grey) and negative (dark grey) wall-normal
vorticity, ωy = ±0.53. x ∈ [190, 245].

3.4.3. Visualization by timelines

In experimental investigations of boundary layer transition flow structures are typi-
cally investigated through flow visualizations using either hydrogen bubbles or smoke.
Here we perform a numerical visualization following the evolution of massless parti-
cles. Timelines are generated by releasing particles along lines parallel to the spanwise
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Figure 22. (a) Top and (b) side view of the structures at the late stages of transition. x ∈ [203, 245].
Lighter grey represents negative streamwise velocity perturbation and dark grey regions of low
pressure. In (a) two spanwise streaks are displayed.
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Figure 23. Structures at the late stages of transition, shown for one wavelength of the secondary
instability. x ∈ [227, 239]. Grey represents negative streamwise velocity perturbation and dark grey
regions of low pressure. The flow is from the bottom to the top.

direction at different times during one period of the secondary instability mode. The
instantaneous evolution of these particles is determined by the instantaneous velocity
field. In figure 24 we display the evolution of a single material line released at position
x = 150 and y = 3. Two streamwise vortical structures can be seen on the sides of
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Figure 24. Evolution of a spanwise material line released at position x = 150 and y = 3.

the low-speed region; one is growing and moving away from the wall while the other
is approaching the wall. The structures observed from the evolution of a line released
half a period later would present the opposite behaviour. Since the particles followed
are located in the outer part of the boundary layer, a regular pattern can also be seen
downstream of the transition point, x ≈ 250. Note that the smoke visualizations by
Asai et al. (1999) in a cross-stream plane also show the presence of vortical structures
on the flanks of the low-speed streak. The evolution of a material line normal to the
wall released at the centre of the low-speed streak has also been studied. The motion
of the particles consists of spanwise oscillations of different amplitude and phase at
different distances from the wall.

4. Discussion
4.1. Relation to transition induced by free-stream turbulence

Experiments on boundary layers subject to free-stream turbulence show that transition
is characterized by the occurrence of strong streamwise streaks (Klebanoff 1971;
Kendall 1985; Westin et al. 1994). In Andersson et al. (2001) and Matsubara &
Alfredsson (2001) it was also shown that the wall-normal mode shape of the optimal
disturbance found in the theoretical works of Andersson et al. (1999) and Luchini
(2000) are remarkably similar to the urms values measured in boundary layers with
free-stream turbulence. A nonlinear mechanism for boundary layer receptivity to free-
stream disturbance has been proposed by Berlin & Henningson (1999) and Brandt,
Henningson & Ponziani (2002); this is responsible for the generation of streamwise
vortices, which in turn induce the growth of similar streaks. It is now understood
that the growth of streaks can be explained successfully by the theory of non-modal
growth. However, there is still uncertainty in the way turbulent spots are formed in the
boundary layer, once strong streaks are present. In fact, controlled experiments are
impossible in a boundary layer under free-stream turbulence and no definitive proof is
given of a secondary instability. Flow visualizations (Matsubara & Alfredsson 2001)
show that some streaks develop a streamwise waviness of relatively short wavelength,
before the formation of spots. These authors attribute this wavy type of motion to
a secondary instability, leading to laminar–turbulent transition analogously to what
has been observed in channel flows (Reddy et al. 1998; Elofsson et al. 1999) and
in boundary layer flows under controlled conditions (Bakchinov et al. 1995; Asai
et al. 1999). In the theoretical work of Wundrow & Goldstein (2001) it is shown
how initially linear, but of broadband nature, perturbations of the upstream flow
ultimately lead to strong shear layers in certain localized spanwise regions. These
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highly inflectional shear layers can then support rapidly growing inviscid instabilities.
Jacobs & Durbin (2001) write that no evidence of sinuous, or other prefatory streak
instability, is observed in their simulations of a boundary layer under free-stream
turbulence. Jacobs & Durbin (2001) conjecture that streaks become a receptivity site
for smaller-scale free-stream turbulence which initiates an instability near the top of
the boundary layer.

In the present work we use a simpler flow configuration (steady streak) and
show that sinuous instability can lead directly to a turbulent flow and that some
of the basic averaged flow data present interesting similarities with experiments
and/or simulations of by-pass transition under free-stream turbulence. An important
similarity is observed in the development of the boundary layer thickness. The
peculiar decrease of this parameter during the late stages of transition seems to
be a common feature of our simulation and the experimental results of Matsubara
& Alfredsson (2001), which was not observed in other transition scenarios. Future
experiments and numerical simulations may be compared with the present results
in order to assess a firmer connection between the proposed transition scenario and
the streak breakdown in boundary layers subjected to free-stream turbulence. For
this purpose it is important to re-emphasize that in order to isolate and observe the
features of the streak transition scenario we have simulated the spatial evolution
of an instability mode which is induced by a continuous harmonic forcing at the
upstream inlet. In a boundary layer subject to free-stream turbulence the secondary
instability would, rather, be triggered by localized perturbations, more likely the ones
present in the free stream. Therefore the instability would then develop as a localized
wavepacket.

4.2. Comparison to O-type, K-type and H-type transition

In this section, we compare the late stages of transition initiated by sinuous instability
of streamwise streaks with three different scenarios, observed and studied in flat-plate
boundary layers. We consider transition initiated by a pair of oblique waves (O-
type), and K- and H-type transition, resulting from the secondary instability of
TS-waves. The reader is referred to the experimental study of Bake, Fernholz &
Kachanov (2000) for a recent thorough investigation of the resemblance of K- and
H-regimes.

Berlin et al. (1999) noticed that the structures they identified in the late stages
of oblique transition have many similarities with those previous investigations have
found in the K- and H-type transition. In fact, they observed that before the flow has
reached a fully turbulent state, Λ-shaped structures, consisting of pairs of streamwise
counter-rotating vortices are formed. They also noted that inside the Λ-structures
there is an upward motion. The lift-up of low streamwise velocity causes strong
wall-normal gradients, located on top of the Λ-vortices, again in close similarity to
the shear layers observed by Williams, Fasel & Hama (1984) and Rist & Fasel (1995)
for example, in K-type transition. Measurements using hot-wire probes revealed
that the positions of the Λ-shaped vortices coincided with the appearance of urms
peaks and high-frequency oscillations (spikes). Further, the Λ-vortices observed in
O-type transition are associated with inflectional profiles in both the normal and
spanwise directions. Berlin et al. (1999) explained the similarities between the O-, K-
and H-regimes by considering the common features of all three transition scenarios,
namely oblique waves and streamwise streaks. They speculated that the pattern of
Λ-vortices appearing in these three transition scenarios is independent of the presence
of Tollmien–Schlichting waves. Using a criterion of positive interference of the normal



256 L. Brandt and D. S. Henningson

velocity between the streamwise vortices and the oblique waves, they were able to
predict the appearance of the Λ-vortices.

In the present case, streamwise streaks and oblique waves are also the fundamental
features at the breakdown and the structures observed present similarities and dif-
ferences. Similarly to the other transition scenarios, we have found counter-rotating
streamwise vortices located on opposite flanks of the low-speed region; the vortex
with ωx > 0 being on the positive side. The structures are inclined away from the
wall and tilted in the downstream direction towards the middle of the undisturbed
low-speed region. However, the streamwise vortices appear in a staggered pattern,
alternating in the streamwise direction. Comparing the present case with oblique
transition, we note that the different alignment of the streamwise vortices is due to
the symmetry of the fundamental perturbation growing on the streaks. Analysis of the
results presented in Berlin et al. (1999), shows in fact that the strong streaks induced
by nonlinear interactions are perturbed by periodic disturbances, given by the oblique
waves themselves, which are symmetric with respect to the streak. Looking also at
the symmetry of the late stages of the breakdown, we can relate oblique transition to
varicose instability of the streaks.

The different symmetry of the streamwise vorticity perturbation can be used to
explain similarities and differences observed in the two scenarios. In the present work,
we have followed the evolution of the streamwise vorticity and noted that the initially
symmetric distribution is disrupted towards the breakdown. Of the two symmetric
‘legs’ of positive and negative ωx alternating in the streamwise direction which
can be seen in an instantaneous configuration, only one is amplified downstream,
specifically the leg which is able to induce stronger shear layers on the mean flow.
Thus, we recover the staggered pattern of quasi-streamwise vortices observed at
the final stages of the breakdown. In Berlin et al. (1999), isosurfaces of positive
and negative instantaneous streamwise vorticity are also shown. One can note that
the distribution of ωx is now antisymmetric. The downstream evolution of ωx is
also characterized by the growth of structures with positive sign on the positive
side of the low-speed streak and with negative sign on the negative flank. In this
case, however, the structures are not staggered in the streamwise direction and they
appear with the typical Λ-shape. The same ideas apply in K- and H-type transition,
where the oblique modes of the perturbation are also symmetric with respect to the
streamwise vortices. We also note that the same interference criterion introduced in
Berlin et al. (1999) can be used in the present transition scenario. Interference of
positive wall-normal velocity of the secondary instability mode and of the mean flow
can lead to the appearance of a single streamwise vortex on a side of the low-speed
region.

The four transition scenarios considered show different behaviours at the down-
stream tip of the quasi-streamwise vortices. In transition induced by TS-wave in-
stability, a spanwise vortex connecting the legs of the Λ-vortex is observed. This is
due to the fact that strong spanwise vorticity is already present as it characterizes
the primary instability. Two-dimensional Tollmien–Schlichting waves consist in fact
of rolls of spanwise vorticity concentrated around the critical layer. The secondary
instability induces a three-dimensional flow and hence streamwise vorticity, by bend-
ing the ωz structures (see Herbert 1988). In oblique transition instead, the legs of
the Λ-structures develop independently and are then drawn towards each other. The
same evolution of the streamwise vortices is observed in the present case; however
the lack of a symmetric counterpart on the other side of the low-speed streak allows
the vortex to tilt, cross the low-speed region and generate the observed arches.
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4.3. Comparison to transition in vortex-dominated flows

The secondary instability mechanisms considered here show similarities with transition
in flows with curvature or in rotating channels, where the dominating instability results
in streamwise vortices which, in turn, create streaks (see Swearingen & Blackwelder
1987; Li & Malik 1995, for the case of Görtler vortices). Further, three-dimensional
vortical structure detected in the simulations of transition to turbulence in Görtler flow
performed by Liu & Domaradzki (1993) show interesting analogies with transition
in Blasius flow. In fact, they observed that close to the transition point vorticity
structures are associated with a series of connected hairpin vortices in the outer part
of the boundary layer. However, these vortices play a smaller role in the transition
process than the streamwise vortical structure which is observed to develop close to
the wall in the low-speed region between the vortices. They note, in fact, that the
turbulent kinetic energy production is related to regions of large spanwise shear.
This high-vorticity structure is associated with the sinuous mode of the secondary
instability. Park & Huerre (1995) studied the secondary instability of Görtler vortices
and found that the sinuous mode completely dominates close to the wall, while the
varicose mode is strong near the head of the low-speed region. They indicate, in
agreement with Liu & Domaradzki (1993), that the sinuous mode is dominant in the
transition and that the horseshoe vortices observed can be interpreted as arising from
the nonlinear evolution of the varicose mode (also unstable but with lower growth
rates). We recall here that the streaks considered in the present study are unstable
only to antisymmetric disturbances and therefore a simpler scenario is expected as the
disturbance reaches such high levels that it disrupts any type of flow symmetry. It is
interesting to note also that Liu & Domaradzki (1993) documented the formation in
the turbulent regime of two low-speed streaks located close to the wall in the region
of the original low- and high-speed streaks; this is very similar to what we observed
in the present simulation towards the end of the computational box.

4.4. Comparison to streak instabilities in the near-wall region of turbulent flows

Streamwise vortices and streaks are also fundamental structures in the near-wall
region of turbulent boundary layers and the vortices seem to be related to streak
instabilities. In fact, the structures we identified show a close resemblance to the ones
detected in turbulent wall flows (see Schoppa & Hussian 1997; Jiménez & Simens
2001). Kim, Kline & Reynolds (1971) were the first to show the importance of
local intermittent inflectional instability in the bursting events, which are associated
with periods of strong turbulent production. They observed three oscillatory types of
motion of the streaks: a growing streamwise vortex, a transverse vortex and a wavy
motion in the spanwise and wall-normal directions. Later, Swearingen & Blackwelder
(1987) compared and related the latter two modes observed in Kim et al. (1971) to
the secondary varicose and sinuous instability of streamwise vortices measured during
transition on a concave wall. In the same way as Swearingen & Blackwelder (1987),
we can speculate that the first type of oscillatory motion observed by Kim et al.
(1971), i.e. growth of a streamwise vortex, which is by far the most often observed
in their experiments, is related to the growth of either of the two streamwise vortices
observed on the flank of the low-speed streak. This is a common feature of sinuous
and varicose instability, see the discussion in the previous section, and therefore it is
the most likely to be visualized if the hydrogen bubbles are released slightly off-centre
of the low-speed streak. Recent studies on the instability of a base flow generated by
the superposition of a turbulent mean flow and the streaky structures (Waleffe 1997;
Schoppa & Hussain 1997; Kawahara et al. 1998) have found that the dominating
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instability is sinuous. In fact, the evolution of the streamwise vorticity observed in
the present simulations of transitional flow is similar to that observed by Schoppa
& Hussain (1997) in their analysis of the streak instability in the near-wall region
of a turbulent flow. Schoppa & Hussain (1997) attribute the formation (collapse) of
regions of strong vorticity with compact cross-section, similar to the one observed in
figure 20(b), to the local vortex stretching due to positive ∂u/∂x. The strong spanwise
shear of the flow is responsible for the generation of ∂u/∂x as the oscillation of
the low-speed region reaches considerable amplitudes. Regions of positive ∂u/∂x are
located downstream of the streak crests, causing direct stretching of the local ωx.
Note also that the behaviour of the region close to the wall from the final stages of
the transition is similar to that observed by Jiménez & Pinelli (1999) and Jiménez &
Simens (2001) in limiting conditions for the streak cycle to be self-sustained (see as
example the structures close to the wall in figure 23).

On the other hand, in the experiments by Acarlar & Smith (1987) a low-speed
streak was generated in an otherwise laminar boundary layer by blowing through
a slot in the wall. The streak became unstable and horseshoe vortices were formed.
In the simulations by Skote, Haritonidis & Henningson (2002) the Acarlar & Smith
(1987) experiment was numerically reproduced and the process of horseshoe vortex
generation further investigated. Skote et al. (2002) show that the appearance of an
unstable wall-normal velocity profile is a precursor to the appearance of horseshoe
vortices, and thus associated to varicose instability of the turbulent streaks. We note
that ‘streamwise vortices staggered’ on both the flanks of the low-speed streak and
hairpin vortices have been observed in turbulent boundary layers. We, therefore,
believe that both types of streak instability are present in turbulent boundary layers
and that the mechanisms and scenarios observed in the transition of streaky structure
are closely related to the near-wall events in turbulent flows, in spite of the different
time and space scales involved.

5. Summary and conclusions
We have performed the first numerical simulation of a by-pass transition scenario

initiated by the sinuous instability of a streamwise streak in an incompressible flat-
plate boundary layer flow. Andersson et al. (1999) and Luchini (2000) showed that
the perturbations at the leading edge of a flat plate that show the highest potential
for transient energy amplification consist of a pair of streamwise vortices. Due to the
lift-up mechanism these optimal disturbances lead to elongated streamwise streaks
downstream. If the streak amplitude reaches a threshold value, secondary instability
can occur and provoke transition. The most dangerous type of secondary instability
has been found by Andersson et al. (2001) to be the sinuous one, consisting of
spanwise oscillation of the low-speed region. Here, we have studied in detail the late
stages of transition originating from this scenario and compared them with other
transition scenarios and flows where streak instability is also present. The following
points summarize the main findings.

The main structures observed during the transition process consist of elongated
quasi-streamwise vortices located on the flanks of the low-speed streak. Vortices of
alternating sign are overlapping in the streamwise direction in a staggered pattern,
both inclined away from the wall and tilted in the downstream direction towards the
middle of the undisturbed low-speed region.

We have followed the evolution of the streamwise vorticity of the perturbation.
The streamwise vorticity of the secondary instability mode is symmetric with respect
to the streak; structures of the same sign appear above the low- and high-speed



Transition of streamwise streaks in zero-pressure-gradient boundary layers 259

streak, connected by legs situated along the flanks of the low-speed region. Positive
and negative structures alternate in the streamwise direction. At the late stages of
the breakdown only one of the two legs is still present and amplified. This is the leg
which is able to induce stronger streaks and in turn to create stronger mean shear.
The observed staggered pattern is a result of this process.

At the late stages, we observe an increasing phase difference between the lower and
upper parts of the low-speed streak, which are then moving in opposite directions.
Thus the streak is disrupted. The periodic motion of the upper part continues far
downstream in the outer part of the boundary layer, while closer to the wall streaks
of turbulent nature are observed.

In other transition scenarios (see Rist & Fasel 1995; Berlin et al. 1999, for numerical
studies on the late stages), positive and negative streamwise vortices are also present on
the side of the low-speed region but they are not staggered in the streamwise direction.
Instead the left and the right streamwise vortices join at the centre of the streak and
form the typical Λ-structures seen in K- and H-type transition. The difference is found
in the symmetry of the streamwise vorticity of the fundamental secondary instability.
In the present case the vorticity disturbance is symmetric, while in oblique transition
and K- and H-type of transition the streamwise vorticity is antisymmetric. A common
feature of the scenarios considered, is that the vortex which is amplified at the late
stages is the one which is inducing a stronger mean shear.

The structures and their evolution observed in the present simulation of a transi-
tional boundary layer show important similarities with the sinuous streak instability
observed in the near-wall region of a turbulent boundary layer (see Jeong et al. 1997;
Schoppa & Hussain 1997; Jiménez & Pinelli 1999).
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Institute of Technology (KTH) and by the National Supercomputer Center in Sweden
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