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Numerical simulations of vorticity banding
of emulsions in shear flows

Francesco De Vita, *a Marco Edoardo Rosti, *ab Sergio Caserta *c and
Luca Brandt*a

Multiphase shear flows often show banded structures that affect the global behavior of complex fluids

e.g. in microdevices. Here we investigate numerically the banding of emulsions, i.e. the formation of

regions of high and low volume fractions, alternated in the vorticity direction and aligned with the flow

(shear bands). These bands are associated with a decrease of the effective viscosity of the system.

To understand the mechanism of experimentally observed banding, we have performed interface-

resolved simulations of the two-fluid system. The experiments were performed starting with a random

distribution of droplets, which under the applied shear, evolve in time resulting in a phase separation. To

numerically reproduce this process, the banded structures are initialized in a narrow channel confined

by two walls moving in opposite directions. We find that the initial banded distribution is stable when

droplets are free to merge and unstable when coalescence is prevented. In this case, additionally, the

effective viscosity of the system increases, resembling the rheological behavior of suspensions of

deformable particles. Droplet coalescence, on the other hand, allows emulsions to reduce the total

surface of the system and, hence, the energy dissipation associated with the deformation, which in turn

reduces the effective viscosity.

1 Introduction

The formation of banded structures in shear flows has been
observed for different types of complex fluids.1,2 These struc-
tures can have different orientations depending on the flowing
materials: banding in the direction of the velocity gradient
has been observed in worm-like micellar solutions as a con-
sequence of flow instability,3 whereas structures oriented in the
vorticity direction and alternated in the flow direction have
been reported for attractive emulsions.4 Kang et al.5 performed
experiments of rodlike virus suspensions and observed vorticity
banding in a limited range of shear rates, which was explained
by analogy to elastic instabilities of polymers (the Weissenberg
effect): inhomogeneities in the flow induce a weak rotational
flow in the gradient direction.6 Of interest here, vorticity banding
has been observed in emulsions composed by a biphasic polymer
blend flowing in the Newtonian regime.7,8 In these works, the
authors performed experiments at different viscosity ratios (from
0.001 to 5.4) and shear rate (from 0.005 s�1 to 5 s�1) in a range

from dilute to moderate concentration of the dispersed phase (the
volume fraction ranging from 2.5% to 20%). They reported the
generation of droplet-rich and droplet-poor regions, regularly
aligned in the direction of the flow and alternating in the vorticity
direction, as illustrated in Fig. 1. The vorticity banding pheno-
menon was observed only when the droplet phase showed a
viscosity lower than the matrix phase (viscosity ratio o 1). The
process, which after a long time leads to a separation of the
phases, has been associated with a decrease of the effective
viscosity which is more evident for lower values of the viscosity
ratio. Caserta and Guido8 linked the formation of bands with the
change of the concavity of the viscosity–volume fraction master
curve. In this study we investigate the stability of banded

Fig. 1 Example of vorticity banding in a plane parallel to the walls: droplet
distribution at increasing time (g = _gt is a non-dimensional measure of
time) from left to right. Figure adapted from Caserta and Guido.8
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structures and relate the vorticity banding in shear flows to the
viscosity–concentration curve.

Emulsions are a biphasic liquid–liquid system in which the
two fluids are partially or totally immiscible. Depending on the
interaction force between the droplets, the emulsions can be
considered repulsive or attractive. In the former case, the
repulsive force between the drops is predominant, whereas in
the latter case the system can produce flocculates.4 The macro-
scopic properties of these systems strongly depend on their
microstructures, mainly the droplet sizes and distribution. The
two mechanisms that affect the disperse phase dynamics are
the interface deformation and the collision rate. The deforma-
tion is due to the stress induced by the flow, counterbalanced
by the interfacial stresses, which tend to reduce the droplet
surface by keeping a spherical shape. The ratio of these two
stresses is known as the capillary number, Ca. When Ca exceeds
a critical value, droplets do not reach a steady state shape under
flow, but break in two or more fragments, each having a stable
deformed shape.9 On the other hand, in the case of undiluted
emulsions, the flow can induce the collision of two or more
droplets. During these interactions attractive forces between
droplets can induce coalescence, provided the resulting larger
drop is still stable under flow, i.e. its capillary number does not
exceed the critical value. The interplay of these two mechanisms is
of fundamental importance for describing the properties of
liquid–liquid systems such as emulsions.10,11 These are important
also in microfluidic devices to control the formation of droplets
and manipulate their distribution, e.g. T junctions or nozzles.12,13

While the breakup involves mainly the interaction between
one single drop and the external flow, the coalescence arises
from the interaction of different drops, which complicates the
dynamics of the system. If the Péclet number, defined as
the ratio of the diffusion induced by the external flow and the
molecular diffusion, is larger than 1 then the coalescence is
flow-driven, which is the case under consideration in this
study. Under this condition, it has been shown experimentally
that coalescence decreases with increasing shear rate as well as
with particle-size ratio, due to changes in the trajectory of
smaller droplets.14,15 The complex dynamics describing the
behavior of two colliding droplets can be thought of as the
interplay of an external flow, responsible for the frequency,
force and duration of collisions, with an internal flow (the
drainage film between the two particles), which accounts for
the deformation of the interface and, eventually, rupture and
confluence.16 For spherical particles of equal size at low Reynolds
number, it is possible to estimate a collision frequency per unit
time and volume as C = (2/3)_gd3n2, with _g the applied shear rate,
d the diameter of the particles and n the number of particles per
unit volume.17 If the characteristic collision duration is larger
than the drainage time, droplets will tend to coalesce, whereas the
emulsion will behave as repulsive in the opposite case.18 From
scaling analysis it is possible to approximate the drainage time in
a head-on collision of two equal-size drops as td_g E Cam, where
m = 4/3 if the drainage film is assumed to be flat16 or m = 1 for
dimpled-film shape.19 This estimation has also recently been
corrected to account for the slip condition at the interface between

polymers20 which can give important differences mostly at low Ca.
In a real scenario, the assumption of head-on collision is not
always appropriate and the emulsion can have a polydisperse size
distribution, which makes the previous estimate not fully reliable.
The morphology of a liquid–liquid system under flow is a non-
trivial function of the flow intensity, depending on the entire flow
history.21,22 Several experimental studies have been conducted on
droplet collisions in shear flows in order to describe the size
evolution and deformation13,18,23,24 and to investigate the effect of
the wall confinement.25

Performing numerical simulations of droplet collisions and
coalescence is a challenging problem due to the large separa-
tion of scales involved in the problem: from the external flow
lengthscale, the gap between the two plates, which can be in the
order of mm, to the smallest scale given by the thickness of the
fluid film between two drops, which can be in the order of
nm.16 Additionally, the process of band generation requires
thousands or tens of thousands of strain units8 to fully develop,
making the observation window very long. Fully resolved three-
dimensional simulations of emulsions in shear flow, with the
same physical parameters as in experiments, are therefore
extremely expensive. Numerical studies of emulsions at mode-
rate concentrations, as previously published in the literature,
have mostly been conducted with methods that do not allow
droplets to coalesce,26,27 whereas simulations which resolve the
liquid films are mostly in the dilute regime.28,29

In this work we present a numerical investigation of emul-
sions in shear flow with volume fraction f of the disperse phase
ranging from 5% to 20% and viscosity ratio l ranging from
0.01 to 10, defined as the ratio of the disperse phase viscosity
over the outer fluid viscosity. To avoid simulation of the long
process of band generation, occurring over thousands of shear
units, the initial condition of our simulations is a distribution
of droplets already in the form of bands, whose stability is
investigated for different coalescence efficiencies. We aim to
first reproduce the experimental observations of Caserta and
Guido8 and to explain the vorticity banding process by the
effect of the coalescence on the droplet distribution and on the
rheological behavior of the system.

2 Numerical method and setup

We simulate emulsions at moderate concentrations in shear
flows at low Reynolds numbers. The multiphase flow is
governed by the incompressible Navier–Stokes equations

@ui
@xi
¼ 0; (1a)

r
@ui
@t
þ uj

@ui
@xj

� �
¼ � @p

@xi
þ @

@xj
2mDij

� �
þ skdsni: (1b)

where ui, when i = 1,2,3, are the velocity components in the
three Cartesian coordinates x1, x2 and x3, p is the pressure field,
r and m are the local density and viscosity, D is the rate of
deformation tensor Dij = (qui/qxj+ quj/qxi)/2, s is the interfacial
tension coefficient, k is the curvature of the interface, ni is the
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i-th component of the unit normal vector n to the interface
and ds is the Dirac delta function, which expresses that the
interfacial tension force acts only at the interface between the
two fluids. To track in time the position of the interface, we
used a volume of fluid (VoF) technique based on the multi-
dimensional tangent of the hyperbola interface capturing
(MTHINC) method.30 To identify the two fluids we introduced
a VoF function H(x,t) defined as the cell-average value of the
volume fraction of one fluid in the other. The VoF function is
advected by the flow field as

@H

@t
þ uj

H

@xj
¼ 0: (2)

The material properties of the two fluids are linked to the VoF
function H as follows

rðx; tÞ ¼ r1Hðx; tÞ þ r0ð1�Hðx; tÞÞ

mðx; tÞ ¼ m1Hðx; tÞ þ m0ð1�Hðx; tÞÞ
(3)

where the subscript 1 stands for the disperse phase, the sub-
script 0 for the carrier fluid and H is equal to 1 in the disperse
phase and 0 in the carrier fluid. Finally the surface tension
force is approximated using the continuum surface force (CSF)
approach31

skdsni ¼ sk
@H

@xi
: (4)

The solver uses the second-order centered finite difference
scheme for the spatial discretization and a fractional step
algorithm for the time marching with a fast FFT solver for
the resulting Poisson pressure equation. For the temporal
discretization a second order Adam-Bashfort scheme is used.
See Rosti et al.32 for a detailed description and validation of the
code used in this work.

We know from previous experimental studies8 that, under
specific conditions, sheared emulsions form vorticity aligned
banded structures. The process of formation of bands from an
isotropic emulsion needs more than 1000 strain units (the
strain g = _gt is a measure of the overall deformation imposed
on the sample, and can be considered as a non-dimensional
measure of time under flow). Running a numerical simulation
of this process for the entire time required to complete its
dynamic process is not feasible with the actual computational
limits. For this reason, we decided to initialize the disperse
phase with the already-formed banded structures and verify in
which conditions they are stable and in which they will diffuse.
The characteristic width of the bands is of the order of the gap
between the plates d,8 which clearly highlights the effect of the
confinement on the phenomenon under study. We initialize a
random distribution of droplets, of equal radius r, confined in
two bands of width order d. It is worth noticing that in the case
of morphological hysteresis the steady state droplet size distri-
bution is not only a function of the applied shear rate but
depends also on the initial distribution.21 Thus, the focus of
this study is not on the droplet morphology at a steady state but
rather on the stability of banded structures. To characterize the

rheological behavior of the emulsion we also compute the
effective viscosity in a small domain starting with a homo-
geneous droplet distribution and preventing the banding in
the vorticity direction by increasing the lateral confinement.
By doing so, we are able to compute the constitutive curve of
the system. In the following we will refer to the two cases as the
large domain (LD) and small domain (SD).

A sketch of the computational domain and the initial
distribution of the droplet is reported in Fig. 2. The domain
is periodic in the x and y directions (velocity and vorticity
directions) and wall bound in the z direction (velocity gradient
direction). The large domain box has a size of Lx = Ly = 10d and
Lz = d, whereas the small domain has a size of 1.6d in the x and
y directions and the same size in the z direction, with d = 10r.
The top and bottom walls move with opposite velocities �U
such that the applied shear rate is equal to _g = 2U/d, chosen to
ensure that the Reynolds number of the droplet, Re = _gr2/n0 is
equal to 0.1, with n0 being the kinematic viscosity of the outer
fluid. The interfacial tension coefficient s is chosen to provide a
capillary number, based on the initial radius Ca = m0 _gr/s, equal
to 0.1, matching the experiments of Caserta and Guido.8

In those experiments the banding was only observed for viscosity
ratios smaller than one;8 additionally, the time required to
reach a stable and steady configuration is shorter for smaller l.7

For this reason we only simulate banding emulsions with
a viscosity ratio of 0.01. The coalescence probability was
estimated as by Chesters16 with the chosen set of parameters
equal to 0.9, thus suggesting that almost every collision will
result in droplet coalescence. Additionally, the effect of breakup is
secondary compared to coalescence as observed experimentally8

and also verified a posteriori in our simulations. All the simula-
tions have been performed with a resolution of 32 grid points
per initial diameter of the droplet. We have verified that this
resolution is enough to properly describe both the transient and
steady state behavior of the emulsions, as shown in Fig. 3.
In particular, the effective viscosity has already converged for
the coarser grid (16 points per initial radii), whereas the coales-
cence at low resolution is slightly faster (10% difference) but the
steady state value is the same. From the simulation with 64 points
(shorter in time for computational reasons) we verified that the
adopted resolution (N = 32) is also enough to capture the transient
dynamics with a maximum error of less then 8% in the total

Fig. 2 Sketch of the computational geometry and of the initial con-
figuration.
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surface. In this study, the effective viscosity me is always computed
as the ratio between the wall shear stress (i.e. the time and space
average of the derivative in the z direction of the horizontal
velocity u at the walls multiplied by the outer fluid viscosity)
and the applied shear rate

me ¼
m0

@u

@z

����
w

� �� �

_g
(5)

where the symbol {�c indicates the time and space average in
the homogeneous directions.

3 Results and discussion

In the absence of any potential, for example gravitational or
electric field, the dynamics of the disperse phase is governed
only by the external flow. As the simulations start, the shear is
transferred from the plates to the interior of the domain, and
the drops start to deform, align in the direction of the shear
and eventually collide. As soon as two pieces of interface are in
the same computational cell they will merge leading to the
coalescence of the drops. In this case every collision leads to
coalescence, which implies an overestimation of the coales-
cence efficiency of the system. This is a well-known issue of
interface capturing methods such as the VoF solver used in this
study. From a physical point of view, this is equivalent to
having a system with a drainage time tending towards zero,
or a coalescence efficiency tending towards unity. The condi-
tion of unitary coalescence efficiency results in an extremely
fast dynamic evolution of the droplet size under flow, leading to
the formation of very large droplets. As droplet size grows the
capillary number approaches the critical value, so an equili-
brium between droplet coalescence and breakup could be the
expected steady-state. However in confined conditions, as in
our study, large droplets can be stabilized by the presence of
walls.13 This is in agreement with what was observed in the
experiments, where at very large strain values, and in the case
of high coalescence efficiency, extremely large drops are
visible.7,8 Analogous structures have also been reported by
Migler.33 We consider the simulations to be steady when the
effective viscosity varies less than 3–4% in a period of about
10 strain units.

We display in Fig. 4 the instantaneous distribution of the
droplets (left panel) after 15 strain units for a volume fraction
equal to 20%. Droplets inside the bands, where collisions are
more frequent, start to coalesce and create bigger structures

Fig. 3 Time history of the effective viscosity (solid lines) and normalized
surface (dashed lines) for three different grid resolution values: N = 16
(red), N = 32 (blue), and N = 64 (green), with N being the number of grid
points per initial radius. These results refer to the simulation in the small
domain.

Fig. 4 (left) Droplet distribution at strain unit g = 15 for the simulations with 20% volume fraction. (right) Time history of the effective viscosity me

normalized with the outer fluid viscosity m0 for the simulation with f = 20% (solid black line); on the right vertical axis, normalized total surface for the
simulation with f = 20% (black dotted line). The inset shows the average volume fraction hfi in the vorticity direction (y) at three different instants for the
case with a volume fraction of 20%: initial distribution (red dash-dotted line); distribution at g = 15 (blue dotted line); distribution at g = 27 (solid green line).
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elongated in the direction of the shear. The distribution of the
average volume fraction hfi in the vorticity direction (y),
computed by averaging the local volume fraction f in the x
and z-directions, is reported in the inset of the right panel for
three different instances, also marked in the time history of the
effective viscosity and total surface in the same figure. As a
consequence of the coalescence, the average concentration
becomes more peaked and confined in space, as visible by
comparing the initial condition (red dash-dotted line) to the
blue and green curves in the inset. In other words, in these
conditions we observe that the initial banded structures are
stable, i.e. they remain localized in their initial positions and do
not diffuse along the vorticity direction. Note also that the
initial width of the band was about 1.5d, but at a steady state it
becomes d. To verify the independence of this result from the
initial configuration we considered an additional case of bands
with a local volume fraction of 30% and with a non-zero volume
fraction, about 5%, between the bands so that the mean volume
fraction in the domain is 15%, and also for this configuration
the initial banded structure is stable (not shown here).

To understand why banded structures are stable in this
condition, it can be helpful to consider the shape of the
constitutive curve of an emulsion. In contrast to rigid34 and
deformable particles,35 where the effective viscosity always
increases with the volume fraction, emulsions can exhibit a
constitutive curve of the effective viscosity vs. the volume
fraction with a negative curvature when the viscosity ratio is
lower than unity.8,36 As previously discussed, we computed the
effective viscosity of a homogeneous emulsion in a smaller
domain in the homogeneous directions and with the same
vertical distance d between the walls. This smaller domain
prevents the separation of phases and hence the system can
be seen as a representative of a homogeneous distribution with
a certain average volume fraction. It is worth noticing that, the
viscosity computed in the small domain (SD) represents a
constitutive curve of the emulsion, the distribution being
homogeneous, whereas in the large domain (LD) we measure
the flow curve of the system. In Fig. 5 we compare the effective
viscosity of the two systems, the large domain with bands
(morphologically described in Fig. 4) and the homogeneous
small domain with no bands. The results illustrate that for
viscosity ratios smaller than 1 the constitutive curve has nega-
tive curvature; this effect reduces with increasing l so that the
curvature becomes positive for viscosity ratios greater than 1.
By comparing the effective viscosity between the simulations in
the two different domains, we also confirm the prediction of
the experiments showing that the presence of banded struc-
tures effectively reduces the viscosity of the system. This effect
is a direct consequence of the curvature of the constitutive
curve: for instance, an emulsion with an average volume frac-
tion f = 15% in a small domain will have an effective viscosity
given by the blue square in Fig. 5. If we consider the same
volume fraction but in a larger domain, which is able to fit the
banded structures, the phases will tend to separate producing
droplet-rich areas (in the example at 30% volume fraction)
and droplet poor-areas (approximately 0% volume fraction).

The effective viscosity of this system, given by the red circle
corresponding with f = 15%, lies approximately on the dashed
line connecting the values of the viscosity at 0% and 30% for
the flow without bands. In other words, it is possible to apply
the level rule by considering the droplet-rich and droplet-poor
regions as two different phases with volume fractions f1 = 0.3
and f2 = 0, and effective viscosity m1 = 0.9 and m2 = 1,
respectively. If x is the volume occupied by the bands with
respect to the whole domain (approximately 0.5), the average volume
fraction is given by f = xf1 + (1 � x) and f2 = 0.15. Similarly, for
the effective viscosity we have m = xm1 + (1 � x)m2 = 0.95, which is
approximately the value given by the red dots for f = 0.15. This
implies that, due to the shape of the constitutive curve, if the
domain is large enough the phases will separate because the final
state is energetically more convenient, being associated with a
lower effective viscosity. Additionally, since the two curves diverge,
the decrease in effective viscosity given by the phase separation is
more significant for higher volume fractions. On the other hand,
for small f, since the average distance between droplets increases,
the collision frequency tends towards zero and the vorticity
banding would require an extremely long time to form and is
unlikely to be seen. This can also be explained considering the
level rule and observing that for a small volume fraction the
difference in the effective viscosity values between the banded and
non-banded distribution becomes negligible, and hence the
curvature of the master curve becomes almost zero. Note also
that, by increasing the viscosity ratio, the curvature of the con-
stitute curve becomes positive and for l 4 1 the banding is not
anymore energetically convenient. These results are in agreement
with the experimental observations of Caserta and Guido.8 The
reason why at a large viscosity ratio there is no banding is that the
coalescence is greatly favored by a low disperse phase viscosity
and reduces significantly for l 4 1;16 as we will see in the next
section, coalescence is the key ingredient for the banding.

Fig. 5 Comparison of the effective viscosity m normalized with the outer
fluid viscosity m0 between simulations in the large domain (LD) and l = 0.01
(red dots) and simulation in the small domain (SD): l = 0.01 (blue square),
l = 1 (black triangle), and l = 10 (green triangle). The black lines indicate
the polynomial fit to the data. The dashed line represents the level rule
between two phases, one given by droplet-rich areas at E30% f and one
by droplet-poor areas at E0% f, as explained in the text.
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Before proceeding to the next section we want to suggest an
analogy between our system and the mechanism proposed in
ref. 6. Kang et al.6 observed vorticity banding in suspensions of
rodlike viruses for a specific range of the applied shear rate.
They proposed a mechanism for the generation of these bands
inspired by the elastic instability of polymers: the presence of
inhomogeneities in the flow induces normal stresses in the
gradient direction, which in turn, produce a weak flow causing
the phase separation in banded structures. In our system
inhomogeneities correspond to droplets of different sizes,
whereas the flow in the gradient direction (z) is produced by
the migration of larger droplets towards the center of the gap
(see Fig. 6 top panel). The latter effect has been previously
demonstrated experimentally10,37 and previous simulations
have also shown that it is related to the reduction of the
effective viscosity of the emulsion.36 Once droplets become
larger and migrate towards the center of the gap, they also
move slower in the flow direction compared with smaller
droplets. This induces a gradient of the flow velocity in the
vorticity direction, associated with a weak flow in the vorticity
direction (see Fig. 6 bottom panel).

3.1 Effect of drainage time

As mentioned before, our simulations represent the limit of
drainage time tending towards zero or, equivalently, of unitary
coalescence efficiency. What will happen if we consider a
system with drainage time tending towards infinity? In this
case the collision time is always faster than the drainage time
and coalescence never occurs. To reproduce this limiting case

in our simulations, we introduce an Eulerian subgrid force38 in
the momentum equation that depends on the signed distance
c (usually referred to as level-set function) from a droplet
interface

Fc ¼ m0Ur
a

c
þ b

c2

� �
n (6)

where m0 is the outer fluid viscosity, r is the initial radius of the
droplets, U is the wall velocity, n is the normal to the interface
and a and b are two coefficients. At every timestep the distance
function c is reconstructed from the VoF field solving the
following redistancing equation

@c
@t
þ S c0ð Þ jrcj � 1ð Þ ¼ 0 (7)

where S(c0) is the sign function, t is an artificial time and the
initial distribution c0 is given by c0 = (2H � 1)0.75D, where
D is the grid spacing.39 We solve eqn (7) using the second order
algorithm of Russo and Smereka40 with a timestep Dt = 0.1D.
In the implementation, we tag every initial droplet with an
index and whenever two different droplets are closer than
three grid points we apply this repulsive force. By changing
the magnitude of the force we can delay or totally prohibit
coalescence, therefore this force can be thought of as the
consequence of the addition of surfactants to the emulsion.
In this study, the two coefficients a and b have been chosen to
provide the smallest force able to completely prevent the
coalescence of the droplets, which correspond to a = 55 and
b = 3.5. See De Vita et al.36 for a detailed description of the
algorithm and the effect of this collision force.

The evolution of the droplet configuration for the cases with
collision force is reported in Fig. 7. Unlike what was observed in
the previous cases, the initial banded structures are unstable in
the absence of coalescence and start to diffuse in the vorticity
direction. Looking at the time evolution of the average volume
fraction distribution hfi (inset of Fig. 8), we notice that the
bands become larger, the peaks reduce and the distribution
tends to diffuse in the y-direction. If we now plot the effective
viscosity vs. the volume fraction for the cases with collision
force we find that the effective viscosity grows with the volume
fraction and that there is a change in the sign of the curvature
(see Fig. 9). It is worth noticing that when collision forces
are active the effective viscosity obtained in large domains
(blue squares) or in small domains where vorticity diffusion
is inhibited (black diamonds), is approximately the same, as
reported in Fig. 9. The small difference between the two curves
with collision force is due to the remaining trace of the original
bands in the simulations in the large domain, which diffuse
very slowly. When the coalescence is prevented, the banded
structures are not energetically convenient because the banded
configuration has a higher effective viscosity. This suggests that
the initial banded structures, when coalescence is prohibited,
tend to distribute homogeneously inside the domain.

When the collision force is applied to prevent the coales-
cence, the system behaves similarly to a suspension of deform-
able particles.35,41,42 Rosti et al.41 showed that the effective

Fig. 6 (top panel) Snapshot of the velocity component in the gradient
direction (z) showing the migration of the droplets to the center of the
domain. (bottom panel) Snapshot of the velocity component in the
vorticity direction (y). For both panels g = 5.
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viscosity of a suspension of deformable particles can be esti-
mated using Eilers’ formula, valid for rigid spheres, by computing
an effective volume fraction based on the mean deformation of
the particles. Suspensions of deformable particles and droplets
when they cannot merge therefore have a constitutive curve with a
positive curvature. This implies that banded structures are not
associated with a minimum of viscosity and thus are unstable;
applying the same level rule as in the case with merging will give a
larger value of the effective viscosity for the banded case. The
mechanism of coalescence allows emulsions to reduce the total
surface of the system and thus to reduce the viscous dissipation
associated with the flow. This also explains why the banding was

not observed in experiments for viscosity ratios greater than
unity:8 for l 4 1 the coalescence efficiency reduces.16

3.2 Shear stress budget

To better understand this aspect, we compute the contribution
of each term of the momentum equation to the shear stress.
To this end, we consider the x-component of the momentum
equation, average it in the homogeneous directions (x and y)
and integrate it in the z-direction:32

txz = tmxz + tsxz + tc
xz (8)

where the first term is associated with the viscous dissipation,
the second term to the interface tensions and the last term to

Fig. 7 Droplet distribution for the simulations with collision force (i.e. coalescence efficiency tending towards zero) for the case with 20% average
volume fraction: g = 0 (left) and g = 105 (right).

Fig. 8 Time history of the effective viscosity me normalized with the
outer fluid viscosity m0 for the simulation with f = 20% and collision
force. The inset shows the average volume fraction hfi in the vorticity
direction (y) at three different instants: initial distribution (red dash-dotted
line); distribution at g = 30 (blue dotted line); distribution at g = 105 (green
solid line).

Fig. 9 Comparison of the effective viscosity me normalized with the outer
fluid viscosity m0 for the simulations without the collision force (red circle)
and with collision force (blue square). The values for the cases with the
collision force are taken at g = 25. Black diamonds correspond to simula-
tions in a small domain, as in Fig. 5, starting with initial homogeneous
distribution.
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the collision force. To account for the interface tension we use
the continuum surface force approach31 in which the interface
tension is expressed as Fs = skrf, where k is the local
curvature. The shear stress due to interfacial tension is
computed as

tsxzðzÞ ¼
ð
z

Fs;x
	 


dz;

in the same way we compute the contribution to the stress due
to the presence of the collision force as

tcxzðzÞ ¼
ð
z

Fc;x

	 

dz:

See De Vita et al.36 for a full derivation. The average values of
all the contributions are reported in Fig. 10 divided by the
Newtonian shear stress so that the sum of the components
gives the suspension effective viscosity. The stress budget
clearly shows that when the coalescence is prevented, most of
the increase in the effective viscosity is due to the interface
tension term. The stress associated with the deformation is
proportional to the surface area which is higher in the cases
with collision force. This confirms that the coalescence is the
mechanism that allows emulsions to reduce their effective
viscosity. From the graph, we can also observe that, with
merging, the additional reduction of the effective viscosity in
the presence of shear banding is mostly related to a further
reduction of the interfacial tension term, with a small contribu-
tion associated with the viscous dissipation. Indeed, for the
simulations with bands we observe that the droplets tend to
approach the walls more than for the case without bands,
which can explain the small reduction in the viscous stress.
The reduction of the total area in the simulation with bands is

about 8% higher, which confirms the reduction of the interface
tension stress.

3.3 Bands diffusion

Finally, we provide an estimate for the droplet diffusion in the
vorticity direction, leading to the disappearance of the bands.
We consider the diffusion of bands as broadening of the
average volume fraction hfi (computed by averaging in the x
and z directions) in the vorticity direction when coalescence is
prohibited and the droplet pair interaction is more collision-
like, as shown in Fig. 8. As a first approximation, we suppose
that the evolution of hfi follows a monodimensional diffusion
equation with a constant diffusion coefficient

@hfi
@t
¼ D

@2hfi
@y2

: (9)

The diffusion coefficient D has dimension L2/T and can be
estimated using as the length scale the particle diameter L = d
and as the time scale the inverse of the collision frequency
per unit volume times the volume associated with the
reference length T = 1/(d3C). With this definition we find that
D = (2/3) _gd8n2 = 0.038. We then solve the diffusion eqn (9) for

Fig. 10 Shear stress budget for the case with collision force (left column),
the small domain with no bands (middle column) and the large domain
with bands (right column): outer viscous stress (green dense net); surface
tension (solid blue), collision force (orange oblique lines). The contribution
to the viscous stress in the inner fluid is about 100 times smaller than the
others and is not visible on this scale.

Fig. 11 Comparison between the simulated (blue dash-dotted line) and
the approximated (red solid line) average volume fraction hfi for the
simulation with f = 20%. (top panel) Comparison at time g = 10; (bottom
panel) comparison at time g = 60.
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several diffusion coefficients starting with an initial distribution
of hfi corresponding to the initial configuration of our fully
resolved simulations (red dash-dotted line in the inset of Fig. 4).
We compute the c2-norm of the error between the approximated
distribution given by the diffusion model and the simulated one
every 0.01 shear unit and find that the diffusion coefficient
minimizes the error D = 0.036. The difference between the two
diffusion coefficients is less than 5%, which can be explained by
the deformation of the droplets, not considered in the estimation
of the collision frequency C by Smoluchowski M.17 This confirms
that the evolution of the average volume fraction hfi in the
vorticity direction is governed by the timescale of the collision
frequency. Finally, we display in Fig. 11 the evolution of the
approximated average volume fraction hfi alongside the one
obtained with the full 3D numerical simulations. Since we
considered only a purely 1D diffusion equation with a constant
diffusion coefficient the evolution of the peaks is not properly
reproduced, whereas the average diffusion of the band is well
approximated.

4 Conclusions

We performed numerical simulations of emulsions in a shear
flow at moderate volume fractions and low Reynolds number
reproducing the experiments in ref. 8. The aim of this study is
to demonstrate that coalescence is responsible for a substantial
change in the rheology of the suspension and for the formation
of the vorticity banding in shear flows of the emulsions.
Starting with an initial distribution of the disperse phase in
banded structures, we observe that the distribution is stable
and that the bands remain localized in their initial position,
when coalescence is active. In this configuration, the curve of
the effective viscosity vs. the volume fraction exhibits a negative
concavity, as also observed experimentally.8 To single out the
effect of the coalescence we introduced a short-range repulsive
force, which always prevents the merging of drops. When
coalescence is prevented, the banded structures are not stable
anymore, the droplets tend to diffuse and to assume a uniform
distribution across the domain. In this case, the concavity of
the curve of the effective viscosity vs. volume fraction changes
sign, resembling the behavior of suspensions of rigid and
deformable particles. The coalescence mechanism allows emul-
sions to reduce the total surface of the system and, hence, to
reduce the energy dissipation associated with the deformation of
the particles. The results of the simulations and band stability
indicate, therefore, that the coalescence is the physical mecha-
nism that allows emulsions to generate the banded structure
in the vorticity direction and the collision process is responsible
for the timescale of the process. To summarize, there are two
mechanisms that allows emulsions to reduce their effective
viscosity: (i) the coalescence, which reduces the total surface of
the disperse phase and change the concavity of the rheological
curve; (ii) the shear banding that, when possible in large enough
channels, further reduces the interface tension contribution.
We qualitatively sketch this behavior of emulsions in Fig. 12.

Future investigations should consider the improvement
of the collision algorithm in order to handle collision and
coalescence together and reproduce a more realistic collision
efficiency.
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