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The viscous and inviscid linear stability of the incompressible flow past a square open
cavity is studied numerically. The analysis shows that the flow first undergoes a steady
three-dimensional bifurcation at a critical Reynolds number of 1370. The critical mode
is localized inside the cavity and has a flat roll structure with a spanwise wavelength
of about 0.47 cavity depths. The adjoint global mode reveals that the instability is
most efficiently triggered in the thin region close to the upstream tip of the cavity.
The structural sensitivity analysis identifies the wavemaker as the region located
inside the cavity and spatially concentrated around a closed orbit. As the flow outside
the cavity plays no role in the generation mechanisms leading to the bifurcation, we
confirm that an appropriate parameter to describe the critical conditions in open cavity
flows is the Reynolds number based on the average velocity between the two upper
edges. Stabilization is achieved by a decrease of the total momentum inside the shear
layer that drives the core vortex within the cavity. The mechanism of instability is
then studied by means of a short-wavelength approximation considering pressureless
inviscid modes. The closed streamline related to the maximum inviscid growth rate
is found to be the same as that around which the global wavemaker is concentrated.
The structural sensitivity field based on direct and adjoint eigenmodes, computed at
a Reynolds number far higher than that of the base flow, can predict the critical
orbit on which the main instabilities inside the cavity arise. Further, we show that
the sub-leading unstable time-dependent modes emerging at supercritical conditions
are characterized by a period that is a multiple of the revolution time of Lagrangian
particles along the orbit of maximum growth rate. The eigenfrequencies of these
modes, computed by global stability analysis, are in very good agreement with the
asymptotic results.
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1. Introduction
Flow separation and recirculation are of great interest as they play an important

role in the phenomena involved in transport and mixing processes. The flow past open
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cavities is a prototype of geometrical configurations characterized by a finite region
of separated flow. The identification of the flow characteristics related to instability
mechanisms (e.g. coherent structures) is also of practical importance since these may
lead to resonances, acoustic noise or structural vibrations. Rockwell & Naudascher
(1978) classified the unstable behaviour of this kind of flow into fluid-dynamic, fluid-
resonant, and fluid-elastic.

Acoustic resonance (i.e. fluid-resonant behaviour) has received a remarkable amount
of attention in the past due its relation with the noise generation process (Rossiter
1964; Yamouni, Sipp & Jacquin 2013). In this case, there exists a feedback mechanism
between the unstable shear layer susceptible to Kelvin–Helmholtz instability and the
pressure waves (Rowley, Colonius & Basu 2002). Gharib & Roshko (1987) observed
experimentally that the increase of the cavity length to depth ratio (L/D) led to
a different kind of instability, the so-called ‘wake mode’. This global instability
relies on a purely hydrodynamic mechanism (the oscillation Strouhal number is
weakly dependent on the Mach number) and is characterized by a large-scale vortex
shedding.

1.1. Experimental and numerical investigations of three-dimensional instabilities
Three-dimensional structures in cavities with large span-to-chord ratios were first
reported by Maull & East (1963) using oil flow and static-pressure measurements.
These authors observed stable cell formations inside open rectangular cavities of
different aspect ratios (L/D). Rockwell & Knisely (1980) observed a strong coupling
between the growth of the primary vortices and the increase of the vorticity of
the longitudinal vortices past the downstream edge of the cavity. They concluded
that, because of this interaction, the cavity core vortex presents an ordered spanwise
modulation. These coherent structures were analysed in detail in the laminar regime by
Faure et al. (2007, 2009) in cavities with an aspect ratio varying between 0.5 and 2.
Using smoke visualizations, Faure et al. (2007) report mushroom-like counter-rotating
vortical structures and suggest that the resulting inherent flow is the consequence of
a centrifugal instability related to the cavity core vortex.

Brés & Colonius (2007b) performed numerical simulations of the linearized
compressible Navier–Stokes equations to investigate the instability features in open
cavity flows. These authors identify the onset of the first bifurcation over a wide range
of Mach numbers and cavity aspect ratios and discuss the variations of the spanwise
modulation with the cavity depth. Brés & Colonius (2007a) showed, furthermore,
that the full nonlinear results, computed by direct numerical simulation (DNS), agree
very well with the features of the three-dimensional global mode provided by linear
stability analysis. Brés & Colonius (2008) accurately discuss the properties, the
structure and the nature of such instability. Using the generalized Rayleigh criterion
(Bayly 1988), they show that the instability is a centrifugal instability associated with
the closed streamlines inside the cavity.

Faure et al. (2009) performed an experimental investigation aimed at understanding
the three-dimensional flow topology inside cavities of different shapes and for several
Reynolds numbers. These authors also performed a secondary instabilities analysis
and identified the relevant shear-layer and inner-cavity flow scales. Zhang & Naguib
(2006, 2008, 2011) carried out a systematic study of the effect of the sidewalls on
the unsteady open cavity flow at low Mach number. The presence of the sidewalls is
shown to lead to strong amplifications of the pressure fluctuations inside the cavity.
Lasagna et al. (2011) investigated the effects of a trapped vortex cell (TVC) on the
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aerodynamic performance of a wing model and found a three-dimensional organization
of the flow inside the cell according to the value of the angle of attack and the
Reynolds number. di Cicca et al. (2013) reported time-resolved tomographic particle
image velocimetry (PIV) measurements in rectangular cavities having the length-to-
depth ratio equal to 2, 3 and 4.

Very recently, de Vicente et al. (2014) examined both experimentally and
numerically the instabilities over a rectangular open cavity of aspect ratio L/D = 2.
These authors compared the linear three-dimensional instability results with the
spatial structure of the experimental fields, showing qualitative agreement for the
main flow characteristics. Furthermore, they also show that modifications of the
spanwise boundary conditions can cause significant alterations of the flow field due
to nonlinear effects. Finally, Meseguer-Garrido et al. (2014) present a systematic
study of the onset of the first instability, varying the Reynolds number, the incoming
boundary-layer thickness and the cavity aspect ratio.

Experimental studies on the formation of three-dimensional structures in the start-
up flow inside a lid-driven cavity (LDC) can be found in Migeon, Texier & Pineau
(2000), Guermond et al. (2002) and Migeon, Pineau & Texier (2003). These three-
dimensional modulations inside the cavities are also documented by de Vicente et al.
(2010) and Gonzalez et al. (2011) who considered complex cross-sectional shapes.

1.2. Short-wave asymptotic analysis
Instabilities in open and closed cavities, as well as in separated flows, are interpreted
as centrifugal instabilities. Centrifugal short-wave instabilities were first considered
by Bayly (1988) who used the geometrical optics approximation and Flouquet theory
to extend the classical Rayleigh theory for centrifugal instabilities to general inviscid
planar flows. Bayly proposed diagonalizing the convective operator of the linearized
Euler equations (LEes) and constructing linear asymptotic eigenmodes in the limit
of large spanwise wavenumber using a Wentzel–Kramers–Brillouin–Jeffreys (WKBJ)
expansion, localized on the closed orbit characterized by the maximum Floquet
exponent. Later, the same author showed qualitative agreement between the results
obtained with the linearized Navier–Stokes equations and the asymptotic predictions
(Bayly 1989). Lifschitz & Hameiri (1991) investigated the asymptotic instability
features, considering the initial value problem for the LEes and for the linearized
equations of gas dynamics. Their more general approach was able to include both
exponential and algebraic growth in time. Many efforts have since been made to
quantitatively link the short-wave asymptotics and the normal-mode analysis: Sipp,
Lauga & Jacquin (1999) showed agreement between the optimal streamline (i.e. the
streamline where the inviscid growth rate is maximum) and the spatial distribution
of the unstable eigenmodes, and between the inviscid and viscous amplification
rate of an elliptic instability. Gallaire, Marquillie & Ehrenstein (2007) examined the
centrifugal instability of the separated region behind a bump and were able to make
a composite estimation of the growth rate taking into account the viscous effects
(see also Landman & Saffman 1987) and the short-wave inviscid asymptotic limit.
Recently, Giannetti (2015) applied a WKBJ approach to investigate the nature of the
secondary instability arising in the periodic wake of a cylinder.

In this context, the main goal of the present work is to characterize the instabilities
of the flow past an open cavity, develop an asymptotic approach to understand the
instability mechanisms and finally relate the results of the global and local asymptotic
analysis. The specific aims of the work, defining the outline of the article, are to:
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(i) provide an accurate estimation of the critical Reynolds number and the spanwise
wavenumber of the first three-dimensional bifurcation in incompressible open
cavity flows;

(ii) determine the instability core by means of the adjoint-based structural sensitivity
analysis;

(iii) investigate the sensitivity of the leading instability to base flow modifications
induced by a perturbation of the inflow profile or wall blowing/suction;

(iv) provide a quantitative prediction of the onset of the instability by means of the
short-wave asymptotic theory;

(v) show that the inviscid structural sensitivity (i.e. structural sensitivity based on
direct and adjoint eigenmodes computed at a Reynolds number higher than that
of the base flow) is able to accurately predict the particle orbit that provides the
main contribution to the instability;

(vi) suggest a generalization of the expression used to calculate the instability growth
rate from the Floquet exponent to predict the frequency of the time-dependent
modes emerging at supercritical conditions.

2. Theoretical framework
2.1. Geometrical configuration and base flow

We investigate the stability and sensitivity of the flow over a spanwise-uniform square
open cavity exposed to a uniform stream. The geometry, the frame of reference and
the notation adopted in this work are all displayed in figure 1. The origin of the
Cartesian reference system is located on the left edge of the cavity with x, y and
z denoting the streamwise, wall-normal and spanwise directions. The fluid motion is
described by the unsteady incompressible Navier–Stokes equations,

∇ · u= 0, (2.1a)
∂u
∂t
+ (u · ∇)u=−∇P+ 1

ReBF
∇2u, (2.1b)

where u is the velocity vector with components u = (u, v, w) and P is the reduced
pressure. Equations (2.1) are made dimensionless using the cavity depth D as the
characteristic length scale and the velocity of the incoming uniform stream U∞ as the
reference velocity. The Reynolds number is thus defined as ReBF =U∞D/ν (here the
subscript BF means base flow Reynolds number) with ν the fluid kinematic viscosity.
To ease comparisons, we have chosen the same boundary conditions as Sipp &
Lebedev (2007) and Barbagallo, Sipp & Schmid (2009). The system of differential
equations (2.1) is closed by the following Dirichlet boundary conditions at the inflow
∂Din and stress-free conditions at the outflow ∂Dout:

u= 1 · ex, x ∈ ∂Din; Pn− Re−1(∇u) · n= 0, x ∈ ∂Dout, (2.2a,b)

where ex is the unit vector in the direction of the x axis, n is the normal vector (in
this case, it is the vector perpendicular to the outlet of the computational domain).
Symmetric conditions (i.e. ∂yu = 0 and v = 0) are imposed at the free-stream upper
boundary of the computational domain ∂Dext and no-slip conditions u= 0 at the solid
walls ∂Dw. Note that a free-slip condition with zero tangential stress (i.e. ∂yu= 0 and
v = 0) is used on the walls close to the inflow and outflow ∂Dfs = ∂D1

fs ∪ ∂D2
fs.
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FIGURE 1. Flow configuration, frame of reference and computational domain D . The main
features of the flow are also sketched in the figure, i.e. the boundary layer developing over
the walls, the shear layer above the cavity and the recirculation forming inside the cavity
of length L and depth D= L.

2.2. Global stability analysis
The flow linear instability is studied with a classical normal-mode analysis. The
analysis relies on the existence of a steady solution about which infinitesimal
perturbations are superimposed. The velocity and pressure fields are decomposed
into a two-dimensional base flow, Qb(x, y) = (ub, Pb)

T = (ub, vb, 0, Pb)
T, and a

three-dimensional disturbance flow denoted by q′(x, y, z, t)= (u′,P′)T= (u′, v′,w′,P′)T
of small amplitude ε. Introducing this decomposition into (2.1) and linearizing the
equations governing the disturbance evolution, we obtain the two systems describing
the spatial structure of the base flow and the behaviour of generally unsteady
perturbations. In particular, the base flow is governed by the steady version of (2.1),
whereas the perturbation field is described by the linearized unsteady Navier–Stokes
equations (LNSE)

∂u′

∂t
+ L{ub(ReBF), ReSTB}u′ =−∇P′, (2.3)

∇ · u′ = 0, (2.4)

with the linearized Navier–Stokes operator L (ReSTB indicates the Reynolds number
used for stability computations)

L{ub, ReSTB}u′ = ub · ∇u′ + u′ · ∇ub − 1
ReSTB

∇2u′. (2.5)

As the base flow is homogeneous and stationary in the spanwise direction, a generic
perturbation can be decomposed into Fourier modes of spanwise wavenumber k. The
three-dimensional perturbations are expressed as

q′(x, y, z, t)= 1
2 {(û, v̂, ŵ, P̂)(x, y) exp[ikz+ γ t] + c.c.}, (2.6)

where γ = η + iω is the complex growth rate and c.c. stands for complex conjugate.
The real part η of γ represents the temporal growth rate of the perturbation and the
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imaginary part ω its frequency. For η> 0, the flow is unstable whereas for η< 0 it is
stable. Introducing the ansatz (2.6) in the LNSE (2.3)–(2.4), we obtain the generalized
eigenvalue problem

Aq̂+ γBq̂= 0, (2.7)

in which q̂ = (û, v̂, ŵ, P̂)T and A is the complex linearized evolution operator. The
operators A and B, have the following expressions:

A=

C −M + ∂xub ∂yub 0 ∂x
∂xvb C −M + ∂yvb 0 ∂y

0 0 C −M ik
∂x ∂y ik 0

 , B=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,
(2.8a,b)

where M =ReSTB
−1(∂x2 + ∂y2 − k2) and C = ub∂x+ vb∂y describe the viscous diffusion

of the perturbation and its advection by the mean flow. The boundary conditions
associated with the eigenproblem (2.7) are derived from those used for the base flow,
i.e.

û= 0, on ∂Din ∪ ∂Dw (inlet and wall), (2.9a)
P̂n− ReSTB

−1(∇û) · n= 0, on ∂Dout (outlet), (2.9b)
∂yû= v̂ = ŵ= 0, on ∂Dext ∪ ∂Dfs (free stream and free-slip boundary). (2.9c)

Finally, we note that the complex-conjugate pairs (η + iω; q̂) and (η − iω; q̂∗) are
both solutions of the eigenproblem (2.7) with the boundary conditions (2.9) for a real
base flow Qb. Thus, the eigenvalues are complex conjugates and the spectra are in a
symmetric plane with respect to the real axis in the (η, ω).

2.3. Determination of the instability core: structural sensitivity
In this section we present the structural sensitivity analysis following the framework in
Pralits, Brandt & Giannetti (2010). The underlying idea is the concept of ‘wavemaker’,
introduced by Giannetti & Luchini (2007) to identify the location of the core of a
global instability. The wavemaker is the region in the flow where variations in the
structure of the problem provide the largest drift of a specific eigenvalue. We first
consider the perturbed eigenvalue problem

γ ′û′ + L{ub, ReSTB}û′ =−∇P̂′ + δH(û′, P̂′), (2.10)
∇ · û′ = 0, (2.11)

where δH is the generalized structural perturbation. It is assumed to be a momentum
force localized in space and proportional to the local velocity perturbation through a
(3× 3) coupling matrix δM0 and a Dirac delta function:

δH(û′, P̂′)= δM(x, y) · û′ = δ(x− x0, y− y0)δM0 · û
′
. (2.12)

Neglecting higher-order terms, variations of the eigenvalue δγ and of the corresponding
eigenfunction (δû, δP̂) satisfy the following expressions:

γ δû+ L{ub, ReSTB}δû=−∇δP̂+ δM · û− δγ û, (2.13)
∇ · δû= 0. (2.14)
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Using then the Lagrange identity (see Luchini & Bottaro 2014), we can determine the
equations governing the structure of the adjoint field: ĝ+(x, y)= ( f̂

+
, m̂+)

−γ f̂
+ + ub · ∇f̂

+ −∇ub · f̂
+ + 1

ReSTB
∇2f̂

+ +∇m̂+ = 0, (2.15)

∇ · f̂
+ = 0. (2.16)

After integration over the domain D , accounting for the boundary conditions and
introducing the sensitivity tensor

S(x0, y0; ReBF, ReSTB)= f̂
+
(x0, y0)û(x0, y0)∫

D

f̂
+
· ûdS

, (2.17)

we can express the eigenvalue drift due to the local feedback as

δγ (x0, y0)=

∫
D

f̂
+
· δM · ûdS∫

D

f̂
+
· ûdS

= f̂
+
· δM0 · û∫

D

f̂
+
· ûdS

= S : δM0 =
∑

ij

SijδM0ij. (2.18)

Different norms of the tensor S can be used to build a spatial map of the sensitivity.
The spectral norm is chosen here to study the worst possible case.

3. Numerical approach
3.1. Base flow calculation

The numerical computation of the base flow has been performed using a
finite element method. The variational formulation of the Navier–Stokes equations
(2.1) is implemented in the software package FreeFem++ (Hecht (2012);
http://www.freefem.org) using classical P2–P1 Taylor–Hood elements for the spatial
discretization. The resultant nonlinear system of algebraic equations, along with the
boundary conditions, is solved by a Newton–Raphson procedure: given an initial
guess wb

(0), the linear system

NS(ReBF,Wb
(n)) ·wb

(n) =−rhs(n) (3.1)

is solved at each iteration step using the MUMPS (multifrontal massively parallel
sparse direct solver) (Amestoy et al. 2001, 2006) for the matrix inversion. The base
flow is then updated as

W(n+1)
b =Wb

(n) +wb
(n). (3.2)

The initial guess is chosen to be the solution of the Stokes equations and the
process is continued until the L2-norm of the residual of the governing equations
becomes smaller than 10−12. To test the implementation and convergence, we used
three different meshes M1, M2 and M3 (see table 1). These are generated by the
bidimensional anisotropic mesh generator (Bamg) that is part of the Freefem++
package. The base flow computations are also validated using a variant of the
second-order finite-difference code described in Giannetti & Luchini (2007). A
typical steady flow over the open cavity is depicted in figure 2.

http://www.freefem.org
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Mesh η ω nd.o.f . nt Source

M1 0.0007590 7.4931 998 668 221 045 Present
M2 0.0008344 7.4937 1416 630 313 791 Present
M3 0.0009122 7.4943 2601 757 576 887 Present
D1 0.0007401 7.4930 880 495 194 771 Sipp & Lebedev (2007)
D2 0.0008961 7.4942 1888 003 418 330 Sipp & Lebedev (2007)

TABLE 1. Comparison of the results obtained with the present implementation and those
reported by Sipp & Lebedev (2007) for the same configuration. The eigenfrequency ω and
the growth rate η have been calculated for the first two-dimensional unstable eigenmode
at ReBF = ReSTB = 4140; nd.o.f . and nt indicate the total number of degrees of freedom of
the linearized problem and the number of triangles for each of the unstructured meshes
used.
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FIGURE 2. (Colour online) Visualization of the steady two-dimensional base flow for the
Reynolds number ReBF = 1370 at which a three-dimensional instability is first observed.
The background shading displays the streamwise velocity whereas solid lines indicate the
streamlines inside the cavity.

3.2. Eigenvalue solver and adjoint field
Once the base flow is determined, the system (2.7) is used to perform the stability
analysis. After spatial discretization, the governing equations and their boundary
conditions (2.9) are recast in the following standard form:

[A(ReSTB,Wb(ReBF))+ γB] ·w= 0, (3.3)

where w is the right (or direct) eigenvector. As methods based on the QR decomposi-
tion are not feasible for solving large-scale problems like those associated with
the matrix A obtained for our problem, we adopt an efficient matrix-free iterative
method based on the Arnoldi algorithm (Arnoldi 1951). We use the state-of-the-art
ARPACK package (Lehoucq et al. 2007), with implicit restarts to limit memory
requirements. The solution of the linear system built by the Arnoldi iterations on
the Krylov subspace is obtained with the same sparse solver (Amestoy et al. 2001,
2006) as used for the base flow calculations. The adjoint modes are computed as left
eigenvectors of the discrete system derived from the discretization of the linearized
equations and the sensitivity function is then computed by the product of the direct
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FIGURE 3. (Colour online) Stability analysis of the open cavity flow at Re= 4140, where
an unstable two-dimensional mode first emerges. (a) Real and (b) imaginary part of the
eigenvalue γ versus the spanwise wavenumber k. The different branches are numbered for
future reference.

and the adjoint fields. The right (direct) and left (adjoint) eigenvectors are normalized
by requiring

max
x,y∈D
{|û(x, y)|} = 1,

∫
D

f̂
+
· ûdS= 1. (3.4a,b)

The code is validated against the results reported by Sipp & Lebedev (2007).
These authors investigate the stability of a Newtonian fluid in the same geometrical
configuration and report the first instability of a two-dimensional eigenmode to occur
at Re= 4140. In table 1 we present the comparison between our results and the results
in Sipp & Lebedev (2007) for different meshes. In these tests, 50 eigenvalues were
obtained, with an initial Krylov basis of dimension 150; the convergence criterion for
the Arnoldi iterations is based on a tolerance of 10−9. To independently check the
accuracy of the results we a posteriori computed the residual maxi |(Aij + γBij)wj|:
this turns out to be always below 10−9 for the results reported in this paper, typically
less than 10−12 for the least stable modes. The majority of the computations presented
in the following are obtained using mesh M2. Henceforth whenever ReBF = ReSTB we
will simply use Re.

4. Linear stability results
4.1. Three-dimensional versus two-dimensional instability

As the cavity is typically considered an example of centrifugal instability, we expect
the first bifurcation to be characterized by the appearance of steady three-dimensional
modes of relatively short wavelength in the spanwise direction (Albensoeder,
Kuhlmann & Rath 2001). To verify this, we scan the k-axis seeking for unstable
modes at the Reynolds number Re = 4140 where a two-dimensional mode first
becomes unstable (Sipp & Lebedev 2007). The results in figure 3 clearly show that
eight unstable branches can be found for this value of Re where the most unstable
mode has wavenumber k= 22 and represents a steady disturbance (ω= 0 in figure 3b).
The flow over an open cavity is therefore characterized by a first bifurcation to a
steady three-dimensional configuration.
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FIGURE 4. Eigenvalue spectrum for Re = 4140 and k = 22. The numbers in the figure
relates to the branches identified in figure 3.

The full eigenvalue spectrum at k= 22 is shown in figure 4 where seven unstable
modes appear (four branches with respect to k), placed symmetrically with respect to
the real axis. It is interesting to highlight that the steady mode is the most unstable
one, while the others are characterized by frequencies which are integer multiples of a
fundamental one and arise (as explained in § 7) as results of resonances on a particular
streamline.

In figure 5 we display the modulus of both the direct and adjoint eigenfunctions
corresponding to the eigenvalues denoted by 1, 2, 3, and 4 in figure 4. The velocity
perturbations are most evident in the circular region inside the cavity, with a tail in the
shear region just above the downstream wall. The adjoint modes, indicating the region
in the flow most receptive to forcing in the momentum equations, have a similar
structure, except for the thin region close to the upstream tip of the cavity, where
instability is most efficiently triggered. The unstable modes are spatially localized
in the same region. The secondary flow generated by the leading instability can be
described as a flat roll lying within the square cavity. The different resonances are
associated with periodic oscillations again concentrated in the region inside the cavity.

To document the appearance of this two-to-three-dimensional bifurcation, we
determine the critical Reynolds number at which the instability first occurs: as shown
in figure 6 the critical value is about Recr ≈ 1370 and the first mode to become
unstable is associated with a wavenumber k≈ 13.4. All modes whose growth rate is
reported in figure 6 have zero frequency; this stationary instability will be analysed
in detail in the rest of the paper.

4.2. Structural sensitivity of the first bifurcation
We study the characteristics of the bifurcation by first showing the spatial structure
of the fluctuation of the least stable mode at Re= 1370, k= 13.4. Like the modes at
higher Reynolds number, the mode is localized along the external streamlines of the
recirculation region inside the cavity (see figure 7). The level of fluctuations is largest
in the streamwise component, the cross-stream and spanwise ones being respectively
about 61 % and 88 % of the streamwise fluctuations. The adjoint of the critical mode
is displayed in figure 7(d–f ): its spatial structure closely resembles that of the direct
mode, with a strong localization along the circular streamlines inside the cavity. As
noted above, the direct mode presents a second region of noticeable amplitude near the
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FIGURE 5. (Colour online) Contour plots of the absolute value of the direct and adjoint
eigenfunctions of modes 1, 2, 3 and 4 as denoted in figure 4 for Re= 4140 and k= 22.
Global mode 1 is stationary (ω= 0), mode 2 has ω≈ 0.3, mode 3 has ω≈ 0.6 and mode
4 has ω≈ 0.9.
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FIGURE 6. Leading eigenmode for cavity flow with L/D = 1. Growth rate of the most
unstable mode versus the spanwise wavenumber k for the Reynolds numbers indicated.
The circular frequency is zero for all modes displayed. Thus, the first instability of the
flow over an open cavity is a three-dimensional steady mode.

downstream tip of the cavity and in the shear region just downstream of it, whereas
the amplitude of the adjoint mode is not negligible near the upstream tip.
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FIGURE 7. (Colour online) Contour plots of the streamwise (a direct; d adjoint), wall-
normal (b direct; e adjoint) and spanwise (c direct; f adjoint) component of the direct
and adjoint mode close to the critical Reynolds number Re= 1370, k= 13.4.

The structural sensitivity of this mode is displayed in figure 8. This quantity
indicates the regions in the flow where a feedback forcing proportional to the local
perturbation velocity most alters the eigenvalue, in other words the wavemaker of the
instability. The sensitivity, product of the direct and adjoint mode, is largest inside the
cavity, with no significant contributions from the regions of strong shear above it. It
is interesting to note that the wavemaker is similar to that computed for a lid-driven
square cavity (Giannetti, Luchini & Marino 2010; Haque et al. 2012).

5. Instabilities in cavity flows
5.1. Open cavity and lid-driven cavity

The sensitivity analysis performed in the previous section clearly shows that the core
of the three-dimensional instability leading to the first bifurcation in a square open
cavity is highly localized in space and completely contained inside the cavity. This is
in contrast with the first 2D instability (Sipp & Lebedev 2007), arising at Re= 4140,
which is more similar to a wake-type instability (Sipp 2012; Yamouni et al. 2013) and
localized downstream near the second tip of the cavity.

Examining the results obtained from the stability analysis, it is clear that the
external flow plays little role in the generation mechanism of the three-dimensional
instability. It is thus reasonable to assume that the configuration studied here is
subject to the same type of instabilities as those appearing in a LDC and discussed
by Albensoeder et al. (2001) and Albensoeder & Kuhlmann (2006) among others. In
the open cavity the shear layer detaching from the upstream corner has the same role
as that of the lid in the formation of the vortical motion inside the LDC configuration.
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FIGURE 8. (Colour online) Structural sensitivity, the core of the instability, at the neutral
conditions, Re= 1370, k= 13.4, for the flow over an open square cavity. The streamline
where the asymptotic analysis predicts the maximum inviscid growth rate is also depicted
(see § 7).

The velocity of the lid is uniform while in the present study the fluid velocity along
the line connecting the two upper corners is not constant: the velocity starts from zero
at the left corner, increases, reaches a maximum and then decreases again, vanishing
at the downstream corner. In addition, the vertical velocity is different from zero,
its magnitude being smaller than that of the horizontal component, however. As a
result the flow field, although qualitatively similar, also has important differences with
respect to that occurring in the lid-driven problem.

For the LDC the critical Reynolds number for the first bifurcation has been
calculated independently by Theofilis (2000) and Albensoeder et al. (2001) (see
also Ding & Kawahara 1998; Shatrov, Mutschke & Gerbeth 2003). The numerical
three-dimensional linear stability analysis of Albensoeder et al. (2001) covers a
wide range of cavity aspect ratios and presents the corresponding unstable modes,
which appear to be qualitatively different when varying the cavity aspect ratio. These
authors explain the centrifugal instability mechanism in terms of the perturbation
energy budget and the criterion proposed by Sipp & Jacquin (2000).

As suggested by Brés & Colonius (2008) (see § 4.2 of their paper), if we introduce
a (base flow) Reynolds number Reav based on the cavity depth D and on the average
velocity Ũ along the line connecting the two opposite corners, the critical Reynolds
number for the first instability of the open cavity flow becomes

Reav = ŨD
ν
≈ 490, (5.1)

which is around 38 % lower than the value found by Albensoeder et al. (2001).
Despite this difference in the value of the critical Reynolds number, the spanwise
wavenumbers at which the instability first occurs are comparable, being klid ≈ 15.4 in
the LDC case and k≈ 13.4 in the present configuration. These qualitative similarities,
both in terms of base flows and modes, suggest that the same kind of instability is
acting in the two configurations.

5.2. Link between open cavity flows
Brés & Colonius (2008) performed DNS of open cavity flows for several Reδ∗ ,
where δ∗ is displacement thickness, to investigate the effect of this parameter on the
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instability properties. In the present configuration the shear layer starts developing
at xbl = −0.4 (we recall that the origin of our frame of reference is located on the
left edge of the cavity) leading to a displacement thickness at the upstream edge of
(Re= 1370)

δ∗(xbl)=
∫ 0.5

0

ub(xbl, 0.5)− ub(xbl, y)
ub(xbl, 0.5)

dy≈ 0.029. (5.2)

Thus, the critical Reynolds number based on this boundary-layer thickness is equal to
Reδ∗ =U∞δ∗(xbl)/ν ≈ 39.7.

As discussed in Brés & Colonius (2008), the critical conditions for the instability
are only weakly affected by the starting position of the upstream laminar boundary
layer when the critical Reynolds number is appropriately defined. The main idea is
that the dynamics inside the cavity is approximately driven by the average velocity
between the two edges rather than by the shear-layer thickness, thus strengthening the
connection to the LDC flow. Analysing the limiting case arising when the incoming
free-stream velocity U∞ is simply linear, i.e. when a Couette profile of velocity
U∞(y) = y · ey is imposed at the inlet, we found that the first bifurcation occurs
at ReCouette ≈ 20 200 for modes of spanwise wavenumber k ≈ 13.0. Interestingly,
the critical Reynolds number scaled with the cavity depth and average velocity,
Reav ≈ 470, is in a very good agreement with the value obtained previously, (5.1),
although the boundary-layer thickness of Couette flow is infinity. In the light of this
result we confirm that the averaged Reynolds number Reav is a relevant parameter to
predict the onset of instability for open cavity flows.

6. Structural sensitivity to a velocity-based linear feedback
The so-called sensitivity to base flow variations is a concept introduced by Bottaro,

Corbett & Luchini (2003) and Marquet, Sipp & Jacquin (2008) within the global
framework. In this analysis a small structural velocity-based perturbation acts at the
base flow level: the effect of the base flow modifications on the leading eigenvalue of
the stability problem allows us to study the different mechanisms that can suppress or
enhance the instability. The spatial structure of the so-called adjoint base flow can be
used to identify the features of the base flow that provide the main contribution to the
instability dynamics and the regions where to locate effective passive control devices.
In other words, this modification of the structure of the Navier–Stokes operator causes
a variation of the base flow which in turn produces a drift of the leading eigenvalue
γ = η+ iω.

For the sake of brevity, only the main ingredients are outlined here; an extensive
and detailed derivation can be found in Marquet et al. (2008) and Pralits et al. (2010).
Using a formalism based on control theory, the eigenproblem (2.7) represents the
state equation, the state vector is composed of the global mode q̂ and the complex
eigenvalue γ , and the base flow Qb is the control variable. As in Pralits et al. (2010)
we express the eigenvalue drift δγ as

δγ = δη+ iδω=

∫
D

(û · ∇f̂
+ −∇û · f̂

+
) · δ ubdS∫

D

f̂
+
· ûdS

, (6.1)

where δub is a generic modification of the base flow. The relation (6.1) provides
the effect of a specified velocity distribution implying a dedicated computation for
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FIGURE 9. (Colour online) Sensitivity of the first bifurcation to streamwise and
wall-normal mean velocity modifications at the inflow. The profile shown would provide
the largest possible stabilization of the first bifurcation.

each specific actuation, e.g. wall blowing/suction. The optimal boundary velocity
distribution, instead, can be directly found as follows (see Meliga & Chomaz 2011):

δγ =

∫
∂Dw,i,fs

[(
m+b n+ 1

Re
nT
· ∇f+b

)
· δUw,i,fs

]
dl∫

D

f̂
+
· ûdS

(6.2)

where m+b and f̂
+
b are the adjoint base flow pressure and the three-dimensional adjoint

base flow velocity field and the subscripts w, i, fs indicate the boundaries (inlet, wall
or free-slip) on which we calculate the integral dl is the length element along ∂Dw,i,fs.
The adjoint base flow field Q+b must satisfy the following set of linear equations
(Pralits et al. 2010):

ub · ∇f+b −∇ub · f+b +
1

Re
∇2f+b +∇m+b = û · ∇f̂

+ −∇û · f̂
+
, (6.3)

∇ · f+b = 0, (6.4)

along with the adjoint base flow outlet condition m+b n− Re−1n · ∇f+b =−(ub · n)f+b +
(û · n)û+ at ∂Dout and zero-velocity conditions at the solid walls and at the inlet.

The sensitivity of the instability with respect to the incoming flow is examined
first. Figure 9 shows the sensitivity to both the streamwise and the wall-normal
components of the inflow velocity profile, where the profiles shown would provide
the optimal decrease of the instability growth rate. The x-component is found to be
always negative and attains significant values only near the wall. This fact is not
surprising because the base flow modifications have effect only if related to the shear
layer that drives the core vortex inside the cavity. Perturbations in the free stream do
not affect the flow at the edge and inside the cavity, the regions where the instability
is triggered. Negative modifications of the inlet velocity profile cause stabilization due
to decrease of the momentum inside the shear layer. The effect of the wall-normal
component is related to the same mechanism, decreasing of the total streamwise
momentum at the cavity tip by normal advection.

In view of an active control of the first bifurcation, we depict the wall-normal
component of the sensitivity along the cavity walls in figure 10; this corresponds to
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FIGURE 10. (Colour online) Sensitivity to wall-normal blowing and suction of the
leading-mode growth rate at Re = 1370 and k = 13.4. Positive (negative) values indicate
blowing (suction) and lead to stabilization (destabilization). The profiles shown on each
wall provide the optimal decrease of the instability growth rate.

the optimal blowing/suction profiles giving the largest stabilization. We see that the
sensitivity is vanishing along the first free-slip boundary just downstream of the inflow
(y= 0; −1.2< x<−0.4), while a combination of blowing and suction is found to be
optimal on the wall upstream of the cavity (y = 0; −0.4 < x < 0). Inside the cavity,
on both lateral walls, a stabilizing normal component is directed in the streamwise
direction. The optimal blowing and suction on the lower wall would create a flow
opposite to the vortex inside the cavity, thus trying to quench it. The analysis, finally,
shows that it is not possible to significantly modify the instability by applying control
on the downstream wall (lowest sensitivity magnitude).

7. Asymptotic inviscid stability theory
The spatial distribution of the structural sensitivity (that is spatially concentrated

around a streamline inside the cavity) suggests the possibility of using the local theory
to describe the evolution of the instability and provide more quantitative evidence for
the mechanism from which it arises. An appealing approach in this context is offered
by the short-wavelength approximation (WKBJ) developed by Bayly (1988).

This approach is briefly outlined here; for a more detailed presentation the reader is
referred to Lifschitz & Hameiri (1991), Lifschitz (1994) and references therein. The
solution of the linearized Navier–Stokes equations is sought in the form of a rapidly
oscillating and localized wave-packet evolving along the Lagrangian trajectory X(t)
and characterized by a wave-vector k(t)=∇φ(X, t) and an envelope a(X, t) such that

u(X, t)= eiφ(X,t)/εa(X, t, ε)= eiφ(X,t)/ε
∑

n

an(X, t)εn, (7.1)

p(X, t)= eiφ(X,t)/εb(X, t, ε)= eiφ(X,t)/ε
∑

n

bn(X, t)εn+1, (7.2)

where ε � 1 and X = εx is a slowly varying variable. In the limit of vanishing
viscosity (Re → ∞) and large wavenumbers (‖k‖ → ∞), the theory provides the
leading-order term for the growth rate associated with a localized perturbation. This
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is obtained by integrating the following set of ordinary differential equations (ODEs):

Dk
Dt
=−Lt(X)k, (7.3)

Da
Dt
=
(

2kkT

|k|2 − I

)
L(X)a, (7.4)

along the Lagrangian trajectories defined by the ODE

DX(t)
Dt
= ub(X(t), t). (7.5)

In the equations above L = ∇ub is the base flow velocity gradient tensor and I the
identity matrix. Since the flow under investigation is steady, the Lagrangian trajectory
corresponds to the streamlines of the base flow. Three initial conditions have to be
assigned to solve the problem above: k(t = 0) = k0, a(t = 0) = a0 and x(t = 0) = x0.
The last condition imposes the Lagrangian origin of the streamline and thereby entirely
identifies it.

Lifschitz & Hameiri (1991) proved that a sufficient condition for inviscid instability
is that the system (7.3)–(7.5) has at least one solution for which ‖a(t)‖ → ∞ as
t → ∞. This theory has been successfully applied in the past to study elliptic,
hyperbolic and centrifugal instabilities of two-dimensional stationary base flows
(Sipp et al. 1999; Godeferd, Cambon & Leblanc 2001). In order to characterize the
instability mechanism arising inside the cavity with this local theory, the self-excited
nature of the instability must be properly accounted for. In this context, a central
role is played by closed Lagrangian trajectories (closed streamlines in our case), i.e.
orbits described by material points which return to their initial positions after a given
time T (the period of revolution of a material particle). These closed trajectories play
a special role in the dynamics of the instability: on the closed orbits, local instability
waves propagate and feed back on themselves leading to a self-excited unstable mode.

To apply the theory, both (7.3) and (7.4) must be integrated along the closed orbits
existing inside the cavity. Since the base flow is steady and the streamlines are closed,
(7.3) is a linear ODE with periodic coefficients whose general solution can be written
in terms of Floquet modes. In particular, the solution can be found by building the
fundamental Floquet matrix M(T), solution of the system

DM

Dt
=−Lt(X)M with M(0)= I, (7.6)

and extracting its eigenvalues and the corresponding eigenvectors. Using these
eigenvectors as initial conditions, it is possible to retrieve the temporal evolution of
k during a lap around the closed streamline. Equation (7.3) admits three independent
solutions related to the three eigenvectors of the fundamental Floquet matrix M(T).
However, since the base flow is two-dimensional, there exists for each orbit one
eigenvalue equal to one, with the corresponding eigenvector remaining constant in
time and orthogonal to the base flow. In other words, since the third column of L
and the third line of Lt are zero, the transverse component of k remains constant
as time evolves. In contrast, the in-plane components evolve under the action of the
deformation tensor. Once (7.3) is solved, the amplitude a can be found by integrating
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(7.4). One can use any linear combination of the Floquet modes from (7.6) to set the
specific k in (7.4).

Since we are trying to determine a self-excited mode, we need only to consider
solutions of (7.3) that are periodic in time, i.e. solutions such that k(0) = k(T).
Moreover Bayly (1988), Lifschitz & Hameiri (1991) and Sipp & Jacquin (2000)
have shown that centrifugal and hyperbolic instabilities attain their maximum growth
rate for modes characterized by purely transverse wavenumbers. Therefore, only
eigenvectors orthogonal to the base flow will be considered in the following analysis.
Solutions of (7.4) associated with a k orthogonal to the plane of motion are usually
termed pressureless modes (see also Godeferd et al. 2001). With this choice, (7.4)
reduces to an ordinary linear differential equation with periodic coefficients. According
to Floquet theory, its solution can be written in terms of Floquet modes

a(t)= ā(t) exp(σ t), (7.7)

where ā(t) is a periodic function (with the same period T as the material point
moving along the selected closed streamline) and Re{σ } = σr is the growth rate of
the perturbation. In order to make a quantitative comparison with the eigenvalues
predicted by the global analysis, we have to compute the values of σ in (7.7) for
each closed orbit inside the cavity. To this end, we parameterize each streamline,
and the corresponding growth rate σ , with the distance along the horizontal line
connecting the centre of the vortex to the left-hand wall of the cavity (see figure 11).

As for (7.3), the fundamental Floquet matrix A corresponding to (7.4) is built by
integrating the system

DA

Dt
=
(

2kkT

|k|2 − I

)
L(X)A, (7.8)

A(0)= I, (7.9)

along each orbit. The eigenvalues µi(x0) and the corresponding eigenvectors of A(T)
are then easily extracted.

As mentioned above, since the base flow is two-dimensional and the wave-vector
k is orthogonal to the x–y plane, we expect one eigenvalue of A to be 1. The other
two, for the incompressibility constrain, must multiply to 1, i.e. µ1(x0) µ2(x0)=1. The
Floquet exponent σ(x0) of the perturbation on the selected orbit ψ0 is obtained from
the Floquet multiplier µ(x0) of A by the simple relation

σ {n}(ψ0)= σr(ψ0)+ iσ {n}i (ψ0)= log (µ)
T(ψ0)

+ i
2nπ

T(ψ0)
with n ∈N, (7.10)

where T(ψ0) is the period of revolution.
The growth rate of each WKBJ mode is simply given by the real part of σ {n}. The

frequency is related to the imaginary part and is not unique. According to the formula
(7.10), modes with the same growth rate (at leading order) but different frequencies
are admissible: in particular the admissible frequencies are integer multiple of the
frequency of revolution along the same streamline.
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FIGURE 11. (Colour online) Streamlines for the flow inside the cavity at Re= 1370. The
asymptotic inviscid stability theory identifies three streamlines along which three different
WKBJ modes present their maximum growth rate: - - - -, orbit of the global maximum
growth rate pertaining to the steady mode σ∞ (see figure 12); — · —, orbit of the
unsteady mode related to σ2; · · · · · ·, orbit of the steady mode related to σ3. The evolution
of a particle along the streamline - - - - is also depicted. The revolution period of this
streamline is T = 18.3. The horizontal line connecting the centre of the vortex to the
left-hand wall of the cavity is used in the present work to parameterize the streamlines.

7.1. Asymptotic estimate of the first bifurcation
The numerical computations of the asymptotic stability are performed on the same
base flow fields as used for the global stability analysis. Several numerical methods are
available to solve the system of ODEs (7.5)–(7.8) along with their initial conditions.
We chose a fourth-order Runge–Kutta method: starting from the points located on the
horizontal line, connecting the centre of the vortex to the left-hand wall of the cavity
(see figure 11), the algorithm marches along the orbits ensuring the spatial periodicity
of each streamline. In the figure we also report the position of a material point along
its trajectory at equal time intervals to give a visual impression of the local velocity
along the streamline.

The asymptotic eigenpairs have been computed with several discretizations and only
the eigenvalues with an accuracy of four significant digits are presented. In figure 12,
we show the real and imaginary part of the eigenvalues obtained with the WKBJ
approximation as function of the x coordinate defining the different orbits.

The asymptotic analysis reveals three maxima of the growth rates σr∞(=σr 1),
which is also the global maximum, σr 2 and σr 3. The first and the third branches
(σ1 and σ3) are characterized by zero-frequency eigenvalues, while the second branch
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FIGURE 12. WKBJ growth rate σr (∗) and eigenfrequency σi (E) at ReBF=1370. Here the
parameter x is the physical coordinate showed in figure 11. The lines denote the maximum
of the different branches: - - - -, maximum inviscid growth rate σr∞; — · —, maximum
related to second branch σr 2; · · · · · ·, third maximum σr 3.

(σ2) is associated with unstable oscillations with frequency of ≈0.2. As further
discussed below, the closed streamline of maximum growth rate σr∞ is located
within the wavemaker of stationary unstable global mode.

However, despite this agreement, the viscous correction term and the correction
term relative to finite wavenumber effects need to be taken into account for a correct
prediction of the instability, see Landman & Saffman (1987) and Gallaire et al.
(2007).

In figure 13(a) we report the growth rate of the unstable mode computed on the
base flow at ReBF = 1370 when increasing the Reynolds number in the linearized
stability equations, ReSTB, and the growth rate obtained by integrating along the closed
orbits with the corrections discussed in appendix A,

s= σ(ψ0)− A
k
− k2

ReBF
. (7.11)

The value of A above is not estimated by a least square fitting as in previous studies,
but computed analytically using the information provided by the local adjoint and
direct field on the streamline. The values obtained with this procedure are reported
in table 2. Figure 13(a) shows that the scaling provided by the global stability
analysis estimates correctly the asymptotic growth rate σr∞. The corresponding
optimal spanwise wavenumber k is depicted in 13(b) as a function of Re1/3

STB. The
spanwise wavenumber, like the maximal growth rate, follows the correct scaling laws,
σr ∝ Re−1/3

STB and kopt ∝ Re1/3
STB (Bayly 1988; Sipp et al. 1999).

Finally, we focus our attention on the spatial distribution of the structural sensitivity
fields computed with the maximum ReSTB considered (equal to 300 000). Figure 14(a)
shows the agreement between the critical streamline (i.e. the streamline ψ where
the inviscid growth rate is maximum) and the sensitivity map. At large (stability)
Reynolds numbers ReSTB, therefore, the sensitivity analysis indicates that the instability
core is located on the orbit with maximum growth rate.

The global analysis performed at ReBF also provides information about the
sub-critical branches arising in the asymptotic computations. We depict the structural
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FIGURE 13. (Colour online) Global and asymptotic stability results. (a) Viscous growth
rate η (E, @ = ReSTB = 300 000) at ReBF = 1370 and asymptotic estimate of growth rate
σr (∗- - - -) according to the correction in appendix A. We also depict the regression line
(——) related to the global growth rates. (b) Optimal global spanwise wavenumber kopt

(E) and prediction from the asymptotic theory (∗) as a function of Re1/3
STB. The predicted

optimal spanwise wavenumber is simply obtained by finding the maximum of the scaling
law (A 6), i.e. k= (ReSTBA/2)1/3.

1torbit k J A

0.0050 13.4 0.00637 5.1143
0.0025 13.4 0.00678 5.0148
0.0010 13.4 0.00681 5.0078

TABLE 2. Convergence of parameters arising in the asymptotic estimation (see appendix A)
of the viscous growth rate; 1torbit is the step used to discretize the critical orbit. (Here,
ReBF = 1370).

sensitivity extracted from the global analysis of these two sub-critical WKBJ
eigenmodes in figure 14(b,c). As for the leading eigemode we observe an excellent
correspondence between the sensitivity spatial map and the two critical orbits.
Interestingly, we note also the agreement between the frequency of mode σ2 (see
figure 14b) and the frequency predicted by the WKBJ analysis. From a physical point
of view, this matching can be associated with the fact that these eigenmodes are of
centrifugal nature, i.e. inviscid, and therefore the inviscid structural sensitivity is able
to isolate accurately the regions where each of the three instability branches presents
the main contribution to the instability mechanism.

7.2. Asymptotic results for ReBF = 4140
As previously discussed, when we consider the stability to three-dimensional
perturbations at supercritical Reynolds numbers, we find several unstable branches
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FIGURE 14. (Colour online) Comparison between the optimal streamline of WKBJ
branches and sensitivity maps related to (global) eigenvalues: (a) 0.36+ i0.00; (b) 0.14+
i0.20; (c) 0.07+ i0.00. Parameter settings: ReBF = 1370, ReSTB = 300 000 and k= 93.5.

(see figure 3). If we consider the spanwise wavenumber k= 22 and ReBF = 4140, we
observe the occurrence of several harmonics of the fundamental leading eigenvalue. As
shown in figure 3(b), these modes are characterized by a quantized eigenfrequency,
ω ≈ 0.32n with n integer. To show that the asymptotic analysis is also able to
accurately predict the frequency of these harmonics, we carry out computations for
the base flow at Reynolds number ReBF = 4140 and report the results in figure 15,
using the same conventions used for the onset of the bifurcation, for ReBF = 1370,
in figure 12. We first need to identify the closed streamlines and then calculate the
instability properties along the orbit. We observe again three local maxima of the
asymptotic growth rate, corresponding to two steady and one time-dependent modes.

The variation of the revolution period T as a function of the coordinate x, defining
the different orbits, is depicted in the upper half of figure 16, while the corresponding
orbits inside the cavity are displayed in the lower half. The main result we present
here is that the period of the higher harmonics of the zero-frequency leading mode is
selected by the period of revolution along the streamline of maximum growth rate. In
table 3 we show that the frequencies obtained from the global stability analysis and
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FIGURE 15. Asymptotic results for ReBF = 4140. See figure 12 for details.
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FIGURE 16. (Colour online) Revolution period of cavity orbits as a function of the
abscissa x (upper half). Contour plot of the base flow modulus (‖ub‖2) at ReBF = 4140
and the three streamlines corresponding to the local maxima of the inviscid growth rate
in figure 15 (lower half).

displayed in figure 3 do indeed correspond to the frequency computed by the local
analysis (7.10). It is interesting to note that the global mode frequencies are uniquely
related to the revolution period of a Lagrangian particle transported along the orbit.
Thus, we conclude that the different frequencies of the multiple unstable branches are
obtained as multiples n of the period of revolution along the critical (most unstable)
orbit; the data in the table show an error lower than 5 %.
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Harmonic Global mode frequency Orbit period WKBJ frequency Percentage error
n ω T σ

{n}
i (ψ0)= 2nπ/T (%)

0 0.000 19.5 0.00 —
1 0.302 19.5 0.32 4.2
2 0.610 19.5 0.64 4.7
3 0.920 19.5 0.96 4.5

TABLE 3. Comparison of the results obtained using global stability analysis with those
provided by the asymptotic analysis. We selected the orbit that has the maximum inviscid
growth rate using a base flow characterized by ReBF = 4140. The WKBJ frequencies are
calculated according to (7.10).

8. Final remarks

In this work, we study the instability of the flow past an infinitely wide open square
cavity. First, we identify the critical Reynolds number (ReBF= 1370) at which the first
bifurcation occurs. This instability drives the flow from a steady two-dimensional to a
steady three-dimensional configuration characterized by a relatively short modulation
in the spanwise direction, the spanwise scale of the modulation being of about 0.47
cavity depths.

The spatial structure of the direct and adjoint eigenmodes is examined to describe
the features of the flow past the bifurcation. The direct mode is concentrated
inside the cavity in a circular region with a tail on the shear region just above
the downstream wall; the adjoint mode has a similar structure except for a small
region near the upstream edge of the cavity where the flow is most receptive to
momentum forcing. The overlapping of these two fields provides information about
the instability mechanism (the so-called wavemaker) and is concentrated within the
square cavity, suggesting that the generation of the instability mechanism is spatially
concentrated around a closed streamline inside the cavity, around the core vortex.

We examine different types of cavity flows (i.e. characterized by different boundary
conditions) and identify the corresponding critical Reynolds number at which the first
bifurcation occurs. As proposed by Brés & Colonius (2008), we confirm that the
mean velocity computed along the line connecting the two opposite edges allows us
to roughly estimate the critical conditions at which the first bifurcation arises. The
critical value of a Reynolds number based on this averaged velocity, the cavity depth
and the fluid viscosity is found to be Reav ≈ 470.

The sensitivity to base flow modifications is then considered to study the
mechanisms that can suppress or enhance the instability. We follow here the approach
by Meliga & Chomaz (2011) and compute the optimal linear velocity distribution
at the walls and at the inlet of the computational domain able to stabilize the flow.
The resulting blowing/suction profiles show that each modification (when possible) is
aimed at decreasing the total momentum of the cavity core vortex (identified above
as the core of the instability).

The WKBJ approximation is then introduced to predict the first instability and its
characteristics as suggested by Bayly (1988). Considering the asymptotic stability
along the closed streamlines inside the cavity, we find three different branches of
unstable orbits (two stationary branches and an unsteady branch) and select the three
critical orbits ψ whose corresponding growth rates are local maxima (σr∞, σr 2, σr 3).
The asymptotic values of the growth rate and of the spanwise wavenumber of the
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unstable modes show very good agreement with the global stability analysis once the
correction for finite Reynolds number and spanwise length scale are applied to the
inviscid asymptotic result. The three critical orbits detected by the asymptotic analysis
are also shown to overlap with the structural sensitivity map of unstable modes at
low viscosities, large ReSTB (we refer to this field as inviscid structural sensitivity).
This procedure allows us to identify the spatial region where the core of the inviscid
mechanism of the instability is located.

To identify a frequency selection mechanism for the time-dependent sub-leading
unstable global modes emerging at supercritical conditions, we consider the stability
of the flow at ReBF = 4140 where the global analysis shows the occurrence of four
branches of unstable modes characterized by frequencies that are multiples of a
fundamental value ω0. We show that the value of ω0 corresponds to the period of
revolution of Lagrangian fluid particles along the closed orbit of largest growth rate
in the asymptotic limit. We thus conclude that the asymptotic theory is able to predict
accurately the global stability results, enabling us to estimate the critical conditions
leading to the instability. Furthermore, the inviscid structural sensitivity, discussed
here, is a general concept that can be used whenever the instability is of inviscid
type.

Appendix A. Construction of pressureless modes
In what follows we briefly recall the theory related to the dynamics of asymptotic

modes (Bayly 1988). First of all, we express the evolution of the perturbation using
the normal-mode ansatz

[u′, P′] = [û, P̂] exp{ikz+ st}. (A 1)

The main idea is to use the eigenpairs of the fundamental Floquet matrix M(T) to
build a vector basis f i for the representation of the modes along the orbit:

û(x)=
3∑

i=1

ûi(x)f i(x). (A 2)

This basis diagonalizes the nonlinear operator ub · ∇( ) + ( ) · ∇ub and can be
computed as f i = e−σ tM(t)ei. Considering the limit of ‖k‖ → ∞, we re-scale the
WKBJ eigenmode as

[û, v̂, ŵ, p̂](Ψ̃ )= [Û, V̂/k, ŵ/
√

k, p̂/k
√

k](Ψ̃ ), (A 3)

where the new streamfunction Ψ̃ =√k(ψ −ψ0) allows us to magnify the region near
the critical orbit ψ0. Introducing the scaling (A 3) into the LEes, we get the equation
of a quantum harmonic oscillator (see e.g. Bender & Orszag 1978)

Û
′′
(Ψ̃ )+

[
A

J (ψ0)
− λ2Ψ̃ 2

]
Û= 0, (A 4)

with Û(±∞)= 0, λ2 =−σ ′′(ψ0)/(2J ) and

J = 1
T(ψ0)

∫ T(ψ0)

0
( f †

1 · ∇ψ)

[
σ(ψ0)+ d

dt

]
{ f 1 · ∇ψ}dt. (A 5)
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In (A 4), the constant A is the parameter that governs the scaling of the eigenvalue s
(i.e. s= σ(ψ0)− A/k) and the adjoint vector f †

i is normalized as f †
i · f j = δij.

A better quantitative estimate of the viscous growth rate can be achieved using the
viscous correction introduced by Landman & Saffman (1987) (see also Gallaire et al.
2007). The composite estimation thus reads

s= σ(ψ0)− A
k
− k2

ReBF
. (A 6)
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