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a b s t r a c t

The classical problem of the lid-driven cavity extended infinitely in the spanwise direction is considered
for non-Newtonian shear-thinning and shear-thickening fluids, where the viscosity is modeled by the
Carreau model. Linear stability is used to determine the critical Reynolds number at which the two-
dimensional base-flow becomes unstable to three-dimensional spanwise-periodic disturbances. We con-
sider a square cavity, characterized by steady unstable modes, and a shallow cavity of aspect ratio 0.25,
where oscillating modes are the first to become unstable for Newtonian fluids. In both cases, the critical
Reynolds number first decreases with decreasing power-index n (from shear-thickening to shear-thin-
ning fluids) and then increase again for highly pseudoplastic fluids. In the latter case, this is explained
by the thinner boundary layers at the cavity walls and less intense vorticity inside the domain. Interest-
ingly, oscillating modes are found at critical conditions for shear-thickening fluids in a square cavity
while the shallow cavity supports a new instability of lower frequency for large enough shear-thinning.
Analysis of kinetic energy budgets and structural sensitivity are employed to investigate the physical
mechanisms behind the instability.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The aim of this work is to numerically establish benchmark re-
sults for non-Newtonian shear-thinning and shear-thickening flu-
ids in the classical lid-driven cavity flow, in the limit of infinitely
wide cavities. A two-dimensional base flow solution is initially
computed and its stability to three-dimensional disturbances
investigated.
1.1. The lid-driven cavity

The incompressible and Newtonian flow inside a lid-driven cav-
ity is one of the most studied problems in fluid mechanics, even
more since the establishment of computational fluid dynamics
(CFDs). It describes the flow inside a rectangular box due to the
tangential translation of one wall. Much attention has been direc-
ted to the cavity flow, both from an industrial and academic stand-
point. Practical applications can be found in abundance in coating
and mixing devices, as examples. The geometric simplicity of the
problem makes it ideal for numerical discretization and computa-
tions, while the discontinuous mathematical boundary condition
for the velocity leads to singular properties close to the corners
of the moving lid and the two neighboring stationary walls. These
features have made the lid-driven cavity a popular test case for
ll rights reserved.
validation of Navier–Stokes solvers [1] and different numerical
techniques. Most interestingly in this context, this flow has a rich
behavior from the point of view of instabilities and bifurcations
in closed systems.

Numerous previous studies have been conducted for this con-
figuration both numerically and experimentally in Newtonian
flows. Burggraf [2] aimed to investigate the Prandtl–Batchelor the-
orem for a square cavity. He used a relaxation method to compute
solutions for Reynolds number (Re) between 0 and 400. The results
suggests that for higher Re an inviscid core vortex is formed, but
secondary eddies develop near the bottom corners of the square
for all Re.

Later, Pan and Acrivos [3] also used relaxation techniques to
find creeping flow solutions close to the bottom corners of the cav-
ity for aspect ratios C between 0.25 and 5, where C is defined as
the ratio between the depth of the cavity and the length of the
moving lid. Moreover, through experiments, they studied the flow
for Reynolds number Re ranging from 20 to 4000 and concluded
that for finite cavities and as Re ?1 a single inviscid core will
form and the corner eddies reduces significantly in size. For infi-
nitely deep cavities the size of the primary vortex hinders the core
from becoming fully inviscid even as Re ?1 resulting in a balance
between viscous and inertial forces in the cavity. The main
assumption of this work [3] is two-dimensional flow.

Ghia et al. [4] and Schreiber and Keller [5] developed numerical
methods to study the two-dimensional cavity with C = 1 for Re up
to 10,000. Both studies indicate that at such high velocities the
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position of the core vortex moves toward the center of the square
cavity and that the bottom left (BL) and right (BR) eddies grow in
size. The BR is often referred to as the down stream secondary eddy
(DSE).

Experiments of turbulent cavity flow were performed by Koseff
et al. [6] for narrow cavity of spanwise aspect ratio K = 3, where K
is defined as the ratio between the width and length of the moving
lid. Kim and Moin investigated numerically the three-dimensional
driven cavity with periodic boundary condition in the transversal
(spanwise) direction, i.e. without end wall effects [7]. They added
small random perturbations in the spanwise direction to the
two-dimensional solutions and found that a pair of Taylor-Gör-
tler-like (TGL) vortices appeared at Re around 900. This result
was important because it demonstrated the flow becomes three-
dimensional at high Re even without the presence of side walls
in the spanwise direction.

Chiang et al. set out to map the eddy structure as function of the
Re up to 1300 [8]. They considered a cavity with square cross sec-
tion and K = 3. These authors show that the BL and DSE become
developed at around Re = 50. At Re � 100, the corner eddies adja-
cent to the lid are formed. As the Re is increased it becomes evident
that the two-dimensional nature of the flow undergoes a transition
to a fully three-dimensional character in the form of a bifurcation
from the steady state to an oscillating periodic state. Additional
information can be found in a review paper by Shankar and Desh-
pande [9].

1.2. Stability of Newtonian cavity flow

Since it became generally accepted that the flow goes through a
transition from two-dimensional to a three-dimensional state, few
studies have been conducted to determine at which Re this transi-
tion occurs. As described by Albensoeder et al. [1], the flow under-
goes symmetry breaking instabilities before becoming turbulent.
The task is to find at what value of Re the first instability takes
place when increasing Re from 0. This value of Re is often referred
to as the critical Reynolds number Rec.

Two innovative experiments were carried out by Aidun et al.
[10,11]. In the first one, the transition from steady to unsteady
state was studied when increasing Re from 100 to 2000. They con-
cluded that the core vortex and DSE is stable up to a Re of around
825. They also found supercritical bifurcations from steady state to
a pair of spiral waves at Re = 966 with a dimensionless frequency of
0.1112. In the second set of experiments the velocity was deceler-
ated from high speeds (Re � 2000) to low (Re < 500) to show that
the steady states are not unique.

Ramanan and Homsy performed a numerical linear stability
analysis of a square cavity with periodic boundary condition in
the spanwise direction [12]. Similar to Kim and Moin, they first
solved for the two-dimensional base flow and then perturbed it
with three-dimensional disturbances. The result indicated a Gör-
tler type instability close to the separating streamline between
the core vortex and the DSE. The flow became unstable at
Re � 594 to a stationary mode with a transversal wave number
j � 2.12. Adding compressibility effects to the problem, Ding and
Kawahara calculate the critical Re in a square cavity of infinite span
[13]. They detected an oscillatory mode with non-dimensional fre-
quency x = 0.08 at Re = 920 for j = 7.4.

During the last decade, Kuhlmann and coworkers have
produced a significant amount of work on the instability of the
lid-driven cavity. As example, utilizing a cavity, where two lids
move in different direction, they were able to show non-unique-
ness of the two-dimensional steady flow [14]. In a following study
they employed numerical simulations to establish the critical Re
for a cavity with different C for K ?1 [1]. By means of linear sta-
bility analysis these authors showed that the base flow becomes
unstable to four different three-dimensional modes depending on
the aspect ratio. In particular, the square cavity suffers a stationary
instability at Re around 786 and a j of 15.4, hence quite different
from results obtained by earlier research. These values were con-
firmed by experiments in a cavity with dimensions C = 1 and
K = 6.55 and are now generally considered to be correct. Kuhl-
mann et al. asserted that this mode had been suppressed by end
wall effects (due to short spanwise length) in previous investiga-
tions. The instability is found to be of centrifugal nature, localized
on a streamline. The mechanism is inviscid and the viscosity play
only a stabilizing role [15]. The localization is related to the span-
wise wavenumber of the disturbance, the largest leading to more
localized instability core.

1.3. Non-Newtonian cavity flow

To the best of our knowledge, only very few studies considered
the simulation and stability analysis of non-Newtonian fluids in
the lid-driven cavity, despite the importance in many applications.
Most of the previous studies, moreover, consider polymeric flows.
Pakdel et al. [16,17] experimentally analyzed the dynamic struc-
ture of the unstable cavity flow for spanwise aspect ratios between
0.25 and 4. These authors used an elastic fluid and Deborah num-
ber (De) ranging from 0 to 35 to conduct their investigation. At low
De the flow was two-dimensional and the core vortex moved up-
stream as Re was increased. For a high De the flow became unstable
and three-dimensional. Grillet et al. [18] simulated the viscoelastic
lid driven cavity flow to understand how elasticity varies the flow
kinematics. Polymer stretches significantly downstream of the cor-
ners, resulting in a decrease in the rotational speed of the primary
vortex. These authors also introduced a scaling law for the relation
between the aspect ratio and the elastic instability. Cavity flow also
has been used to validate numerical methods for non-Newtonian
fluids. In this context, Pan and Hao [19] presented a method for
stabilizing a finite element code used for high Weissenberg num-
ber flows. The Stokes flow of Oldroyd-B fluid in the lid-driven cav-
ity is considered as a test case. Other examples of non-Newtonian
fluids inside the cavity can be found in Yapaci et al. [20] and Santos
et al. [21].

The only work on cavity flow of inelastic power-law fluids, we
are aware of, is Mercan and Atalik [22]. These authors investigated
the lid driven arc-shaped cavity flow of power-law fluids. They
found formation of secondary vortices, for Re > 740 when arc angle
ratio r = 1/2 and for Re > 800 in the case of r = 1/3. The vortices
grow or decay with the shear-thinning and the shear-thickening
effects respectively.

1.4. Structural sensitivity

In the present work, the structural sensitivity analysis is em-
ployed to examine the instability mechanism of the lid-driven cav-
ity flow to three dimensional modes. Giannetti and Lucini [23]
introduced the concept of structural sensitivity and employed it
to investigate the instability mechanism of the flow past a station-
ary cylinder. The core of instability, associated to the location in
space, where a feedback provides the largest shift of the eigen-
values, is obtained as a superposition of direct and adjoint modes
of the linearized stability operator. For the cylinder flow, the
wave-maker of the instability is located in two lobes placed sym-
metrically downstream of the cylinder. Marquet et al. [24] also
considered the maximum variation of the eigenvalues to analyze
the sensitivity to base flow modifications of the flow past a circular
cylinder. These authors determined the region that contributes to
the onset of vortex shedding. To stabilize the flow Marquet et al.
[25] and Pralits et al. [26] considered the sensitivity to steady forc-
ing modifying the base flow: the sensitivity map is shown to
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provide useful information to design successful passive control of
the instability. In [26], the authors also examined the perturbation
kinetic energy budget and compared it with the results of the sen-
sitivity analysis. The two approaches are shown to give different
results for the instability of the flow past a rotating cylinder: the
region of maximum production of perturbation kinetic energy does
not necessarily coincide with the core of the instability. Sensitivity
analysis has been recently extended to globally stable flows, the so
called noise amplifiers, in Brandt et al. [27]. Sipp et al. present a re-
cent review about linear methods for sensitivity and control stud-
ies [28].

The paper is organized as follows. The flow geometry and gov-
erning equations are presented in Section 2, where the formulation
for structural sensitivity of a non-Newtonian fluid is derived. The
numerical method and validation are discussed in Section 3 before
reporting the linear stability for the square cavity and the shallow
cavity of aspect ratio 0.25. The paper ends with a summary of the
main conclusions.

2. Problem formulation

2.1. The geometry

The geometry and generic flow behavior of the lid-driven cavity
is depicted in Fig. 1. The lid has a width Lx and is moving with a
constant velocity V in the x-direction, hence the Reynolds number
Re is defined as:

Re ¼ qLxV
l̂0

;

where q and cl0 are the density and zero shear rate viscosity of the
fluid. Furthermore, the aspect ratio is given by C = Ly/Lx. If a third z-
direction is added then the spanwise aspect ratio is K = Lz/Lx, where
Lz is the spanwise width of the cavity.

2.2. The viscosity model

As mentioned, an important aspect of this work which differen-
tiates it from many earlier investigations is that it concerns non-
Newtonian inelastic fluids. To examine non-Newtonian effects, a
simple model, where viscosity is dependent on shear rate only is
adopted and fluid elasticity is neglected. Hence, the constitute
equation can be written as

l ¼ lð _cÞ; ð1Þ
Core Vortex

Corner Vortices

V

Ly

Lx

Fig. 1. Geometry and notation of the lid-driven cavity.
where _c represents the second invariant of the strain-rate tensor,
defined as _c ¼ 1

2
_c : _c

� �1
2, with _c ¼ rUþrUT . Thus, many empirical

relations can be used to fit experimental data. Some examples,
including the Cross and Bingham model can be found in [29].

For this project the so called Carreau model is employed: the
connection between viscosity and shear rate is given by

lð _cÞ ¼ l̂1
l̂0
þ 1� l̂1

l̂0

� �
½1þ ð _ckÞ2�

n�1
2 : ð2Þ

Here, l̂1 and l̂0 are the infinite shear rate and zero shear rate vis-
cosity, respectively and the ratio of l̂1=l̂0 is set to 0.001.

The results will be therefore presented in terms of the power in-
dex n and the time constant k. k is a dimensionless variable scaled
by the cavity width and lid velocity. For a more detailed descrip-
tion of the parameters featured in Eq. (2) see [30].
2.3. Governing equations

The incompressible non-Newtonian lid-driven cavity flow is
considered. The flow is induced by the tangential velocity of the
top wall in the positive x-direction. The cavity length in the trans-
verse z-direction is assumed to be infinite. Thus, the flow is gov-
erned by the Navier–Stokes and continuity equation which is
expressed in non-dimensional form as

@u
@t
þ u � ru ¼ �rpþ 1

Re
� r½lðruþruTÞ�; ð3aÞ

r � u ¼ 0: ð3bÞ

The no-slip boundary conditions imposed on the problem are
the following

u ¼ 1 ex at y ¼ Ly

Lx
¼ C ðaÞ;

0 at x ¼ 0; x ¼ 1 and y ¼ 0 ðbÞ:

(
ð4Þ

Note that for Eq. (4), the origin of the coordinate system has
been placed in the bottom left corner of Fig. 1, and the boundary
conditions are written in non-dimensional form.
2.4. Linear stability analysis

Since the cavity length is assumed infinite in the z-direction, Eq.
(3) has a steady two-dimensional solution [Ub,pb] = [Ub(x,y),
pb(x,y)]. A perturbation ½~U; ~p� ¼ ½~Uðx; y; z; tÞ; ~pðx; y; z; tÞ� is added to
this time independent state in order to perform the linear stability
analysis. Thus, it is possible to decompose the flow variables into

u ¼ Ub þ ~U; ð5aÞ
p ¼ pb þ ~p: ð5bÞ

Furthermore, a similar formation is introduced for the viscosity

l ¼ lb þ ~l; ð6Þ

where lb = lb(x,y) and ~l ¼ ~lðx; y; z; tÞ are the base flow (steady
state) and perturbation viscosity respectively. The perturbation vis-
cosity is written as the first term of the Taylor series expansion of
Eq. (2)

~l ¼ _cijð~UÞ
@l
@ _cij
ðUbÞ: ð7Þ

Now, substituting Eqs. (5) and (6) into (3), subtracting the base
flow variables and linearizing around [Ub,pb] yields a linear stabil-
ity problem for the perturbations which can be formulated com-
pactly as
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@ ~U
@t
þ LðUb;ReÞ~Uþr~p ¼ 0; ð8aÞ

r � ~U ¼ 0: ð8bÞ

In the above, LðUb;ReÞ~U is defined by

LðUb;ReÞ~U ¼ ~U � rUb þ Ub � r~U� 1
Re
r � ½lbðr~Uþ ðr~UÞTÞ

þ ~lðrUb þ ðrUbÞTÞ�;

and homogenous boundary conditions are imposed to the distur-
bance velocities. As introduced, for example, by Albensoeder et al.
[1] the general solution to Eq. (8) can be written as complex modes
of the form:

~Uðx; y; z; tÞ ¼ bUðx; yÞ exp½rt þ ijz� þ c:c:; ð9aÞ
~pðx; y; z; tÞ ¼ p̂ðx; yÞ exp½rt þ ijz� þ c:c:; ð9bÞ

where j is the transverse wavenumber of the disturbance. A two-
dimensional instability corresponds to j = 0. Inserting the ansatz
(9) into (8) finally produces a linearized general eigenvalue
problem:

rbU þ LðUb;ReÞbU þrp̂ ¼ 0; ð10aÞ
r � bU ¼ 0: ð10bÞ

The complex eigenvalue r contains information about the
growth rate (RE{r}) and frequency (IM{r}) of the instability,
whereas q̂ ¼ ðbU; p̂Þ is the eigenmode. Our goal is to determine for
which Re and j the growth rate first becomes positive for a given
C, n and k. These values of Re and j will be referred to as the crit-
ical Reynolds number (Rec) and wavenumber (jc).

2.5. Structural sensitivity

Investigating the sensitivity of the unstable modes will give fur-
ther insight about the origin of the instability. The theoretical
framework is based on the work of Giannetti and Luchini [23]
who introduce and define the wavemaker of the instability as the
region in space, where a change in the structure of the problem
causes the largest drift in the eigenvalues. Terms for the perturba-
tion viscosity are added here. Introducing a small momentum force
in the stability equations yields the following problem:

r0 bU0 þ LðUb;ReÞbU0 þ rp̂0 ¼ dHðbU0; p̂0Þ; ð11aÞ
r � bU0 ¼ 0: ð11bÞ

As explained in [26], dH is a differential operator representing a
force proportional to the local perturbation velocity:

dHðbU0; p̂0Þ ¼ dMðx; yÞ � bU0 ¼ dðx� x0; y� y0ÞdM0 � bU0
Here, dM0 is a coupling matrix and d(x � x0,y � y0) is the Kro-

necker delta function. The eigenvalue and eigenmode drifts are gi-
ven as the expansion r0 ¼ rþ dr, bU0 ¼ bU þ dbU and p̂0 ¼ p̂þ dp̂.
Inserting these into Eq. (10) and neglecting higher order terms
yields a linear equation for the eigenvalue drift:

rdbU þ LðUb;ReÞdbU þrdp̂ ¼ �drbU þ dM � bU; ð12aÞ
r � dbU ¼ 0: ð12bÞ

The Lagrange identity is introduced as a function of the differen-
tiable direct field q = (u,p) and its corresponding adjoint field
g+ = (f+,m+). More on adjoint methods can be found in [31,32]. By
taking the inner product of Eq. (10) and the adjoint field and using
differentiation by parts
½ðrbU þ LðUb;ReÞbU þrp̂Þ � f̂þ þ ðr � bUÞ � m̂þ� þ ½bU � ð�rf̂þ

þ LþðUb;ReÞf̂þ þrm̂þÞ þ p̂rf̂þ� ¼ r � Jðq̂; ĝþÞ; ð13Þ

where J is the bilinear concomitant and L+ is the adjoint linearized
Navier–Stokes operator

Jðq̂; ĝþÞ ¼ UbðbU � f̂þÞ þ 1
Re

lbðrf̂þ þ ðrf̂þÞTÞ � bU � lbðrbUh
þðrbUÞTÞ � f̂þ � ~lðrUb þ ðrUbÞTÞ � f̂þ

i
þ m̂þ bU þ p̂f̂þ;

and

LþðUb;ReÞf̂þ ¼Ub �rf̂þ �rUb � f̂þ þ
1
Re

lbðDf̂þ þðDf̂þÞTÞ
h

þðrUbþðrUbÞTÞ �rf̂þBðUbÞ
i
:

where B(Ub) is an operator on the form:

BðUbÞ ¼
2 @l
@ _c11
ðUbÞ @@xþ 2 @l

@ _c12
ðUbÞ @@y

2 @l
@ _c21
ðUbÞ @@xþ 2 @l

@ _c22
ðUbÞ @@y

" #

The adjoint mode ĝþðx; yÞ ¼ ðf̂þ; m̂þÞ satisfies the following sys-
tem of equations

� rf̂þ þ LþðUb;ReÞ þ rm̂þ ¼ 0; ð14aÞ
r � f̂þ ¼ 0 ð14bÞ

Considering Eqs. (12) and (13) and integrating over the entire
domain D gives an estimate of the eigenvalue drift

�dr
Z
D

f̂þ � bUdSþ
Z
D

f̂þ � dM � bUdS ¼
I
@D

Jðq̂; ĝþÞ � ndl: ð15Þ

The boundary conditions are chosen in such a way that the right
hand side of Eq. (15) is zero. The sensitivity tensor S is then
introduced

Sðx0; y0Þ ¼
f̂þðx0; y0ÞbUðx0; y0ÞR

D
f̂þ � bUdS

: ð16Þ

Note that f̂þ bU represents a dyadic product between the adjoint
and direct mode. Combining Eq. (15) and (16) generates the final
expression for the eigenvalue drift:

drðx0; y0Þ ¼
R
D

f̂þ � dM � bUdSR
D

f̂þ � bUdS
¼ f̂þ � dM0 � bUR

D
f̂þ � bUdS

¼ S : dM0 ¼ SijdM0ij: ð17Þ

The core of the instability can be found by studying different
norms of the tensor S. Here the spectral norm will be used.

2.6. Kinetic energy analysis

By performing an energy analysis, additional information about
the instability mechanism can be extracted. Multiplying Eq. (8a)
with the complex conjugate of the perturbation velocity ~U� (⁄ de-
notes the complex conjugate of the corresponding quantity) gives
an equation for the evolution of the perturbation kinetic energy
which in index notation can be written as

eU�i @ eUi

@t
þ eU�i eUj

@Ubi

@xj
þ eU�i Ubj

@ eUi

@xj

¼ �eU�i @~p
@xi
þ 2

Re
eU�i @

@xj
ðlbeijÞ þ

2
Re
eU�i @

@xj
ð~lEijÞ: ð18Þ

Note here that Ubi and Ubj are the ith and jth component of the
base flow velocity Ub. Furthermore, eij and Eij are the perturbation
and base flow shear rate tensors
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eij ¼
1
2

@ eUi

@xj
þ @

eUj

@xi

 !
; ð19Þ

Eij ¼
1
2

@Ubi

@xj
þ @Ubj

@xi

� �
: ð20Þ

Finally, the kinetic energy budget reads

dðEkinÞ
dt

¼ @

@xj
�1

2
Ubj
eUi
eU�i � 1

2
eU�j ~pþ eUj~p�
� �

þ 1
Re

lb
eU�i eij þ eUie�ij
� ��

þ 1
Re

Eij
eU�i ~lþ eUi ~l�
� �	

� 1
2
ðeU�i eUj þ eUi

eU�j Þ @Ubi

@xj
� 2

Re
lb eije�ij
� �

� 1
Re

~le�ijEij þ ~l�eijEij

� �
: ð21Þ

Here Ekin ¼ 1
2
eUi
eU�i� �

is the kinetic energy. The first divergence
term on the right hand side of Eq. (21) is the kinetic energy trans-
port inside the domain. However since there is no net flux in a
closed flow system like the cavity, it gives no global net contribu-
tion. The second and third terms are the production and dissipation
of the perturbation kinetic energy, whereas the last expression is
an additional term due the non-Newtonian properties of the flow.
The latter is strictly positive for shear-thinning fluids and negative
for shear-thickening. Note that the three dimensional effects only
come into play in the energy dissipation since Ub3 = W = 0 and
@
@z ¼ 0 for the base flow Ub.
3. Numerical method

The numerical computations have been performed using a
variant of the second order finite difference code developed by
Giannetti and Luchini and described in [23]. To begin with the
two-dimensional steady base flow is calculated by discretizing the
flow variables on a staggered grid. Eqs. (3)–(4) are then solved using
Newton–Raphson iteration, where the linear equations produced
are inverted by means of a sparse LU decomposition. Next, the base
flow solution is inserted into the perturbation Eq. (8) and the linear
stability analysis is computed. Eigenvalues and modes of both the
direct and adjoint field are computed by employing the Arnoldi shift
and invert method. For all calculations a shift of 2 + 0i has proved
sufficient in order to find correct results (including oscillatory
modes). Moreover, an eigenvalue tolerance of 10�8 has been chosen
to guarantee converged results. As mentioned above, the instability
0 0.5 1
0

0.5

1

0 0.5 1
0

0.125

0.25

(a)

(b)

Fig. 2. Mesh used for square and shallow cavity. (a) C = 1 and (b) C = 0.25.

Table 1
Comparison between the critical values presented by Albensoeder et al. [1] and the prese
150 � 150 and 250 � 250 grid points respectively.

C ReC [1] ReC Error % jC [1]

0.25 1152.7 1165 1.07 20.63
1(a) 786.3 789.1 0.36 15.43
1(b) 786.3 786.74 0.06 15.43
occurs when the real part of the eigenvalue is larger than zero. A
non-zero imaginary part corresponds to wave propagating in the
z-direction, hence, the perturbation mode is non-stationary. Finally,
the sensitivity, and thereby the core of the instability, is investigated
by multiplying the direct and adjoint fields.

The eigenvalue strongly depends on Re, C, j, the power-law in-
dex n and the time constant k. The critical Re was found by apply-
ing the following strategy. Firstly, we select a relevant range for C,
n and k. Secondly, an interval is chosen for the wavenumber j, of-
ten between 0 and 20 (the wavenumber is assumed to be less then
20 since modes with higher j are expected to be strongly damped
[1]) and an incremental step size Dj, usually selected to be 1 in a
first approximation. Finally we apply a bisection procedure to find
the critical Reynolds number while looping over different values of
j. Note however, that the wavenumber space is scanned only
around the j for which an instability is first encountered. The
same procedure is then repeated with a lower tolerance to pin-
point the critical values of Reynolds and j.

3.1. Mesh

The square cavity of non-dimensional size Lx = Ly = 1 will be
mainly investigated in this work. Unless otherwise stated, a mesh
size (nx � ny) of 250 � 250 has been chosen for this case. Further-
more, a parabolic mapping is selected with the mesh being
stretched by a ratio of 4 towards the boundaries of the geometry
in both the x and y direction. Grid points are more densely clus-
tered at the walls than in the center of the cavity as seen in 2a. This
turned out to be necessary to obtain correct results in these high-
gradient regions.

Analysis of a shallow cavity with aspect ratio C = 0.25 has also
been performed. The dimensions are therefore set to Lx = 1,
Ly = 0.25, where the number of grid points used is 300 � 75. Again
parabolic stretching is used. Fig. 2b shows the grid used for these
cases. Note that for the sake of clarity only every fourth point is
shown in the figure.

3.2. Code validation

The linear stability analysis has been validated by reproducing
the results for Newtonian fluid in [1]. It can be seen from Table 1
that the present results based on the stretched 250 � 250 grid
are in good agreement, with an error below 1%.

Grid dependence for the non-Newtonian cases is checked by
finding the critical Re and j when C = 1, n = 0.5 and k = 10 for
the several mesh sizes, see Table 2. The values reported in the Ta-
ble confirm that the choice of grid points yields satisfactory results.
4. Results

In this section we examine the stability of the square and shal-
low cavity. Results are presented for values of the power-law index
between 0.4 6 n 6 1.4 and time constant k = 1, 10 and 100.

When n < 1, the fluid is shear thinning and the viscosity de-
creases with the shear rate. The opposite is true for shear-thicken-
ing fluids defined by values n > 1, while Newtonian fluids are
nt results for a shallow cavity and a square cavity. (a) and (b) represent cases with

jC Error % xC [1] xC Error %

20.6 �0.15 2.27 2.25 �0.82
15.2 �1.30 0 0 0
15.4 �0.19 0 0 0



Table 2
Grid independence study. The tables reports the critical values at different resolution
for shear-thinning fluids with n = 0.5 and k = 10.

Grid resolution ReC Error % jC Error %

150 � 150 330.7 6.23 13.9 �6.08
200 � 200 317.5 1.99 14.5 �2.03
250 � 250 (Reference) 311.3 – 14.8 –
300 � 300 307.5 �1.22 14.8 0
350 � 350 305 �2.02 14.8 0
400 � 400 303.1 �2.63 14.8 0
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retrieved when n = 1 and the viscosity becomes independent of the
shear rate.

4.1. The square cavity, C = 1

The stream-wise velocity and streamlines of base-flow
computed by Newton iterations has been initially compared with
solutions obtained by direct numerical simulations (DNSs) with
the code Nek5000 [33]; the data reported in Fig. 3 reveal good
agreement. In the figure, we report as example the stream-wise
velocity and streamlines for shear-thinning fluid with n = 0.4,
k = 10 and Re = 456.

Once the numerical calculations of the base flow is further
validated, we proceed to the stability analysis. The neutral curve
(critical Re vs. n) is reported in Fig. 4a for the square cavity and dif-
ferent values of the parameter k. Shear-thickening effects induce a
significant increase of ReC, this effect being more pronounced for
larger values of k. The opposite applies when n < 1; in this case
however the critical Re first decreases and then increases when
increasing the shear-thinning properties (decreasing n).
CPL code
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The viscosity varies locally inside the fluid and one can there-
fore define a local Reynolds number

Reloc ¼
qLxV
l̂

;

and the average Reynolds number

Reavg ¼
R

Relocdxdy
A

; ð22Þ

where A is the total area of the cavity. Again, lð _cÞ is given by Eq. (2).
The critical average Reynolds number is shown in Fig. 4b versus the
index n. The large decrease of the critical Re when decreasing n is
significantly reduced when considering Reavg instead. As discussed
below, this suggests that the same instability mechanism is at work
for 1.4 > n > 0.6. Conversely, the increase of critical Reynolds
number at low n is now more evident. Interestingly, the trend is
consistent for all values of k considered and the difference almost
disappear when re-scaling the neutral curves with the local
viscosity.

The effect of the shear-dependent viscosity on the base flow is
visualized by the streamwise component of Ub and streamlines dis-
played in Fig. 5. The boundary layer at the lid becomes thinner and
thinner when decreasing n while the magnitude of the negative
counterflow at the lower wall decreases. This is also associated
to weaker vorticity in the center of the cavity.

The circular frequency and the spanwise wavenumber pertain-
ing to the first instability are reported in Fig. 6. Steady modes are
the first to become unstable in the case of Newtonian fluid and this
is still valid for shear-thinning fluids, see Fig. 6a. However, non-sta-
tionary modes are first unstable for n > 1.2 for all k investigated.
These modes have a lower spanwise wavenumber as displayed in
Nekton code
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Fig. 6b. Interestingly, a mode of even higher frequency and lower
spanwise wave-number j appears as the most dangerous when
n = 1.4. The frequency and wave-number are more or less indepen-
dent of k and of the power index n when steady modes appear first.
In the case of n = 1.15, the first unstable mode is stationary with
high spanwise wave-number for k = 1 while it is oscillatory with
a lower spanwise wave-number for k = 10 and k = 100.

Direct and adjoint modes indicate, where in the flow field the
perturbation amplitude is maximized and the location of highest
receptivity. The magnitude of the unstable modes for n = 1.4, n = 1
(Newtonian) and n = 0.4 are displayed in Fig. 7. For n = 1.4, which
is associated to higher frequency and longer spanwise scale, the
mode appears as a large vortex in the center of the cavity. This mode
enhances and decreases the amplitude of the base flow vortex peri-
odically in time and spanwise direction. For the Newtonian fluid,
velocity perturbations are mainly found on the left side of the cav-
ity; a finding common to modes in the range 1.1 > n > 0.4, where
the critical Reynolds number Reavg is almost constant. When further
decreasing the power-index n we see that the perturbation is now
located on a thinner region on the lower wall and partially on the
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right side. A second peak is formed in the bottom right corner of the
cavity for the v-component of the velocity perturbation.

The adjoint modes concerning the first instability in shear-
thickening, Newtonian and shear-thinning fluids are shown in
Fig. 8. For the non-stationary modes, n = 1.4, the receptivity to forc-
ing in the y-direction is strongest and located on the right side of
the cavity. The receptivity to momentum forcing in x-direction is
instead more diffuse, placed in the middle of the cavity. Forcing
in the spanwise direction is more effective at the right wall. Con-
sidering the Newtonian fluid, we see that the region of highest
receptivity is located on the corner opposite to that, where the
disturbance is largest. The adjoint v+ and w+ is stronger on the right
wall of the cavity. In the case of strong shear-thinning, the flow is
most sensitive to forcing in the x-direction at the upper wall, while
normal forcing is most efficient on the left side of the cavity.

Next, the structural sensitivity is presented. As introduced
above, its distribution provides important information about the
instability mechanism. Results for both shear-thinning and
shear-thickening fluids are presented in Fig. 9. As we increase
shear-thinning, the region at the core of the instability is getting
thinner but still consists of a ring, wrapping around a streamline
inside the cavity. At large j, the structural sensitivity identifies
one specific streamlines, that supporting the inviscid centrifugal
instability [15]. In the case of shear-thickening fluid and unsteady
modes, we see that the wave-maker is located on the lower-left
corner when n = 1.2, whereas it moves to the right wall for n = 1.4.

We now present the analysis of the perturbation kinetic energy
budget. As introduced in Section 2.6 the kinetic energy budget, i.e.
Eq. (21), is given by the sum of production, dissipation and addi-
tional production terms related to the varying viscosity. The den-
sity of energy production associated to the base flow shear is
reported in Fig. 10, again for k = 10 at neutral conditions. We
choose here to display four representative cases: two unsteady
modes in shear-thickening fluids (n = 1.2 and n = 1.4), the case with
n = 0.7 indicative of Newtonian and weakly shear-thinning fluids
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and n = 0.4 representing the region of increasing critical Reynolds
number. One can see from the figure that the Newtonian fluid actu-
ally has the largest energy production and that its spatial distribu-
tion is almost independent on the power index n. The spatial
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Fig. 13. (a) Critical Reynolds number versus the index n and (b) Average Reyn
distribution of the additional energy production due to non-New-
tonian effects is most relevant on the left and lower side of the cav-
ity for the lowest n considered (not shown here).

The sum of all production and dissipation terms is displayed in
Fig. 11 for the same cases as before and at neutral conditions. Pro-
duction is dominating in the lower left corner for intermediate val-
ues of n. In the case of strong shear-thinning, the peak of total
production is on the lower right corner, whereas for unsteady
modes (n = 1.4) the peak of positive production is more diffuse to-
wards the lower left corner. Negative production, dissipation, ap-
pears usually in this layers close to the regions of highest
positive production and on the upper left corner. It is also interest-
ing to note that in this close configuration the wave-maker of the
instability and the region of largest production of perturbation ki-
netic energy almost overlap; this was not the case for the cylinder
flow as shown in [26].

Finally, we integrate the densities of the different energy terms
over the domain. The results are shown in Fig. 12 for k = 10 at neu-
tral condition and for fixed Re = 600 and j = 15. In 12a we see that
production associated to the base flow shear and dissipation have
maximum around n = 1 and decrease when adding shear-depen-
dent viscosity. The decrease in dissipation magnitude can be asso-
ciated to the vorticity of the instability mode, while the reduction
in production to the localization of the perturbation when n < 1
and to the weaker base shear when n > 1. The additional produc-
tion term becomes relevant when n < 0.6. It is also instructive to
study the energy budget at fixed Reynolds number. In this case,
the sum of the different terms reveals whether the mode is stable
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or unstable since it can be related to the real part of the eigenvalue.
For the case depicted in the figure, the flow is unstable for
0.9 > n > 0.4. In addition to the expected increase of the additional
production for lower values of n, we notice a decrease of the classic
production with shear-thinning. This is due to the spatial de-corre-
lation between the region of largest disturbance (lower and left
wall, cf. Fig. 7) and the region of largest shear (upper wall, cf.
Fig. 5).

Combining the results presented above, we can conclude that
the instability mechanism is not significantly changed for weak
shear-thinning and shear-thickening effects. Indeed, the Reavg is al-
most constant in this range, steady modes are the most unstable
and the instability wave-maker is similar. When further increasing
the shear-thinning properties, we see a surprising increase of the
critical Reynolds number based on the zero-shear-rate viscosity.
This can be explained by the fact that the region of largest shear
become more and more localized close to the wall and the
umode, n=0.4
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Fig. 16. Magnitude of the x-, y- and z-velocity components of the first instability of dir
base-flow vorticity is weaker towards the center of the cavity
and on the left side: in this case very large local Reynolds number
(very low local viscosity) is necessary to overcome dissipation with
the relevant contribution from the extra production terms associ-
ated to the shear-thinning effects. Interestingly, we notice that un-
steady modes are the first to become unstable when the power
index n is above 1.2 (or above 1.15 for large values of material time
constant) with modes significantly longer in the spanwise direc-
tion. Finally, we note that the instability characteristics are found
to vary with the power index n, while no significant qualitative
variations are found with respect to the time constant k.

4.2. The shallow cavity, C = 0.25

We now consider the shallow cavity of aspect ratio C = 0.25, as
in [1], where the first instability mode is time-periodic in Newto-
nian fluids. Computations have been performed with k = 10; as
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shown above this parameter does not seem to significantly affect
the physics of the instability, the main variations coming from
the power index n.

The neutral curves are first displayed in Fig. 13 both in terms of
zero-shear rate viscosity, Reynolds number Re, and average viscos-
ity, average Reynolds number Reavg. The critical Reynolds number
decreases from shear-thickening to shear-thinning fluids (decreas-
ing n), whereas critical values of the average Reynolds number first
decrease and then increase with a minimum at n � 0.7, similarly to
what observed for the square cavity.

The effect of shear-thinning viscosity on the two-dimensional
base flow is depicted in Fig. 14, where we report the x-component
of the baseflow velocity Ub and streamlines for four values of n. As
umode, n=1
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Fig. 19. Structural sensitivity for the first instability along the neutral curv
n decreases we clearly see that the main vortex moves to the right
side of the cavity. In addition, and in analogy to the case of the
square cavity, the boundary layer at the moving lid becomes
thinner at lower n. The lid drives flow towards the right wall and
by viscous forces positive x-momentum is transferred towards
the center of the cavity. For the continuity constraint, negative
velocity is generated at the lower side of the cavity. When increas-
ing shear-thinning, less momentum is transferred to the fluid and
therefore the counter-flow only reaches half of the cavity.

Unlike the square cavity, all critical modes are oscillatory for the
shallow cavity. The frequency and spanwise wavenumber of the
neutral modes are reported in Fig. 15; here one can see that the va-
lue for jc and xc drops continuously with decreasing power-law
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index, from about j = 21.2 and x = 2.34 respectively, until sud-
denly at n = 0.4 the first instability appears to have a long-wave-
length (j � 11) and low-frequency (x � 0.7).

The shape of the direct and adjoint modes are shown in Fig. 16
for shear-thinning fluids. The region of largest fluctuations is seen
to move from the top-right corner to the center of the cavity (left
side of the big vortex displayed in Fig. 14) when shear-thinning in-
creases and the instability mode has a significantly lower fre-
quency. In all cases, velocity fluctuations are detectable on the
right-half of the cavity. The corresponding adjoint modes reveal a
certain overlap with the direct modes; Forcing in the x-direction
at the lower wall is the most effective way to excite the slow oscil-
latory mode at n = 0.4.

The direct and adjoint modes pertaining a Newtonian fluid and
shear-thickening fluid are displayed in Figs. 17 and 18. It is seen
here that the shape of the direct modes is not affected by the
non-Newtonian properties of the fluid, while it is interesting to
note that for the case with n > 1, the adjoint modes are significant
also in the left-half of the cavity. This can be explained by the fact
that the base-flow vortex now extends throughout the cavity and it
not only localized on the right side of it, as seen in Fig. 14.

The structural sensitivity, the core of the instability, is shown in
Fig. 19 at neutral conditions and different values of n. The area of
largest sensitivity is always located on the right-side of the cavity
and decreases as the power-law index is reduced. Further, the
maximum moves from the region close to the upper wall to that
close to the lower wall for n > 0.6. This effect is found to be associ-
ated to the increase of the critical Reavg, shown in Fig. 13b.

The spatial distribution of the sum of the different terms in the
budget for the perturbation kinetic energy are presented in Fig. 20.
It can be seen that the production mainly stems from the
binocular- and banana-shape regions close to the upper and lower
wall respectively, whereas dissipation occurs in a thin stripe be-
tween the regions of largest positive production. As for the square
cavity, we note that the wave-maker identified by the structural
sensitivity and the areas more energetically active overlap. As dis-
cussed above, the core of the instability shifts from the upper to the
lower wall as shear-thinning increases.

Finally, as for the square cavity, we examine the total budget of
the perturbation kinetic energy, Fig. 21. As for the square cavity, we
note that the additional production term related to shear-thinning
becomes determinant for the instability only when n < 0.6. In this
case the averaged Reynolds number is increasing and the core of
the instability has moved to the lower half of the cavity. Interest-
ingly, at neutral conditions the dissipation magnitude first in-
creases for decreasing n, indicating increasing vorticity of the
instability mode, while it decreases for the long-wavenumber
mode found for n = 0.4. Looking at the budget at fixed Re and j,
Fig. 21b, we see how the pocket of instability is mainly created
by increasing the production induced by the work of the Reynolds
stresses against the base-flow shear.
5. Conclusions

Linear stability analysis of the lid-driven cavity containing
non-Newtonian fluid has been performed for two different aspect
ratios, namely C = 1 (square cavity) and C = 0.25 (shallow cavity).
The former characterized by steady unstable modes at critical
conditions, the latter by oscillating instabilities. The Carreau model
has been chosen to model shear-thinning and shear-thickening
fluids and the rheological parameters examined in the range
0.4 6 n 6 1.4 and k = 1, 10 and 100. To investigate the instability
mechanisms we consider both the classic equation for the evolu-
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tion of the perturbation kinetic energy and the structural sensitiv-
ity of the instability, as introduced in [23].

In general, shear-thickening effects stabilize the flow, i.e. in-
crease the critical Re both for the square and shallow cavity. Con-
versely, shear-thinning creates instabilities at lower Reynolds
numbers. However, we see that at the lowest values of n consid-
ered the critical Reynolds number increases again. In particular,
we observe for the square cavity that there exists an intermediate
range of values of the power index n at which the instability mech-
anism is unaffected by non-Newtonian effects. This is demon-
strated by examining the wave-maker of the instability as well
as the spatial distribution of the kinetic energy production and dis-
sipation. In addition, we show that the critical average Reynolds
number, based on the average value of the local viscosity inside
the cavity, is almost constant in this regime and, interestingly, be-
comes almost independent of the time constant k (a result that
actually applies to all values of n considered).

The increase of the critical Reynolds number for large shear-
thinning can be explained by considering the non-Newtonian ef-
fects on the base flow: formation of thinner boundary layers close
to the walls and reduction of the intensity of base-flow shear inside
the cavity. In these cases, the extra-production of kinetic energy
due to shear-thinning becomes determinant for the instability
occurrence. For square cavities, we report a change from unsteady
to oscillating critical modes already at moderate values of the
power index n (n > 1.2) associated to a significant increase of the
spanwise scale of the unstable disturbance.

The neutral stability curve for the shallow cavity also show an
increase of the critical Reynolds number at the lowest values of n
considered, as mentioned above. In this case however, we find a
new instability mode characterized by lower frequency and longer
spanwise scale to be the first to become unstable when n < 0.5. The
core of the instability has shifted from regions close to the upper
driving wall to areas close to the lower wall. The same physical
mechanisms as for Newtonian fluids appears to drive the instabil-
ity for both shear-thinning and shear-thickening fluids otherwise
for moderate non-Newtonian effects. Finally, we note that unlike
in open flows, as for the flow past a circular cylinder [26], the anal-
ysis of the energy budget and the structural sensitivity, based on
the superposition of the unstable mode and its adjoint, indicate
the same critical region for the instability mechanism.

The linear analysis conducted here reveals the first flow bifurca-
tion to a steady or oscillating three-dimensional flow. The present
work is therefore being continued by considering the appearance
of secondary instabilities and the effect of the shear-dependent vis-
cosity on the unsteady regime at Reynolds number above the crit-
ical threshold. In addition, the flow sensitivity can be used to
design passive control strategies to manipulate the flow inside
the cavity.
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