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A three-dimensional deformable capsule convected through a square duct with a
corner is studied via numerical simulations. We develop an accelerated boundary
integral implementation adapted to general geometries and boundary conditions. A
global spectral method is adopted to resolve the dynamics of the capsule membrane
developing elastic tension according to the neo-Hookean constitutive law and bending
moments in an inertialess flow. The simulations show that the trajectory of the
capsule closely follows the underlying streamlines independently of the capillary
number. The membrane deformability, on the other hand, significantly influences the
relative area variations, the advection velocity and the principal tensions observed
during the capsule motion. The evolution of the capsule velocity displays a loss of
the time-reversal symmetry of Stokes flow due to the elasticity of the membrane. The
velocity decreases while the capsule is approaching the corner, as the background
flow does, reaches a minimum at the corner and displays an overshoot past the corner
due to the streamwise elongation induced by the flow acceleration in the downstream
branch. This velocity overshoot increases with confinement while the maxima of the
major principal tension increase linearly with the inverse of the duct width. Finally,
the deformation and tension of the capsule are shown to decrease in a curved corner.

Key words: biological fluid dynamics, boundary integral methods, capsule/cell dynamics

1. Introduction

Elastic micro-capsules are ubiquitous in nature, appearing in the form of seeds, eggs,
cells and similar. The elasticity of the cells plays an important role in their proper
biological functioning. As examples, red blood cells (RBC) deform significantly in
micro-vessels to ease oxygen transportation; leukocytes squeeze through small gaps
into the endothelial cell wall during inflammation (Springer 1994), as do tumour cells
do in tumour metastasis (Hanahan & Weinberg 2000). On the other hand, artificial
micro-capsules are commonly used in the food and cosmetic industry for a controlled
release of ingredients (Barthès-Biesel 2011) and synthetic nano-capsules promise a
precise and targetted drug delivery. The ability of biological and artificial capsules to
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dynamically adapt, change their shapes and withstand stresses from the surrounding
medium has thus attracted much attention from research groups in different fields.

In micro-fluidic applications, one of the most fundamental issues is the behaviour of
these tiny deformable structures when interacting with an external applied flow. Early
experimental studies discovered several interesting features of RBCs: the well-known
tank-treading and tumbling motion in shear flow (Goldsmith & Marlow 1972; Fischer
& Schmid-Schönbein 1978), ‘parachute’ shaped deformation (Skalak & Branemark
1969) and the ‘zipper’ flow pattern (Gaehtgens, Dührssen & Albrecht 1980) in the
micro-capillaries. These observations show that the capsule shape is not given a priori
but determined by the dynamic balance of interfacial forces with fluid stresses. Several
analytical studies deal with unbounded domains to model tank-treading and tumbling
motions of an initially spherical capsule by asymptotic analysis (Barthès-Biesel 1980,
1981), prove the existence of ‘slipper’ shaped cells in capillary flows (Secomb &
Skalak 1982), predict the vacillating-breathing behaviour of a vesicle (Misbah 2006)
and the swinging–tumbling transition of a capsule (Vlahovska et al. 2011).

Numerical simulations have been successfully used to solve the associated nonlinear
fluid–structure problem; examples are the deformation of spherical (Pozrikidis 1995,
2001; Foessel et al. 2011), elliptical (Ramanujan & Pozrikidis 1998; Walter, Salsac
& Barthès-Biesel 2011) or RBC-shaped (Pozrikidis 2003) capsules in an unbounded
shear flow. However, in a realistic situation, biological cells and artificial capsules
are convected in bounded channels or ducts. Motivated by early experiments showing
the migration of RBCs towards the pipe centre (Goldsmith 1971), Zarda, Chien
& Skalak (1977) and Özkaya (1986) simulated the axisymmetric cellular flow
in a cylindrical tube using the finite element method (FEM). Simulations based
on the boundary integral method (BIM), combined with FEM for the membrane
dynamics, were performed to study capsules tightly squeezed in tubes and square
ducts (e.g. Hu, Salsac & Barthès-Biesel 2011). Simulations have also addressed
complex phenomena like the migration and slipper-shaped deformation of cells
(Pozrikidis 2005b), suspensions of RBCs in a capillary tube (Lei et al. 2013), and
the shape transition between non-axisymmetric and axisymmetric RBCs (Danker,
Vlahovska & Misbah 2009; Kaoui, Biros & Misbah 2009). Inertial effects on the cell
migration have also been investigated numerically (Doddi & Bagchi 2008; Shi, Pan
& Glowinski 2012).

These previous computational studies focus on the capsule motion in straight
geometries. However, capsules are seldom transported in such simple
configurations, but rather in highly complicated capillary networks as in the in vivo
micro-recirculation for RBCs or through micro-fluidic devices, where corrugations,
bifurcations and corners are common. Less is known about the dynamics of
capsules in these complex geometries, although these are attracting growing interest
thanks to potential biomedical applications. Experiments (Braunmüller, Schmid &
Franke 2011) and simulations (Noguchi et al. 2010) have shown rich behaviours
of RBCs and vesicles going through sawtooth-shaped channels; a transition from
shape oscillations to orientational oscillations was identified for such deformable
micro-objects, depending on the flow rate and confinement. Two-dimensional FEM
computations have been carried out by Barber et al. (2008) to examine the cell
partitioning in small vessel bifurcations, showing that the cells preferentially enter
the branch with higher flow rate; such an effect is intensified by the cell migration
towards the centre and hindered by obstructions near the bifurcations. Woolfenden
& Blyth (2011) report two-dimensional simulations of a capsule in a pressure-driven
channel with a side branch. These authors found that the capsule deformation strongly



376 L. Zhu and L. Brandt

depends on the branch angle and the cells selected different paths at the branch
junction according to their deformability. Recently, Park & Dimitrakopoulos (2013)
used the spectral boundary element method to investigate the deformation of capsules
and droplets passing through a sharp constriction in a square duct. These authors
examine the effect of the viscosity ratio on the non-tank-treading capsule dynamics
and investigate the flow circulation inside the capsule.

The flow passing around a corner is one of the most basic flow configurations;
despite its universality in biological systems and micro-fluidic devices, its influence
on deformable micro-objects is not fully understood. Steps in this direction have
been taken only recently: the experiments by Rusconi et al. (2010) have revealed the
rapid formation of bacterial streamers near the corners of a curved micro-channel
at low Reynolds number due to the local vortical flow structure. This secondary
flow appears as long as the curvature of the boundary varies, even in the inertialess
Stokes flow (Lauga, Stroock & Stone 2004). Simulations of an elastic filament in a
two-dimensional corner flow (Autrusson et al. 2011) show that the filament crosses
over the curved streamlines in the corner, instead of aligning with the flow as in a
rectilinear flow. One of the motivations of this work is to assess whether the corner
flow can be used to infer the material properties of soft particles as done by Lefebvre
et al. (2008), Chu et al. (2011) and Hu et al. (2013). In those investigations, the
equilibrium shape of capsules moving at a constant speed in confined channels or
tubes is compared with that obtained from simulations or theory. As the corner
flow is characterized by spatial non-uniformity, the capsule dynamics will undergo a
transient evolution that may therefore provide additional information on the membrane
properties such as viscoelasticity. Knowledge of the capsule behaviour in spatially
developing flows may therefore help to explore the material properties of soft capsules.

In this work, we numerically study the motion and deformation of an individual
capsule transported in a duct with a straight and/or a curved corner. A three-
dimensional code is developed to compute the motion of deformable capsules in
arbitrary configurations. This is based on a boundary integral formulation with Ewald
acceleration as suggested by Hernández-Ortiz, de Pablo & Graham (2007); the method
shares the elegance of both boundary integral and mesh-based methods. Boundary
integrals are computed to accurately account for the singular and fast-varying
interactions while the smooth part of the solution is handled by a highly parallel
general Stokes solver based on the spectral element method. The integration on
the membrane is based on a global spectral surface interpolation using spherical
harmonics (Zhao et al. 2010). Our hybrid scheme couples, therefore, the high accuracy
of boundary integrals for the short-ranged interactions to the geometrical flexibility
of mesh-based methods (Freund 2014). Spherical harmonics are utilized to resolve
the membrane dynamics with spectral accuracy. The same implementation has been
used to simulate cell sorting by deformability in a micro-fluidic device of complex
geometry, i.e. a semi-cylindrical pillar embedded in a divergent channel (Zhu et al.
2014).

The paper is organized as follows. The geometrical setup and the numerical
method are described in § 2. The results are presented in § 3 and their discussion and
a summary of the main conclusions is provided in § 4.

2. Problem setup and numerical method
2.1. Flow geometry and numerical procedure

Figure 1 displays the flow configuration and the coordinate system used in the
present investigation, where half of the flow domain is removed to better visualize
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FIGURE 1. (Colour online) Flow configuration. (a) A deformable capsule travelling in a
square duct with a 90◦ straight corner, with half of the domain displayed. The analytical
velocity profile is imposed at the inlet with a maximum centreline velocity of 2.097.
The flow field without capsules is depicted by the streaklines and the grey-scale colour
indicates the velocity magnitude. (b) The discretized fluid domain and the capsule at four
positions on the x–y mid-plane. The box with dots represents one spectral element with
5× 5× 5 GLL points. In the inset at bottom right, the dashed line denotes the trajectory
of the capsule, the dot–dashed line the axis of geometrical symmetry and the cross the
capsule centre when located on the axis at instant t= 0.

the deforming capsule. We investigate the motion of an elastic capsule transported
through a square duct of width H = Hx = Hy; we keep Hx = Hy in this work. In the
figure, the streaklines and grey-scale contours, coded by the velocity magnitude, are
shown on the x–y (z= 0, omitted hereinafter) mid-plane. The duct is characterized by
a 90◦ straight corner.

We consider an initially spherical capsule of radius a, enclosed by an infinitely
thin hyperelastic membrane with surface shear modulus Gs. The fluid inside and
outside the capsule has the same density ρF and viscosity µ; buoyancy forces and
sedimentation effects are neglected.

As capsules are usually small, the Reynolds number Re defined with the capsule
radius a and the characteristic flow velocity VC, Re = ρFVCa/µ� 1. Viscous forces
are therefore dominant over inertial forces, and the flow inside and outside the capsule
is governed by the linear Stokes equations and determined instantaneously by the
boundary conditions. A proper tool to solve the problem is therefore the BIM and
we adopt here an accelerated variant of it.

The fluid–structure interaction problem is solved as follows: the flow convects and
distorts the capsule while the restoring elastic forces alter the fluid motion (Walter
et al. 2010). We start with an undeformed capsule near the inflow and compute, at
each time step, the elastic force on the membrane from the deformed (and out-of-
equilibrium) shape of the capsule. Neglecting inertia and Brownian fluctuations, the
force density exerted by the capsule onto the fluid is equal to the membrane load.
Given this forcing, the velocities of the membrane nodes are computed explicitly with
the BIM (see the following section).
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2.2. Numerical method
2.2.1. Accelerated BIM

We develop a boundary integral implementation accelerated by the general-geometry
Ewald-like method (GGEM), proposed by Hernández-Ortiz et al. (2007) and later
used in a variety of micro-multiphase simulations (Pranay et al. 2010; Kumar
& Graham 2011). An introduction is given here; readers are referred to the
above-mentioned articles for more details. The surface of the capsule S is discretized
by M points, the Lagrangian mesh points. The elastic force per unit area on the
membrane out of equilibrium is denoted f e. The force per unit area from the fluid
to the membrane is f f , with f f + f e = 0 due to the stress continuity. In return, the
force per unit volume exerted by the deforming surface onto the fluid at position x is
ρ(x)= ∫S −f f δ(x− xm)dS(xm)=

∫
S f eδ(x− xm)dS(xm), with δ the Dirac delta function

and xm the integration variable, indicating that the integration is performed on the
membrane surface. We thus need to solve the following equations for the fluid in the
inertialess Stokes regime:

−∇p(x)+µ∇2u(x)+
∫

S
f e(xm)δ(x− xm)dS(xm)= 0, (2.1)

∇ · u(x)= 0, (2.2)

where p and u denote the pressure and fluid velocity and µ is the fluid dynamic
viscosity. Owing to the linearity of the Stokes problem, the flow field can be expressed
as a boundary integral on the surface of the capsule only,

u(x)= u∞(x)+
∫

S
G(x, xm) · f e(xm)dS(xm), (2.3)

where u∞(x) is the velocity field of the undisturbed flow and G(x′, y′) is the free-space
Green’s function of the Stokes problem, also known as the Stokeslet or Oseen–Burgers
tensor,

G(x′, y′)= 1
8πµr

(
δ + (x

′ − y′) (x′ − y′)
r2

)
, (2.4)

with r= |x′ − y′|.
The GGEM method decomposes the force per unit volume ρ(x) into a local part

ρ l(x) and a global part ρg(x), with ρ(x)= ρ l(x)+ ρg(x) and

ρ l(x)=
∫

S
f e(xm)[δ − g(x− xm)]dS(xm), (2.5)

ρg(x)=
∫

S
f e(xm)g(x− xm)dS(xm), (2.6)

where g(x′) is a quasi-Gaussian function used to smooth the Dirac delta function,

g(x′)= (α3
cut/π

3/2
)

exp
(−α2

cut|x′|2
) [

5/2− α2
cut|x′|2

]
, (2.7)

where α−1
cut indicates the length scale over which the smoothing is active.

The Stokes problem in (2.1) is therefore decomposed into two problems: one for
the flow induced by the local force ρ l(x), hence called the local problem, and one for
its global counterpart ρg(x). The velocity field u(x) is the sum of the local velocity
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ul(x) and global velocity ug(x), u(x)= ul(x)+ ug(x). The local problem accounts for
the singular and short-ranged interaction while the global problem accounts for the
smooth and long-ranged interactions. These are solved by different numerical methods;
the local solution is calculated by the BIM due to its superior accuracy in resolving
fast-decaying interactions, while the global problem is handled by a mesh-based solver
that provides geometrical flexibility.

The modified Stokeslet pertaining the local problem can be shown to be

Gl(x′)= 1
8πµ

(
δ + x′x′

|x′|2
)

erfc(αcut|x′|)
|x′| − 1

8πµ

(
δ − x′x′

|x′|2
)

2αcut

π1/2
exp(−α2

cut|x′|2),
(2.8)

so that the velocity field ul(x) of the local solution can be obtained as

ul(x)=
∫

S
Gl(x, xm) · f e(xm)dS(xm). (2.9)

Equation (2.9) can be integrated by classical boundary integral implementations.
Regularized Stokeslets can be used to facilitate the calculations, as done in, among
others, Hernández-Ortiz et al. (2007) and Pranay et al. (2010). Nonetheless, the BIM
with regularization suffers a degradation of the numerical accuracy and robustness
for cases involving strong confinement or closely packed objects. Singular and nearly
singular integration is necessary to achieve the required accuracy in these cases
(Huang & Cruse 1993; Zhu, Lauga & Brandt 2013), and this is the approach pursued
here.

As the modified Stokeslet Gl(x′) decays rapidly, the integral of (2.9) is assumed to
be zero when the distance between x and xm is above a cut-off radius Rcut. We choose
Rcut=4α−1

cut and αcut=a−1 as in the work of Pranay et al. (2010). The alternative value
Rcut = 5α−1

cut has also been tested for some of the cases and no significant differences
have been observed.

The modified Stokeslet Gl(x′) is valid for an unbounded domain, thus the local
velocity ul(x) does not account for the influence of any additional boundaries. The
global velocity will therefore be defined in such a way that the sum of the two will
satisfy the required boundary conditions: no slip at the solid wall Ω in the cases
investigated here, ul(xΩ) + ug(xΩ) = 0. The global problem amounts to solving the
Stokes problem in the domain of interest with the known volume forcing ρg(x) and
boundary conditions defined by the solution of the local problem. This allows the
use of a variety of efficient and accurate numerical methods for the solution of the
Stokes equations in any complex geometry. Here, we compute the global solution with
Stokes module of the open-source Navier–Stokes solver NEK5000 (Fischer, Lottes &
Kerkemeier 2008b), using the spectral element method. NEK5000 has been extensively
used for stability analysis (Schrader et al. 2010) and turbulent flows (Fischer et al.
2008a) in complex domains. Akin to the FEM, the physical domain is decomposed
into elements, with each element subdivided into arrays of Gauss–Lobatto–Legendre
(GLL) nodes for the velocity and Gauss–Legendre (GL) nodes for the pressure
field. The Galerkin approximation is employed for the spatial discretization with
different velocity and pressure spaces, the so-called PN − PN−2 approach (Maday &
Patera 1989). Accordingly, the velocity (respectively pressure) space consists of Nth-
(respectively (N − 2)th-) order Lagrange polynomial interpolants, defined on the GLL
(respectively GL) quadrature points in each element. Note that we do not solve the
Navier–Stokes equations with a very small but finite Reynolds number, but instead
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use the steady Stokes solver of NEK5000 at each time step. NEK5000 is chosen
here for its spectral accuracy, high parallel performance and most importantly its
geometric flexibility, fully exploiting the general-geometry merit of GGEM.

The global problem is solved only on the Eulerian mesh points, which do not
necessarily coincide with the Lagrangian mesh points on the membrane (see figure 1).
Thus, at each time step, an interpolation from the global solution is performed to
obtain the global velocity ug(xi), i = 1, 2, 3, . . . ,M, of the Lagrangian points. The
interpolation error is minimized thanks to the spectral accuracy of NEK5000. The
velocities of the Lagrangian points are obtained by summing up the local and global
velocities. We use a third-order Adam–Bashforth time-integration scheme to update
the position of those points.

2.2.2. Spectral method for the membrane dynamics
The membrane loading was calculated as linear piece-wise functions on triangular

meshes by Pozrikidis (1995), Ramanujan & Pozrikidis (1998) and Li & Sarkar
(2008) among others. FEM has also been implemented by Walter et al. (2010) for its
generality and versatility. Bi-cubic B-splines interpolation functions were adopted by
Lac, Morel & Barthès-Biesel (2007) to obtain accurate results at a reasonably high
computational cost. Alternatively, an accurate spectral boundary element algorithm
was used by Dodson & Dimitrakopoulos (2009), Kuriakose & Dimitrakopoulos (2011,
2013), thus coupling the numerical accuracy of the spectral method and the geometric
flexibility of the boundary element method. Another attractive alternative is the global
spectral method. Fourier spectral interpolation and spherical harmonics have been
used for two-dimensional (Freund 2007) and three-dimensional simulations (Kessler,
Finken & Seifert 2008; Zhao et al. 2010). Here, we follow the approach of Zhao
et al. (2010), briefly outlined below.

We map the capsule surface onto the surface of the unit reference sphere S2, using
its spherical angles (θ, φ) for the parametrization. The parameter space {(θ, φ)|0 6
θ 6π, 0 6 φ 6 2π} is discretized by a quadrilateral grid consisting of GL quadrature
points in θ and uniform intervals in φ. All other surface quantities are defined on the
same mesh. The surface coordinates x(θ, φ) are expressed by a truncated series of
spherical harmonic functions,

x(θ, φ)=
NSH∑
n=0

n∑
m=0

P̄m
n (cos θ)(anm cos mφ + bnm sin mφ), (2.10)

yielding N2
SH spherical harmonic modes. The corresponding normalized Legendre

polynomials are

P̄m
n (x)=

1
2nn!

√
(2n+ 1) (n−m)!

2(n+m)!
(
1− x2

)m/2 dn+m

dxn+m

(
x2 − 1

)n
. (2.11)

Both forward and backward transformations are calculated with the SPHEREPACK
library (Adams & Swarztrauber 1997; Swarztrauber & Spotz 2000). Aliasing errors
arise due to the nonlinearities induced by the membrane model and the complicated
geometry (products, roots and inverse operations needed to calculate the geometric
quantities introduced below). We implement an approximate dealiasing by performing
the nonlinear operations on MSH > NSH points and filtering the result back to NSH
points. A detailed discussion on this issue is provided in Freund & Zhao (2010).
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A point on the surface is expressed by the curvilinear coordinates, (ξ 1, ξ 2)= (θ, φ),
defined on the covariant base, (a1, a2, a3), following the local deformation. The base
vectors are

a1 = ∂x
∂θ
, a2 = ∂x

∂φ
, a3 = n= a1 × a2

|a1 × a2| , (2.12a−c)

and the covariant and contravariant metric tensors

aαβ = aα · aβ, aαβ = aα · aβ, (2.13a,b)

where α, β = 1, 2. The base vectors and metric tensors are also defined for the
undeformed state and denoted here by capital letters (Aα, Aαβ).

The second fundamental form coefficient of the surface is bαβ = n · (∂aα/∂ξ β) and
the two invariants of the transformation I1 and I2 are defined as

I1 = Aαβaαβ − 2, I2 = |Aαβ | |aαβ | − 1. (2.14a,b)

I1 and I2 can also be determined from the principal dilations λ1 and λ2,

I1 = λ2
1 + λ2

2 − 2, I2 = λ2
1λ

2
2 − 1= J2

2 − 1. (2.15a,b)

The Jacobian, Js = λ1λ2, shows the ratio of the deformed to the undeformed surface
area. We compute the in-plane Cauchy stress tensor T , from the strain energy function
per unit area of the undeformed membrane, WS(I1, I2),

T = 1
Js

F ·
∂WS

∂e
· F T, (2.16)

where F is aα ⊗ Aα and e = (F T · F − I)/2 is the Green–Lagrange stain tensor.
Equation (2.16) can be further expressed by components as

T αβ = 2
Js

∂WS

∂I1
Aαβ + 2Js

∂WS

∂I2
aαβ . (2.17)

We employ a widely used model of the strain energy function WS in our study, the
neo-Hookean law (NH) (Green & Adkins 1970) formulated as

WNH
S =

Gs

2

(
I1 − 1+ 1

I2 + 1

)
, (2.18)

where Gs is the surface shear modulus. The local equilibrium connects T with the
external membrane load q, as

∇s · T + q= 0, (2.19)

where (∇s·) is the surface divergence operator in the deformed state. In curvilinear
coordinates, the load vector is written as q= qβaβ + qnn, β = 1, 2. The local balance
in (2.19) is further decomposed into tangential and normal components,

∂T αβ

∂ξα
+ Γ α

αλT
λβ + Γ β

αλT
αλ + qβ = 0, β = 1, 2, (2.20)

T αβbαβ + qn = 0, (2.21)

where Γ β
αλ are the Christoffel symbols.
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We incorporate bending stiffness into our model using the linear isotropic model for
the bending moment M: Mα

β =−GB(bαβ − Bαβ), where GB is the bending modulus, and
bαβ is the mixed version of the second fundamental form coefficients (Bαβ corresponds
to that of the reference configuration). Considering the local torque balance with
bending moments exerted on the membrane, we obtain the transverse shear vector Q
and in-plane stress tensor T ,

Mαβ
|α −Qβ = 0, (2.22)

εαβ(T αβ − bαγMγβ)= 0, (2.23)

where ‘|α’ denotes the covariant derivative and ε the two-dimensional Levi-Civita
tensor. Equation (2.23) determines the antisymmetric part of the in-plane stress tensor,
which is always zero as proved in Zhao et al. (2010). Including the transverse shear
stress Q, the local equilibrium of the stress, including bending, gives

∂T αβ

∂ξα
+ Γ α

αλT
λβ + Γ β

αλT
αλ − bβαQα + qβ = 0, β = 1, 2, (2.24)

T αβbαβ +Qα
|α + qn = 0. (2.25)

2.2.3. Singular and nearly singular integration
In this section, we report the scheme for singular and nearly singular integration

based on the spectral surface discretization. We mostly follow the approach in Zhao
et al. (2010), which is briefly described here for the sake of completeness. We rewrite
the boundary integral equation (2.9) in its general form as

I (x0)=
∫

S
K(x, x0)g(x)dS(x)=

∫
S2

K(x(θ, φ), x0)g (x(θ, φ)) J(θ, φ)dθdφ, (2.26)

where K is one component of the Green’s function kernel, the modified Stokeslet in
(2.8) in our case, g is a smooth function defined in S and J=|(∂x/∂θ)× (∂x/∂φ)| the
Jacobian. If the point x0 is sufficiently far from the membrane surface S, K is smooth
and the integral I (x0) can be computed as

I (x0)=
M=NSH×2NSH∑

k=1

K(xk, x0)g(xk)J(θk, φk)ωk, (2.27)

where ωk is the weight of the kth discretized point. If x0 lies on the boundary S, the
kernel function K(x,x0) becomes singular: in this case, a naive integration using (2.27)
would give low accuracy; this so-called singular integration needs a special treatment.
As x0 is very close to S, K(x, x0) becomes nearly singular, also requiring additional
care. We adopt here the approach denoted as floating partition of unity (Bruno &
Kunyansky 2001). In the singular case, x0 on the surface, we define s(x, x0) as the
contour length along the great circle connecting x and x0 on the reference sphere S2.
This is used to define a mask function η(s(x, x0)),

η(s)=

exp
(

2 exp (−1/t)
t− 1

)
if t= s/scut < 1,

0 if s > scut,

(2.28)
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where scut is a cut-off radius. With the mask function η(s), the boundary integral
I (x0) is decomposed into two parts, a singular part Isingular(x0) and a smooth part
Ismooth(x0):

I (x0)=Isingular(x0)+Ismooth(x0), (2.29)

Isingular(x0)=
∫

S
η(s(x, x0))K(x, x0)g(x)dS(x), (2.30)

Ismooth(x0)=
∫

S
[1− η(s(x, x0))] K(x, x0)g(x)dS(x). (2.31)

The integrand of the smooth part becomes zero when x and x0 coincide so that the
integral can be computed accurately using (2.27). The singular part has non-zero
values only on the spherical patch of radius scut, and it can be integrated using local
polar coordinates defined on that patch,

Isingular(x0)=
∫ 2π

0

∫ scut

0
η(s)K(x(s, ψ), x0)g(s, ψ)J′(s, ψ)dsdψ, (2.32)

where J′(s, ψ) = |(∂x/∂s) × (∂x/∂ψ)| is the Jacobian of the transformation. We
apply Gauss quadrature along the radial direction s ∈ [0, scut] and sum over
the circumferential direction ψ ∈ [0, 2π]. The radius of the patch is chosen to
be scut = π/

√
NSH (see the detailed discussion in Zhao et al. 2010). Because

the quadrature points do not necessarily coincide with the discretization points,
interpolation is needed to obtain quantities such as g(s, ψ). Bi-cubic spline
interpolation is performed here: firstly, we compute g on a uniform mesh in θ

and φ based on the spherical harmonic coefficients; the mesh is then extended from
θ ∈ [0, π] to θ ∈ [0, 2π] exploiting the symmetry g(2π − θ, π + φ) = g(θ, φ); g
is periodic in both directions on the extended domain and its derivatives can be
accurately computed by Fourier transform; we finally construct the bi-cubic spline
approximation using the function derivatives.

For the nearly singular integration, we first find the projection of x0 onto the
membrane surface, xproj

0 , and then compute the boundary integral on the spherical
patch centred at xproj

0 . A sinh transformation is applied in the radial direction in
order to move the quadrature points closer to xproj

0 (Johnston & Elliott 2005), better
resolving the fast-varying Green’s function near xproj

0 .

2.3. Non-dimensionalization
The capsule membrane is characterized by its resistance to shearing and bending. The
capillary number Ca, the ratio of viscous over elastic forces, is defined based on the
surface shear modulus Gs,

Ca= µVC

Gs
, (2.33)

where we use the mean velocity as the characteristic flow velocity VC. The reduced
bending modulus, Cb, is the ratio of the bending and shearing moduli, Cb=GB/a2Gs.
We use the radius of the capsule a as the reference length scale, so that the
characteristic time scale is T = a/VC.
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FIGURE 2. (Colour online) (a) Variation of the deformation parameter D versus time
for an initially spherical neo-Hookean capsule in shear flow. Different values of the
capillary number Ca are chosen. The profile of the capsule in the shear plane is an ellipse
with a long axis Lmax and short axis Lmin; the Taylor parameter quantifying the capsule
deformation is D= (Lmax − Lmin)/(Lmax + Lmin). (b) Same as (a), but with Ca= 0.15 and
different values of the reduced bending modulus Cb.

2.4. Validation
We first introduce the parameters used in the discretization. As mentioned in § 2.2.1,
αcut = a−1 = 1 and Rcut = 4α−1

cut are adopted following the recommendation in Pranay
et al. (2010). Cubic spectral elements of size 1 with 5× 5× 5 GLL points are used
to discretize the fluid domain, where the mean grid spacing hmean= 1/4 well satisfies
the relation αcuthmean 6 0.5 proposed in Kumar & Graham (2012). Rigorous tests are
carried out to be sure that the results are independent of the mesh resolution and the
cut-off radius Rcut, supporting the current choice. For the membrane dynamics, NSH =
24 modes with a dealiasing factor MSH/NSH = 2 are chosen to exploit the geometrical
symmetry.

The tank-treading motion of an initially spherical capsule in homogeneous shear
flow is selected as the first validation case of our implementation. The capsule evolves
into a prolate and reaches a steady deformed shape where the membrane continuously
rotates in a tank-treading fashion. The time-dependent capsule deformation is
measured by the Taylor parameter

D= Lmax − Lmin

Lmax + Lmin
, (2.34)

where Lmax and Lmin are the maximum and minimum dimensions of the capsule in
the shear plane. We display D as a function of time for neo-Hookean capsules with
a varying Ca and no bending stiffness in figure 2(a). Good agreement is observed
between our simulations and those of Pranay et al. (2010).

We next compare cases including bending modulus against the results of Pozrikidis
(2001) and Le (2010), see figure 2(b). The agreement is generally good although small
differences appear when the capsule reaches its equilibrium shape. This is probably
due to the different discretization used to evaluate the high-order derivatives for the
calculation of bending moments. As pointed out by Pozrikidis (2001), his simulations
suffer from ‘significant inaccuracies’ at high capsule deformations; our results agree
very well with theirs in the small deformation regime (around t< 0.5). To verify the
nearly singular integration, we therefore also simulate a capsule with zero bending
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FIGURE 3. (Colour online) Equilibrium profiles of neo-Hookean capsules with different
capillary number Ca in a square duct of size lduct and confinement 2a/lduct = 0.9, Cb =
0. The symbols correspond to the results of Hu et al. (2011) and the solid lines to our
simulations using NSH = 24 modes to represent the membrane surface: ♦, Ca= 0.02; E,
Ca= 0.05;@, Ca= 0.10.

stiffness compressed in a confined square duct, and report excellent agreement with
the data of Hu et al. (2011), see figure 3.

3. Results
We consider an initially spherical capsule located at the centre of the square duct,

as deformable objects tend to move towards the centreline due to the Fåhraeus effect.
We impose the analytical velocity profile of a rectangular duct flow (Spiga & Morino
1994) at the inlet with mean velocity VC. We anchor the centre of the capsule at
(0,−5, 0)a, i.e. 5a away from both the computational inlet and the corner, and release
it after it has reached its equilibrium shape. This distance is large enough for the
interaction between the capsule and the inlet/corner to be negligible during this initial
phase.

We investigate the influence of the capillary number Ca on the dynamics of the
capsule, including its deformation, trajectory, velocity, surface area and principal
tensions. The reduced bending modulus is fixed to Cb = 0.04, unless otherwise
specified. In addition, we examine the influence of the confinement and of the
geometry of the corner.

We note that Cb≈ 0.01 for RBCs, according to Pozrikidis (2005a) and Zhao et al.
(2010). We adopt the larger value Cb= 0.04 to prevent the bulking of membrane that
would easily destabilize the simulations. Luckily, we found the influence of varying
Cb is much weaker than that of varying the capillary number Ca; Cb represents the
relative strength of bending over shearing and its variation from 0.01 to 0.04 accounts
for only 3 % of the shear modulus.

3.1. Square duct flow with a 90◦ straight corner
We begin by investigating the motion of a capsule transported in a moderately
confined square duct (of width Hx = 3a) with a straight corner. Throughout the work,
the cross-section of the vertical and horizontal duct remains the same, Hy ≡Hx.

The background flow in the absence of capsules is referred to as the single-phase
flow and is illustrated in figure 4 in the x–y plane. We show five trajectories (S1–S5)
starting from equally spaced points on the line y = −9a, x ∈ [−1.2, 1.2]a; they are
ordered from the outer to the inner corner so that S3 goes through the centre of the
domain. The velocity magnitude VS(t) is symmetric about t = 0: when the minimum
is reached for S1–S3, a maximum occurs for S4 and S5.
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FIGURE 4. (Colour online) The velocity field pertaining the single-phase flow in a square
duct of width Hx = 3a with a straight corner. The flow field and streaklines are coloured
by their magnitude Vsingle and VS respectively. The streaklines (S1–S5) start from points
equally spaced between (−1.2, −9)a and (1.2, −9)a. VS divided by the maximum flow
velocity is depicted in the inset versus time, where t= 0 corresponds to the time when a
fluid particle crosses the corner symmetry axis.
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FIGURE 5. (Colour online) Trajectories and profiles on the x–y plane of capsules with
capillary number (a) Ca = 0.075 and (b) Ca = 0.35, reduced bending modulus Cb =
0.04 and confinement Hx/a = 3. The shading denotes the initial equilibrium shape. The
curve with circles represents the centroid path. The dash–dotted curve is the centreline
streakline of the single-phase flow. Dash–dotted curves with filled and hollow diamonds
show trajectories of front and rear apices, respectively; dashed curves with squares show
that of left and right apices. The dashed arrows connecting the left and right apices
indicate the rotation of the membrane.

3.1.1. Trajectory of the capsule and membrane rotation
The deformation and trajectories of capsules with Ca = 0.075 and Ca = 0.35

are displayed in figures 5(a) and 5(b), respectively. The centroid trajectory (curve
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FIGURE 6. (Colour online) Time evolution of the velocity of the capsule centre, Vcap,
scaled by the mean velocity VC of the duct in (a), and by the cell velocity at equilibrium
Vequ in (b). The confinement Hx/a=3 and results are shown for capsules with Ca=0.0375,
0.075, 0.15, 0.3 and 0.35 and a reduced bending modulus Cb = 0.04. The shape of the
capsules at the maximum velocity is provided in (b).

with circles) closely matches the middle streakline S3 (dash–dotted curve) and is
almost insensitive to the membrane elasticity. We also mark and trace the four apices
of the capsule from the equilibrium shape. For Ca = 0.075, we identify a clear
rotation by comparing the initial and final positions of the apices. The front and rear
apices initially on S3 follow trajectories (indicated by filled and hollow diamonds
respectively) deviating from S3 significantly; the front/rear apex drifts towards the
outer/inner corner, eventually remaining above/below the centroid trajectory. The
left/right apex starts from the same vertical position and approximately moves along
the streakline S1/S5. These are characterized by a decreasing/increasing velocity
around the corner (see figure 4); as a result, the right apex travels beyond the left,
as shown in figure 5. The material points on the capsule rotate, therefore, in the
anti-clockwise direction. This rotation is induced by the flow near the corner: this
is spatially non-uniform across the duct and the material points near the inner/outer
corner are advected by the accelerating/decelerating flow, which results in a net
membrane rotation. In the case of Ca= 0.35, the membrane rotation is not as clear.
Compared to the case with Ca= 0.075, the right apex is closer to the wall where the
underlying flow is slower, thus compensating the increase of the fluid velocity near
the corner. Hence, the left and right apices are roughly found at the same streamwise
location downstream of the corner.

3.2. Velocity of the capsule
The velocity of the capsule centre, Vcap, scaled by the mean velocity VC is reported
in figure 6(a) as a function of time; the same quantity instead divided by the
equilibrium velocity Vequ, is depicted in figure 6(b), together with the velocity on
the centre streakline S3 of the single-phase flow (cf. figure 4). All capsules move
faster than the average flow velocity, a signature of the Fåhraeus effect. Note that the
equilibrium velocity Vequ, the velocity in a straight duct, decreases slightly with Ca.
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This was also discussed by Kuriakose & Dimitrakopoulos (2011) (figure 8a in their
paper): Vequ increases with Ca as Hx/a= 2.5 but decreases in the less confined case,
Hx/a= 10/3; our simulations with Hx/a= 3 are between the two cases in Kuriakose
& Dimitrakopoulos (2011) and confirm the negative trend of Vequ at low confinement.
The velocity of the capsule is related to the thickness of the capsule–wall lubrication
film; a thinner film induces higher viscous dissipation and thus reduces the capsule
velocity; the thickness of the film when the capsule is slower (Ca = 0.35), is about
93 % that of the fast capsule (Ca= 0.0375).

The velocity of the capsule decreases when approaching the corner and increases
when leaving it, reflecting the behaviour of the background flow; the time histories
reveal a minimum located at t = 0, when the particle centre is on the corner axis.
This minimum velocity decreases with the capillary number Ca; a slightly thinner
lubrication film is observed at the corner axis as Ca changes from 0.35 to 0.075 (see
figure 5). Unlike the underlying flow, the motion of the capsule clearly breaks the
time-reversal symmetry about t= 0, revealing an overshoot during the recovery stage;
this symmetry breaking becomes more evident for higher Ca. This loss of symmetry
is related to the viscoelasticity induced by the fluid–capsule interaction.

We show the shape of the capsule associated with the larger velocity overshoots
(Ca= 0.15, 0.3 and 0.35) in figure 6(b) at the time the peak velocity is attained. A
clear tail-like protrusion is observed for the two largest Ca, due to the streamwise
stretching induced by the background accelerating flow. Such a shape is responsible
for the observed velocity overshoot, as the streamwise membrane extension corresponds
to a decrease of the cross-flow extension of the capsule (its volume must be
conserved). This causes a larger distance between capsule and wall and a reduced
viscous dissipation. Not surprisingly, as the capsule leaves the corner, its vertical
dimension recovers to the equilibrium value and so does the velocity.

The velocity does not converge exactly to its equilibrium value: a maximum
relative difference of around 0.6 % is observed. It would require a prohibitively long
computational domain and integration time to obtain a precise convergence as also
observed by Woolfenden & Blyth (2011); the physics of the final capsule relaxation
is therefore beyond the scope of the present investigation.

3.3. Capsule surface area and deformation
The capsule surface area, A, is used as indicator of the global deformation. This is
reported in figure 7 for the same cases as in figure 6. When the capsule is far away
from the corner, the area maintains the equilibrium value Aequ, an increasing function
of Ca. The area variation Aequ/4πa2− 1 is almost zero for the cases with Ca= 0.0375
and 0.075, whereas it grows to values around 0.1 when Ca = 0.35. As the capsule
travels around the corner, the deformation reaches its peak value and its variation
Apeak/4πa2 − 1 is around 0.2 for the highest Ca investigated.

Ideally, the dependence of the area on the capillary number can be used to deduce
the membrane properties of capsules, as shown by Lefebvre et al. (2008), Chu et al.
(2011) and Hu et al. (2013), who focus on the identification based on deformation.
However, direct measurement of the total surface area is not easy, while it is more
feasible to measure its two-dimensional projection. As a consequence, we display the
projection of the capsule area on the x–y mid-plane in figure 7(b).

The projected area Axy varies with time and cell deformability in a more
complicated way. For the two smallest values of Ca, Axy reaches the minimum
around t = 0 before recovering to the equilibrium value past the corner. The cases
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FIGURE 7. (Colour online) Time evolution of the non-dimensional surface area for the
same capsules in figure 6. (a) Total surface area A/4πa2 and (b) projected area on the x–y
plane Axy/πa2); Aequ and Apeak indicate the equilibrium and peak value of A respectively.
Solid circles indicate the time t|Amin

xy /T when the minimum area Axy is achieved. The inset
of (b) shows t|Amin

xy /T versus Ca.

characterized by Ca = 0.3 and 0.35 display a clear peak in deformation right after
t= 0, with two sharp troughs, one before and one after. This wavy variation is already
visible when Ca= 0.15, although weak. Further examination of the behaviour in the
range Ca ∈ [0.15, 0.3] confirms that the time traces of the area deformation become
more wavy as Ca increases; more elastic material is prone to exhibit more oscillatory
motions under the same excitation, the spatially developing flow here. The inset of
figure 7(b) shows the time t|Amin

xy /T corresponding to the minimum projected area Axy.
This can be regarded as the phase lag of the capsule and it increases almost linearly
with Ca.

3.4. Principal tension on the capsule
The tension developing on the membrane is of great importance since it influences
the release of molecules (Goldsmith et al. 1995) and ATP (Wan, Ristenpart & Stone
2008) by RBCs and causes haemolysis, to cite two examples. We analyse the principal
tension τ P

i (i= 1, 2), to better understand the potential mechanical damage of capsules
passing through a corner. For any definition of strain energy function WS(I1, I2), the
τ P

i are derived as (Skalak et al. 1973):

τ P
1 = 2

λ1

λ2

(
∂WS

∂I1
+ λ2

2
∂WS

∂I2

)
, (3.1)

τ P
2 = 2

λ2

λ1

(
∂WS

∂I1
+ λ2

1
∂WS

∂I2

)
. (3.2)

We consider the major principal tension: max(τ P
1 (x, t), τ P

2 (x, t)) and the isotropic
principal tension (τ P

1 (x, t)+ τ P
2 (x, t))/2; their surface maxima τ P

max(t) and τ PISO
max (t) are

defined as

τ P
max(t)= max

x,i=1,2
(τ P

i (x, t)), (3.3)

τ PISO
max (t)=max

x
((τ P

1 (x, t)+ τ P
2 (x, t))/2), (3.4)

where (t) will be omitted hereinafter for the sake of clarity.
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FIGURE 8. (Colour online) (a) Time evolution of the maximum of the two principal
tensions in the non-dimensional form, τ P
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principal tension respectively. (b) Position and contour of the capsules on the x–y plane
when reaching the maximum major principal tension τ P
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is indicated by light grey/dark grey (red and blue online) for low/high values and its
minimum/maximum position by the circle/square.

The temporal evolution of τ P
max/Gs and τ PISO

max /Gs is shown in figure 8 for capsules
going through a straight corner. For most cases, both quantities increase monotonically
with Ca, reaching the peak values slightly after the corner before relaxing back to the
equilibrium value. The difference between the two tensions is more pronounced at
the corner, τ P

max/τ
PISO
max ≈ 2, and weak in the straight ducts. We also show in the figure

the shape of some capsules when the maximum major principal tension is reached,
with the minimum and maximum of τ P

max indicated by a circle and square respectively.
The maximum of τ P

max develops at the front for the capsules with Ca= 0.0375, 0.075,
while it moves to the top part for Ca= 0.35. Material points are prone to accumulate
at the rear of the capsule and the principal tension is therefore relatively low. As
Ca increases, the rear part of the capsule changes from a convex to concave shape,
something more evident for the case Ca= 0.35.

3.5. The influence of confinement and geometry of the corner
We examine first the influence of confinement on the capsule motion by varying the
width Hx/a from 2.7 to 4. The velocity of the capsule, divided by its equilibrium
velocity, is shown in figure 9 for Ca=0.15. The time-symmetry around t=0 is almost
preserved for the least confined case Hx/a = 4. As the confinement increases, the
symmetry breaking discussed before and the corresponding velocity overshoot become
more apparent. These are associated with a decrease of the minimum velocity at the
corner. As Hx/a varies from 3.5 to 2.7, the velocity overshoot also clearly increases.
The shape of the capsule at the time of maximum velocity is also displayed in the
figure. The capsule with highest velocity is more elongated and has a larger distance
from the wall (lower lubrication friction), in analogy to the observations in § 3.2 for
capsules of different elasticity.
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FIGURE 9. (Colour online) Time evolution of (a) the velocity Vcap/Vequ and (b) the major
principal tension τ P

max/Gs for Ca= 0.15 where the width of the square duct is varied from
Hx/a= 2.7 to Hx/a= 4. The shape of the capsule at the time when the maximum velocity
is attained is also given in (a). The inset of (b) shows the relation between the maximum
major principal tension τ P

max|peak/Gs and the inverse of the duct width a/Hx for Ca= 0.15
and 0.25.

The surface maximum of the non-dimensional major principal tension τ P
max/Gs is

depicted in figure 9(b) for the same cases: τ P
max increases monotonically with the

confinement. The maximum over time of τ P
max|peak/Gs is displayed versus a/Hx for

Ca = 0.15 and 0.25 in the inset of the same figure to show that the peak principal
tension increases linearly with a/Hx. This relationship may be useful to estimate the
mechanical stress on/damage to the cells in micro-fluidic devices during the design
stage.

Finally, we consider a curved corner with inner radius Rc/a = 1. In figure 10 we
compare the principal tensions on the membrane with those in the straight corner for
capillary numbers Ca = 0.075 and 0.3. Except for the isotropic principal tension of
the capsule with Ca= 0.075, the principal tension decreases significantly in the curved
corner.

4. Discussion and conclusion
We investigate the motion of a three-dimensional deformable capsule, whose

membrane obeys the neo-Hookean constitutive relation, in a square duct flow with a
corner. We present in this work a new implementation of the BIM accelerated by the
GGEM, the general-geometry Ewald method, to resolve fluid–structure interactions
at low Reynolds number in complex geometries. The algorithm is coupled with a
spectral method based on spherical harmonics for the membrane dynamics. In this
section, we first discuss the details of the numerical method, followed by a short
summary of the main physical findings.

The GGEM shares similarities with the classic immersed boundary methods (IBM)
(Mittal & Iaccarino 2005). Both approaches require a Lagrangian mesh for the
suspended objects and an Eulerian (typically Cartesian) mesh for the fluid; the Dirac
delta function, representing the localized forcing from the object, is approximated
numerically. In the IBM, the localized force is spread from each Lagrangian point onto
a number of surrounding Eulerian points to enforce the desired boundary conditions
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capsules Ca= 0.075/0.3 through a straight and a curved corner. The curvature radius of
the curved corner is Rc/a= 1. The shape of capsule on the x–y plane is shown when it
reaches the peak τ P

max.

at the fluid/solid interface. The accuracy of IBM degenerates if close hydrodynamic
interactions arise, which may require ad hoc corrections to account for the correct
lubrication forces (Lashgari et al. 2014). As shown in (2.5), the Dirac delta function
is also smeared in the local problem of GGEM, but its singular behaviour can be
solved accurately by boundary integral techniques with singular integration. If a
regularized-Stokeslet technique is instead employed as in Pranay et al. (2010) and
Hernández-Ortiz et al. (2007), the GGEM closely resembles an IBM as proved by
Pranay et al. (2010). Note also that a traditional IBM requires a uniform Eulerian
grid to conserve the moments of the force and sophisticated treatments are needed
to adapt IBM to a non-uniform and/or unstructured grid as done by Pinelli et al.
(2010) and Mendez, Gibaud & Nicoud (2014) among others. One advantage of the
GGEM is that the smoothing of the local forcing is exactly compensated by the
global forcing due to the linearity of Stokes equations. The integral of the force field
and its moments are therefore preserved. Hence, Stokes solvers based on uniform or
non-uniform grids can be readily coupled to the GGEM. In our case, the Eulerian
grid points (GLL points) are non-uniformly distributed as shown in figure 1.

GGEM was originally designed to resolve the hydrodynamic interaction among
multiple particles in Stokes flows. Suppose that there are Np particles and each of
them is discretized into M Lagrangian points, then the total number of points is NpM
and the number of degrees of freedom Nd∼NpM. For traditional non-accelerated BIM,
the number of operations required to form the mobility matrix scales with N2

d . This
poses the major difficulty in applying BIM to a large number of particles. Accelerating
techniques for BIM have thus been developed to overcome this restriction, and
GGEM is one of them. The decomposition of the Dirac delta function into two
parts reduces the number of operations from O(N2

d) to O(Nd) or O(Nd log Nd)
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(Hernández-Ortiz et al. 2007). The modified Green’s function for the local problem
is designed such that the local solution decays exponentially over a distance of about
α−1

cut . Neglecting interactions that occur beyond the cut-off distance Rcut ∼ α−1
cut , the

number of operations for the local solution decreases and scales linearly with Nd.
The scaling of the global problem depends on the mesh-based solver, as well as the
geometry and boundary conditions of the computational domain. The solver used
here, NEK5000, is computationally more expensive than Fourier-based methods such
as those used in Kumar & Graham (2012), but it allows for arbitrary geometries and
is highly parallel.

It is hard to provide a scaling for the global part of the problem in general
geometries; however, the advantage of a numerical approach like that pursued here
relies on two points: (i) GGEM provides a convenient way to reshape the O(N2

d)
long-ranged interactions and pack them into a problem solvable by a mesh-based
solver; (ii) a highly parallel solver is chosen to considerably reduce the computational
time. Note that a naive parallelization of traditional BIM implementations is not
possible for a large Nd due to the prohibitively large amount of memory needed
and poor scalability of the linear system with a dense matrix. It should be noted
that our implementation might be less efficient than traditional BIM for studying the
dynamics of one (as we do here) or a few capsules. This is, however, our first step
in the development of a computational framework for suspensions of deformable/rigid
particles in general geometries.

This numerical approach is used here to examine the motion of a capsule through
a square duct with a corner, focusing on its trajectory, velocity, deformation, total and
projected surface area, and principal tension. We aim to better understand the transient
dynamics of capsules in a micro-fluidic device with realistic geometries.

We study the deformation of the capsules when varying the capillary number, the
ratio of viscous to elastic forces. The capsule trajectories closely follow the underlying
flow and are therefore rather insensitive to how the capsules deform. Due to the strong
confinement, deviations from the underlying streamline require a significant viscous
dissipation. Conversely, the deformability of a capsule closely influences its shape,
velocity and the mechanical stress developing on the membrane as documented in the
results section.

The corner flow can be potentially adopted to infer the material properties of
deformable particles as shown by Lefebvre et al. (2008) and Chu et al. (2011) using
straight tube or channel flows. Unlike these works, transient effects are present in
the flow past a corner because of its spatial inhomogeneity. When the capsule is
far away from the corner, the surface area, velocity and principal tension reach
equilibrium values that are a function of the capillary number Ca. When flowing
around the corner, the membrane area and tension reach their maxima while the
velocity is at its minimum; these extrema are shown here to clearly depend on Ca.
By utilizing a spatially developing flow, the shape and/or velocity of the capsules can
be measured not only at the equilibrium state but also during the transient motions.
More robust and accurate inverse methods may be developed using measurements
of the extrema values. We further note that a new time scale is introduced in the
corner flow, hence the phase lag of the capsule can be identified as illustrated by the
temporal evolution of the projected area (see figure 7b); this quantity indicating the
viscoelasticity of capsule is not accessible from traditional steady flow experiments.
The spatially developing flow provides supplemental information characterizing the
material properties of natural and synthetic cellular structures.

The capsule shape is also closely linked to its velocity. For low Ca, the velocity is
similar to that of the underlying flow, with an almost perfect time-reversal symmetry;
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as Ca increases, i.e. more pronounced deformations, this symmetry is broken and a
velocity overshoot appears past the corner. The streamwise elongation of the capsule
increases the capsule–wall distance, and the corresponding lower viscous dissipation
can explain the higher capsule velocity.

The surface maxima of the major and isotropic principal tension become significantly
different only when the capsule is flowing around the corner. During this time, the
maximum major principal tension appears at the front of capsules for configurations
with low Ca, and shifts towards the outer edge as Ca increases.

We have also examined the influence of confinement and of the geometry of
the corner. We identify a positive correlation between the asymmetry of the velocity
profile and the level of confinement. The peak of the major principal tension increases
linearly with the inverse of the duct width a/Hx. Finally, we show that a curved corner
reduces the major principal tension and the deformation of the capsule. We believe
the present work can improve our understanding of the capsule motion in complex
geometries and support the design of micro-fluidic devices with multiple corners and
branches.
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