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Abstract. We study the motion of an elastic capsule through a microchannel characterized by a localized
constriction. We consider a capsule with a stress-free spherical shape and impose its steady-state configu-
ration in an infinitely long straight channel as the initial condition for our calculations. We report how the
capsule deformation, velocity, retention time, and maximum stress of the membrane are affected by the
capillary number, Ca, and the constriction shape. We estimate the deformation by measuring the variation
of the three-dimensional surface area and a series of alternative quantities easier to extract from experi-
ments. These are the Taylor parameter, the perimeter and the area of the capsule in the spanwise plane. We
find that the perimeter is the quantity that best reproduces the behavior of the three-dimensional surface
area. This is maximum at the centre of the constriction and shows a second peak after it, whose location
depends on the Ca number. We observe that, in general, area-deformation-correlated quantities grow lin-
early with Ca, while velocity-correlated quantities saturate for large Ca but display a steeper increase for
small Ca. The velocity of the capsule divided by the velocity of the flow displays, surprisingly, two different
qualitative behaviors for small and large capillary numbers. Finally, we report that longer constrictions
and spanwise wall bounded (versus spanwise periodic) domains cause larger deformations and velocities. If
the deformation and velocity in the spanwise wall bounded domains are rescaled by the initial equilibrium
deformation and velocity, their behavior is undistinguishable from that in a periodic domain. In contrast,
a remarkably different behavior is reported in sinusoidally shaped and smoothed rectangular constrictions
indicating that the capsule dynamics is particularly sensitive to abrupt changes in the cross section. In a
smoothed rectangular constriction larger deformations and velocities occur over a larger distance.

1 Introduction

Capsules, closed fluid-filled membranes of elastic material,
are a widely accepted model to simulate the hydrodynam-
ical behavior of living cells [1] as well as manufactured mi-
crocapsules and microspheres. Theoretical and numerical
investigations of the dynamics of deformable capsules in
confined flows are motivated by a better understanding of
physiological systems (e.g. the flow in vascular capillar-
ies), and by designing devices for medical diagnostic [2,3],
pharmaceutical, food and cosmetic industry. In this study
we analyze specifically the case of a deformable capsule
transported through a channel characterized by a local-
ized constriction.

Constrictions are common in physiological systems and
their length scales span a wide range. Stenoses form in
the arterial vessels due to the accumulating plague signif-
icantly narrowing the vessels [4]. Red blood cells (RBCs)
go through the slits in the spleen that are smaller than
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1µm. Such tiny constrictions can effectively trap stiff aged
RBCs [5,6], and malaria-affected RBCs, which are less de-
formable than the healthy ones due to the presence of the
parasite; the trapped cells will be attacked by the im-
mune system. In the meantime, the cells going through
the splentic slits are severely deformed and subject to sig-
nificant hydrodynamic and mechanical stresses, which also
serve to get rid of parasites without destroying the infected
cells (a process called “pitting” [6, 7]).

Constrictions are also utilized in micro-fluidic devices
to manipulate cells and their synthetic counterparts. Ex-
periments [8] using confined elastomeric constrictions in-
side microchannels have been performed to characterize
the complex behaviour of healthy and Plasmodium falci-
parum-infected erythrocytes. Smartly designed constric-
tions are introduced into microfluidic devices to differen-
tiate and sort cells by deformability [9–11] by exploiting
the concept that a more floppy cell passes through the
constriction faster than a stiff one, or that different de-
formations lead to different trajectories [11]. In a recent
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study [12], soft particles are driven into a constricted mi-
crocapillary by hydrodynamical pressure, and their elastic
modulus is measured from their deformation.

We remark that deformation through a constriction is
also a key element to understand how Deterministic Lat-
eral Displacement (DLD) type of devices [13] work when
used to sort by deformability [14]. In fact, the flow be-
tween two obstacles, the basic building block of DLD de-
vices, is in all respects similar to the flow through a con-
striction. This problem is also interesting for drug deliv-
ery applications, because it is through deformation in a
shear flow that drugs are trapped in a carrier and then
released. Erythrocytes themselves are good candidates as
carriers [15, 16]. The majority of the methods for the en-
trapment of chemicals, drug, proteins, etc. in erythrocytes
takes advantage of their remarkable capacity for reversible
shape changes and for reversible deformation under stress,
allowing transient opening of pores large enough to be
crossed by externally placed macromolecules.

Given this range of applications, our objective is two-
fold: i) characterize a single capsule behavior in a constric-
tion and ii) determine the relevant quantity to measure
to most efficiently sort by deformability. In other words,
we ask whether it is the velocity, deformation or stress
the most characterizing observable for the behavior of a
capsule flowing through a constriction. This second goal is
relevant if our simple device is used to measure the capsule
properties or sort by deformability. Indeed, sorting can be
achieved by taking images of the cell in a constriction, pro-
cessing them, and opening downstream gates according to
the deformability [17].

Park et al. [18] investigated the transient dynamics
of an elastic capsule flowing in a square microchannel
with a rectangular constriction and have compared it to
that of a droplet: these authors note that the confine-
ment and expansion dynamics of the fluid flow results in
a rich deformation behavior for the capsule, from an elon-
gated shape at the constriction entrance, to a flattened
parachute shape at its exit. In a more recent study, Kuster
et al. address the question of how the constriction width,
container mechanics and external forcing affect the cap-
sule dynamics and determine whether it will get trapped
into the constriction or pass through it and how fast [19].

As a last remark, note that there is a clear mathemati-
cal distinction between capsules and vesicles. Vesicles con-
serve surface area and volume and resist bending, whereas
capsules conserve volume only and resist elastic shear (re-
sistance to bending can be added to the model). Since
capsules resist shear elasticity they are regarded as an ade-
quate model for artificial polymerised capsules and RBCs,
whose membrane is made up of a lipid bilayer coated form
inside by a network of spectrin filaments. In [20], it is
shown that the resistance to shear is responsible for quali-
tatively different behaviours in capillary flow (for example
preventing the prolate to oblate shape transition). We be-
lieve that when studying the motion through narrow con-
strictions resistance to shear should be taken into account
given the large viscous shear stresses that induce large
deformations. Nevertheless there is a wealth of numerical
studies on the motion of vesicles in shear flows which led

to the observation of discocytes and slippers shapes in a
Poiseuille flow [21–23].

Our paper is organized as follows. First, we describe
the mathematical models and the numerical method used
to tackle the problem. Second, we describe the flow ge-
ometry and the initial conditions employed in our calcula-
tions. Finally we present our results, focusing in particular
on the effect of the capillary number and of different ge-
ometries, i.e., longer and asymmetrical constrictions. The
paper ends with a summary of the main findings.

2 Models and geometry

2.1 Mathematical model

Our study is motivated in the context of microfluidic de-
vices and is relevant to applications in medical diagnostic
that involve mechanical characterization and sorting of
cell samples. Typical cell sizes measure few tens of mi-
crometers, while microfluidic devices designed to manipu-
late them have widths of the same order of magnitude, and
characteristic velocities between few µm/s to few cm/s for
single file cell devices [14,24,25]. Given the small sizes and
velocities involved, it is justified to model the fluid flow by
neglecting the inertial effects and by reducing the Navier-
Stokes equations to the linear Stokes equations.

In our study, capsules are regarded as fluid-filled closed
membranes of elastic material that are assumed to be two-
dimensional and isotropic. Their deformations are mea-
sured as the displacements from a reference shape that is
assumed to be spherical with radius ac (note that the de-
bate is open on the possibility that a stress-free spherical
shape is a correct descriptions for red blood cells [26,27]).
We have chosen to describe the capsule through a neo-
Hookean constitutive law according to which the local
strain energy function is

W =
Gs

2

[

I1 − 1 +
1

I2 + 1

]

, (1)

where Gs is the isotropic shear modulus, while I1 = λ2
1 +

λ2
2 − 2 and I2 = λ2

1λ
2
2 − 1 are the two invariants of the

left Cauchy-Green tensor expressed in terms of the eigen-
values, λ1, λ2, of the two-dimensional strain matrix, also
referred to as the principal stretch ratios. This model has
been often used to describe biological membranes, it is ap-
pealing because of its relative simplicity which allows us
to better identify the interplay between the viscous and
elastic forces.

We also employ a linear isotropic model for the bend-
ing moment [28, 29], with a bending modulus Gb =
Cba2

cGs, where Cb = 0.01 is held constant in our simu-
lations; this value is consistent with available experimen-
tal data for RBCs [1]. In our calculations we have verified
that for a capsule that undergoes large deformations in the
constriction (Ca = 0.6) the shearing energy is about ten
times larger than the bending energy. Finally we also as-
sume that the fluid inside and outside the cell has exactly
the same density and viscosity.
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The surface of the capsule is discretized by N points
and moves with the flow obeying no-slip, non-penetrating
boundary conditions. The velocity field displaces the sur-
face of the capsule out of its equilibrium configuration
causing a back-reaction of the membrane to the flow that

enters the flow equation as a forcing term
∑N

j=1 fjδ(x −

xj) at the collocation points xj . Hence the overall flow
field results from the superposition of responses induced
by each single point force (Green functions) acting on the
surface of the capsule and on the walls.

The full set of equations includes the three-dimensional
Stokes equation, the continuity equation for an incom-
pressible flow and the equation to evolve the surface of
the capsule

−∇p + µ∇2
u = −

N
∑

j=1

fjδ(x − xj), (2)

∇ · u = 0, (3)

dxj

dt
= u(xj). (4)

Here p is the pressure, u is the velocity, and µ is the dy-
namic viscosity of the fluid.

The elastic stresses on the surface of the capsule are
given by the two principal tensions, τP

1 and τP
2 , defined

by [30]

τP
1 = 2

λ1

λ2

[

∂W

∂I1

+ λ2
2

∂W

∂I2

]

,

τP
2 = 2

λ2

λ1

[

∂W

∂I1

+ λ2
1

∂W

∂I2

]

. (5)

The dimensionless number that characterizes this
problem is the capillary number, Ca ≡ µU/Gs, where U
indicates the average flow velocity. The capillary number
expresses the ratio between the viscous forces and the elas-
tic forces. Given the same flow conditions, higher capillary
numbers refer to softer capsules.

2.2 Numerical methods

Equations (2) and (3) are solved by a hybrid boundary
Integral-Mesh method, the General Geometry Ewald like
method (GGEM) [1, 31, 32], used in a variety of micro-
multiphase simulations [33–35]. In our implementation,
the mesh-based part (responsible for the long-range part of
the Green’s function) is calculated by the spectral-element
solver NEK5000 [36] which allows us to cope with non-
trivial boundaries. The short-range part is handled by
standard boundary integral techniques.

The advantage of the GGEM method is the follow-
ing. If N is the number of singular point forces present
in the flow, building the mobility matrix according to a
traditional boundary integral method (BIM) requires N2

operations. The total computational cost will have also
to include the operations needed to solve the correspond-
ing linear system. The quadratic scaling comes from the

Fig. 1. Sketch of the various computational domains: channels
with different geometrical constrictions, shown on the z = 0
plane. (a) Sinusoidal symmetric constriction, (b) sinusoidal
asymmetric constriction; and (c) rounded rectangular constric-
tion. The colormap indicates the magnitude of the flow veloc-
ity in the absence of the capsule. The undeformed shape of the
capsule of radius ac = 1, and its initial position are indicated
by the red circle.

fact that the traditional BIM considers the hydrodynam-
ical interactions between every pair of point forces, inde-
pendently of their distance. This scaling makes the BIM
prohibitive to study problems that involve a large number
of particles. In the GGEM scheme, instead, the number
of operations for the local solution scales linearly with N ,
whereas the scaling of the global problem depends on the
mesh-based solver, as well as the geometry and boundary
conditions of the computational domain. The long-ranged
interaction is here solved by a highly parallel Stokes solver
on an Eulerian grid.

We use a spectral discretization based on spherical har-
monics as in [28] to calculate fj given the positions xj ,
i.e. to solve the membrane stress balance. The shape of
the capsule is mapped onto a unit sphere. In most cases,
we use 25 and 50 modes along the latitudinal and longi-
tudinal direction, resulting in a total of 1250 discretized
points. We have shown in [29] that by using 24×48 modes,
we get excellent agreement for a capsule tightly squeezed
in a square-duct, where the diameter D of the undeformed
capsule over the size l of duct is D/l = 0.9. A more de-
tailed description of the numerical algorithm can be found
in [29,37].

2.3 Flow geometry and boundary conditions

We investigate the motion of a three-dimensional elas-
tic capsule passing through a constricted microchannel
(fig. 1). The stress-free shape of the capsule is a sphere of
radius ac. The channel is oriented in the x-direction and is
vertically bounded by walls in the y-direction. Its height
is H = 4ac. Along the spanwise z-direction, whose depth
is D, either periodic (D = 14ac), or no-slip (D = 4ac)
boundary conditions are imposed. The latter corresponds
to a flow in a square duct.
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Table 1. Dimensions of the microchannel for the sinusoidal symmetric (S), the sinusoidal asymmetric (A) and the smoothed
rectangular (R) constriction geometries, plus a symmetrically and sinusoidally constricted duct domain (D). The domain ge-
ometry, dimensions, and notation are sketched in fig. 1 and discussed in the text. Several runs are performed in each of these
geometries for a variety of capillary numbers ranging between Ca = 0.05 and Ca = 0.6.

Geometry S4 S6 S8 A6 R6 D6

Channel length L 28 30 32 30 30 30

Channel depth D 14 14 14 14 14 4

Constriction length l 4 6 8 6 6 6

Constriction position p 1.2 1.2 1.2 2.4 1.2 1.2

Symmetry parameter ȳ 0 0 0 2 0 0

Constriction shape d 2 2 2 2 48 2

A velocity flow profile is imposed at the inlet, no slip
and no penetrating boundary conditions are imposed on
the solid walls and zero-stress boundary conditions, −pI+
µ(∇u + (∇u)T ) = 0, are imposed at the outlet. The inlet
velocity flow profile is the parabolic plane Poiseuille profile
for periodic boundary conditions in z, and the solution for
a square duct from [38] otherwise.

We have studied the motion through a sinusoidal
(fig. 1(a)-(b)), and a rounded rectangular (fig. 1(c)) con-
striction; for the former case an asymmetric (fig. 1(b))
setup with respect to the x-axis is also considered. We
have run simulations for different values of the constriction
length, l, while the constriction width, h, is kept constant:
h = 1.6.

The channel walls are located at yw = ±2, and the con-
striction, centered at x = 0, extends between −l/2 < x <
l/2. The constriction wall ycon is give by a trigonometric
function

ycon = (yw + ȳ)
h

H
+ (yw + ȳ)

×

(

1 −
h

H

)

sind
(

π
x

l

)

− ȳ, x ∈

[

−
l

2
,
l

2

]

, (6)

where l, ȳ and d are parameters. We have performed cal-
culations for a constriction length l = 4, 6, 8. For the sym-
metric and asymmetric case ȳ = 0, 2 respectively, while
d controls the constriction shape and it is d = 2 for the
sinusoidal constriction, and d = 48 for the “rounded rect-
angular” constriction.

The runs in the symmetric sinusoidal constriction are
named by “S”, those in the asymmetric sinusoidal con-
striction by “A”, calculations in the rounded rectangular
constriction are denoted by “R” and those in a duct with
a symmetric sinusoidal constriction by “D”. In the follow-
ing, numbers following capital letters, as found in table 1,
indicate the length of the constriction. The dimensions of
the channel, including the parameters used for the con-
striction shape for all the simulations reported in this pa-
per, are listed in table 1. The velocity magnitude of the
flow in the absence of the capsule is also displayed in fig. 1.

3 Results

We firstly calculate the steady shape of a capsule in an in-
finitely long channel with spanwise periodic boundary con-

ditions or side walls. Simulations are performed for capil-
lary numbers ranging between Ca = 0.05 and Ca = 0.6.
Detailed results are reported only for Ca = 0.05, 0.3, 0.6,
for clarity. The equilibrium shape is used as initial condi-
tion for calculations in the constricted channels.

In most of our computations, the flow is assumed to
be periodic in the spanwise direction and we investigate
the effect of the capillary number and the constriction
geometry (length, shape, and asymmetry, see fig. 1) on
the transient dynamics of the capsule. We later consider
the motion in a spanwise-confined duct for comparison.
We characterize the dynamics in terms of the deforma-
tion of the capsule, velocity of the centroid, and maximum
stresses on the membrane. Various estimates of the capsule
deformation are proposed to facilitate a direct comparison
with experimental results.

3.1 Capsule steady state in a straight channel

The center of mass of the capsule is initially located on
the channel mid-line (y = 0, z = 0), as shown in fig. 1.
Capsules are believed to migrate towards the centerline if
initially offset, which has been systematically observed by
us and other groups [39, 40]. However, a careful analysis
showed that this is not the case for vesicles [41], question-
ing previous believes and suggesting that a more system-
atic investigation should also be undertaken for capsules.
In a simple straight channel the mutual interaction be-
tween the flow and the membrane displaces the latter from
its relaxed shape and deforms it into a steady-state con-
figuration that depends on the capillary number and the
channel width [42]. We show the steady-state deformation
in fig. 2 for Ca = 0.05, 0.3, 0.6. The steady state is nearly
spherical for stiff capsules, whereas, by increasing the cap-
illary number, it develops a front-rear asymmetry and dis-
plays first a bullet-like, and then a croissant-like shape [41,
43, 44]. We refer to the shape as “croissant” rather than
“parachute” following the convention in [41,44] according
to which a “parachute” shape is perfectly axisymmetric.
This is not the case here since the capsule either sees the
periodic boundary conditions in z and the walls in y or
adapts to the duct square cross-section [43,45].

For convenience, we directly perform the steady-state
calculation in a long enough constricted domain: the ini-
tially spherical capsule is centered at the point (−8, 0, 0),
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Fig. 2. Steady-state shapes and magnitude of the principal
isotropic stress (in color) for the motion in a straight channel
of capsules with different capillary numbers: (a) Ca = 0.05, (b)
Ca = 0.3 and (c) Ca = 0.6. The channel is 4ac unit high and
is periodic in the spanwise direction. As the capillary number
increases the capsule develops a bullet like and a croissant like
shape. The stress is larger on the front part, and this is where
rupture may occur.

and is held fixed at that location until the steady state is
achieved. The convergence is set by a tolerance parameter,
toll = 1e−3, imposed on the area variation:

|A(t + 1) − A(t)| < toll,

where t is the dimensionless time expressed in units of
tc = ac/U , the characteristic time scale.

The capsule is anchored 5ac away from both the inlet
and the constriction, as shown in fig. 1. It has been verified
that by doing so, the inlet is not affected by the capsule,
and the capsule in not affected by the flow pattern in the
constriction. The capsule is released once the steady state
is reached.

The choice of using the steady-state shape as initial
condition guarantees that the subsequent transient dy-
namics is solely determined by the presence of the con-
striction, as opposed to being a combination of the con-

0 0.2 0.4 0.6
0

5

10

15

20

Ca

t0

 

 

unconfined

confined

Fig. 3. Dimensionless time needed to converge to the steady
state as a function of the capillary number. Two different span-
wise boundary conditions are considered as listed in the legend:
unconfined or z-periodic boundary condition, and z-confined
boundary condition correspondent to the flow in a square duct.

vergence to a steady state and the dynamics in the con-
striction.

In fig. 3 the time needed to converge to the steady state
is plotted as a function of the capillary number. Softer
and more confined capsules take longer time to reach the
equilibrium. The steady-state area deformation, centroid
velocity, and local maximum isotropic stress for different
capillary numbers are plotted in fig. 4(a)-(c).

The parameter expressing the area deformation A0 is
defined as the ratio between the steady-state surface area
A0 and the stress-free or relaxed initial area, AR, which is
the area of a unit radius sphere,

A0 =
A0

AR

. (7)

The index “0” denotes the steady-state condition. Cap-
sules with larger capillary numbers deform more and tend
to elongate along the central region of the flow where the
velocity is higher. The area A0 increases up to a 5% in our
range of Ca for the periodic domain, and up to a 15% in
the duct. The minimum distance from the wall is almost
unchanged due to the bulging of the rear part for high
Ca; as a consequence, the velocity of the capsule does not
display an appreciable variation, especially in the uncon-
fined case (fig. 4(b)). The velocity slightly decreases with
Ca.

The steady-state principal isotropic stress, τP
0,iso, is de-

fined as the local maximum of the isotropic principal ten-
sion. Hence, if τP

1 and τP
2 are the two components of the

stress,

τP
0,iso = max

x

[

τP
1 (x) + τP

2 (x)

2

]

. (8)

This parameter grows with the capillary number, espe-
cially in the confined case as seen in fig. 4(c).

3.2 Motion in the constriction: Effect of the capillary
number

We first consider the sinusoidal symmetric constriction of
length l = 4, that is, geometry S4 in table 1. In fig. 5 we
show the capsule shape on the z = 0 (first row), y = 0
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Fig. 4. Value of (a) the steady-state fractional change in the
area, A0, (b) velocity of the capsule, V0,cap, and (c) principal
isotropic stress, τP

0,iso, as a function of the capillary number.
We compare the unconfined domain (periodic boundary con-
ditions in z) with the confined case (square duct) as reported
in the legend. These results do not depend on the constriction
geometry since they are calculated for a straight channel/duct.

(second row), x = 0 (third row) plane at different posi-
tions along its trajectory: before entering the constriction
(first column), at the center of the constriction (second
column), exiting the constriction (third column), and well
past the constriction (fourth column). These profiles are
cross-sections of the full 3D shape. We compare the be-
havior of 3 different capillary numbers.

When the capsule approaches the constriction its front
part is affected by the accelerating and converging flow
and adjusts to it through the elongated “triangular” shape
seen in fig. 5(a). The capsule is stretched along the x-axis
in the middle of the constriction (fig. 5(b)), while is com-
pressed along x, but stretched along y, when it exits from
it (fig. 5(c)-(d)). This “rebound” effect is caused by the
rear of the capsule moving faster than the front in the
diverging flow, a mechanism specular to that in a con-
verging flow. It has been verified that the “rebound” ef-

fect occurs earlier for stiff capsules. Observe the concomi-
tant stretching of the capsule in the z-direction (fig. 5(g)).
The steady-state shape is gradually recovered downstream
(fig. 5(d),(h),(l)).

As expected, a soft capsule deforms more than a stiff
one, and for capillary numbers high enough, it retains its
characteristic croissant-like tail all along the trajectory. It
is interesting to observe that the stiff capsule displays a
nearly symmetric deformation in the middle of the con-
striction, see fig. 5(b).

From these first considerations it emerges that the non-
linearity of the problem combined with the different re-
sponse times of the membrane (associated to different cap-
illary numbers), is responsible for a rich variety of dynam-
ical behaviors that distinguish soft and stiff capsules. We
try to characterize them quantitatively in what follows.

The velocity field around the stiffest and softest cap-
sule when the capsule centroid is located about x = 0 is
reported in fig. 6. The maximum velocity is lower in the
case of the stiff capsule, and the velocity profile is flat-
tened inside it, tending to a “solid body” behavior. On
the other hand the velocity distribution appears closer to
the undisturbed flow in the case of the soft capsule, which
expresses the fact that the capsule is more “passively” ad-
vected by the flow. The upstream-downstream symmetry
of the flow appears to be broken more clearly for the stiff
capsule.

The fractional change in area, A, defined by

A(t) =
A(t)

A0

, (9)

where A(t) is the time-varying surface area of the cap-
sule, is constant far away from the constriction as seen
in fig. 7. This quantity starts increasing shortly before
the capsule enters the constriction, reaches a maximum at
x = 0, and decreases before displaying a second local max-
imum which breaks the upstream-downstream symmetry.
The first maximum is reached about x = 0 for all the cap-
illary numbers since it is associated with the minimum
width of the channel. However, the position of the second
maximum is shifted to the right as the capillary number
increases. One may hypothesize that the second maximum
is due to the above mentioned rebound effect or stretch-
ing in the y-direction. However, we have verified that this
hypothesis holds only for small capillary numbers.

We next examine the membrane relaxation past the
constriction. The stiff capsule recovers the steady-state
configuration within our computational domain, while
soft capsules (Ca = 0.3, 0.6) do not. Nevertheless, we
have estimated the x-position where a 99% recovery of
the steady-state area is expected by fitting the decay of
A from x = xpeak

2
,j + 0.7 with a function f : x �→

aj exp(bjx) + cj exp(djx), where j refers to the capillary
number and xpeak

2
indicates the position of the second

peak (see fig. 7(b)). As shown in the inset of the fig-
ure, the relaxation time grows with Ca and saturates for
Ca > 0.45.

Since it is difficult to measure the surface area varia-
tion experimentally, we estimate the deformation through



Eur. Phys. J. E (2015) 38: 49 Page 7 of 13

−3 −2 −1 0
−2

−1

0

1

2

x

y

(a)

−2 0 2
−2

−1

0

1

2

x

y

(b)

0 1 2 3
−2

−1

0

1

2

x

y

(c)

1 2 3 4 5
−2

−1

0

1

2  

x

 

y

0.05

0.3

0.6

(d)

−3 −2 −1 0
−2

−1

0

1

2

x

z

(e)

−2 0 2
−2

−1

0

1

2

x

z

(f)

0 1 2 3
−2

−1

0

1

2

x

z

(g)

1 2 3 4
−2

−1

0

1

2

x

z

(h)

−2 0 2
−2

−1

0

1

2

z

y

(i)

−2 0 2
−2

−1

0

1

2

z

y

(j)

−2 0 2
−2

−1

0

1

2

z

y

(k)

−2 0 2
−2

−1

0

1

2

z

y

(l)

Fig. 5. Shape of the membrane on the z = 0 (top row), y = 0 (mid row), and x = 0 (bottom row) plane for a capsule (a),(e),(i)
approaching the constriction, x = −1.5; (b),(f),(j) in the center of the constriction, x = 0; (c),(g),(k) exiting the constriction,
x = 1.5; and (d),(h),(l) after the constriction, x = 2.5, for the capillary numbers reported in the legend.

different quantities more readily accessible from experi-
mental data. These are the Taylor parameter, the perime-
ter and the area of the capsule on the x-y plane. Our aim
is to answer the question reported above: “what is the
most relevant quantity to measure to efficiently differenti-
ate and sort cells by deformability?”, and to favor direct
comparisons with experimental results.

Our visualizations reveal that despite the deformation
along the z axis is not negligible, it is about four times
smaller than the deformation in the x direction. Hence,
it is acceptable to characterize the dynamics by analyzing
the behavior on the x-y plane. We attempt to quantify
the anisotropy of the capsule shape on the z = 0 plane by
using the Taylor parameter:

θ = (Lx − Ly)/(Ly + Lx), (10)

where Lx and Ly are the sizes, in the x and y direction, of
the rectangle in which the capsule can be inscribed. The
parameter is zero if the capsule is perfectly circular. This
quantity, plotted in fig. 8(a), reveals that stiff capsules
have a low degree of anisotropy in the constriction but at

the same time undergo the largest rebound downstream
(lowest negative value). This may sound counterintuitive
since we expect stiff capsules to deform less, however the
effect is clearly visible in fig. 5(c) and (d).

The projected area of the capsule on the z = 0 plane,
Axy, behaves markedly differently from A, fig. 8(b). It dis-
plays a minimum, whose exact position depends on Ca,
about the center of the constriction. On the contrary, mea-
surements of the perimeter, P, on the same plane mimic
quite reliably the behavior of A, see fig. 8(c). This is con-
firmed by the inset in fig. 8(c), where the positions of
the two maxima for P and A (the one in x = 0 and
the second peak) are compared by defining the param-
eter δxj = |x(maxj A)− x(maxj P)|, where j = 1, 2 refers
to the first and second maximum. We also note that there
is not such a consistent correspondence between the max-
ima of A and those of the Taylor parameter: in the in-
set of fig. 8(a), we show δx1 = |x(max1 A) − x(max θ)|,
and δx2 = |x(max2 A) − x(min θ)|, since the variable θ
does not have a second maximum but displays a minimum
instead.
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Fig. 6. Shape of the membrane (red) in the center of the con-
striction, for (a) Ca = 0.05, and (b) Ca = 0.6, the magnitude
of the velocity (blue scale), the stream lines (black), and the
velocity vector scaled by the velocity magnitude (dark blue)
are displayed.

Next, the velocity of the capsule, Vcap, is examined.
Since in these simulations the capsule is located on the
channel midline, there is no migration velocity in the y
and z direction. The capsule moves faster than the cross-
section averaged flow velocity (Vcap > 1), accelerating
and decelerating with the flow inside the constriction, see
fig. 9(a). The velocity is maximum in x = 0. The softer
is the capsule, the faster it is in the constriction. This
might be simply explained by the fact that soft capsules
stretch more around the mid-plane of the channel (fig. 5),
thereby, given the background fluid velocity profile, their
membrane is advected by larger velocities. The velocity
decreases when the capsule leaves the constriction.

Observe that despite capsules with Ca = 0.3 and
Ca = 0.6 deform quite differently (figs. 5, 7), their velocity
is very similar (fig. 9(a)). This can be possibly explained
by the fact that the velocity is related to the minimum dis-
tance from the wall, ε, which occurs at the front for both
capsules. The front shape is very similar for high capillary
numbers, in fact, the difference in deformation between
Ca = 0.3 and Ca = 0.6 is localized on the rear part which
develops the typical croissant-like tail. The behavior of the
maximum velocity as a function of the capillary number is
shown in the inset of fig. 9(a). The steep increase for small
capillary numbers is followed by a plateau for Ca > 0.3.
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Fig. 7. (a) Evolution of the fractional change in area of the
capsule, A, for different capillary numbers as reported in the
legend. (b) Exponential fitting (circles) to the fractional change
in area decay toward the recovery of the steady state. We fit the
curves to estimate where a 99% recovery is achieved. The inset
shows the recovery position in x versus Ca (in dash dark green)
and the position of the second peak versus Ca (in solid blue).

We observe that for the stiffest capsule (Ca = 0.05),
a second maximum appears shortly after the first one,
suggesting that a qualitatively different behaviour distin-
guishes stiff from soft capsules. This difference is more
clearly observed if the velocity of the capsule is rescaled
by the local average flow velocity Vf (x):

φV =
Vcap

Vf

. (11)

The ratio φV is displayed in fig. 9(b): it is maximum im-
mediately before and after the constriction and minimum
at its center. In fact, although the capsule is stretched
in this location, it occupies relatively more space in the
constriction than in the straight channel, the distance be-
tween the wall and the capsule membrane is smaller, and
the lubrication force is larger. As a result of its limited
deformability and quick response time, the stiffest cap-
sule (Ca = 0.05) relaxes and stretches in y when it is still
exiting the constriction; this causes its membrane to ap-
proach the diverging walls and slow down with respect to
the flow, since ε suddenly decreases. This possibly explains
the local minimum observed in fig. 9(b).

In fig. 10 we check how the capsule velocity is related
to the minimum distance, ε, between the membrane and
the wall of the constriction. The data are taken at the
center of the constriction. The dependence is not linear,
as hypothesized in [18]. Less deformed capsules get closer
to the wall than soft capsules.
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Fig. 8. Taylor parameter (a), area (b), and perimeter (c) of
the capsule, measured on the cross section z = 0 along the cap-
sule trajectory for different capillary numbers. The inset of (a)
shows the distance in x between the first maxima of A and θ,
δx1, and the second maximum of A and the minimum of θ, δx2,
as a function of the capillary number. The inset of (c) shows
the distance in x between the first maxima, δx1 and the second
maxima, δx2, of A and P as a function of the capillary number.

We summarize the results obtained so far in fig. 11,
where the values at x = 0 of the minimum distance from
the wall, ε, the velocity of the centroid of the capsule, and
the area and the perimeter on the z = 0 plane are plotted
as a function of the capillary number and are compared
with the retention time tc inside the device measured from
x = −8 (at the release time) to x = 8. All the quantities
are rescaled by their values at Ca = 0.6. In relative terms,
ε displays the greatest variation between stiff and soft cap-
sules, however, it plateaus for large Ca making it difficult
to distinguish the behavior in this range. On the other
hand, the perimeter grows linearly for the entire capil-
lary number range, which makes it the most convenient
parameter to distinguish capsules by deformability. The
retention time of the capsule, tc, decreases as the capil-
lary number increases by about a 3%, which is expected
given the larger velocities of soft capsules. This fact may
be exploited to distinguish capsules by deformability at
low capillary numbers if the difference is amplified, for
example, by an array of constrictions.
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Fig. 9. (a) Velocity of the capsule rescaled by its initial value,
Vcap, as a function of the capsule centroid position for different
capillary numbers; the inset shows the maximum velocity ver-

sus the capillary number; (b) velocity of the capsule rescaled
by the local flow velocity, φV , for different capillary numbers
as reported in the legend.
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Fig. 10. Velocity of the capsule, Vcap(0), as a function of the
minimum distance from the wall, ε(0) measured at the center
of the constriction.

We observe that, in general, area-deformation-
correlated quantities (P) grow linearly with Ca, while
velocity-correlated quantities (Vcap, ε, tc) saturate for
large Ca but display a steeper increase for small Ca. When
comparing the quantities in absolute terms we see that ε
varies between 0.22 to 0.44 (100% increase) while P be-
tween 6.25 to 8.35 (33% increase).

We finally analyse the stress on the capsule membrane
along the constricted channel. In fig. 12 we plot the major
principal tension:

τP
maj(t) = max

x

[

τP
1 (x, t), τP

2 (x, t)
]

and the isotropic principal tension

τP
iso(t) = max

x

[

τP
1 (x, t) + τP

2 (x, t)
]

/2,

divided by their steady-state values.



Page 10 of 13 Eur. Phys. J. E (2015) 38: 49

0 0.2 0.4 0.6
0.4

0.6

0.8

1

Ca

 

 

ε(0)
Vcap(0)
A xy (0)

(0)
tc

Fig. 11. Summary of the results obtained so far for the quan-
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rescaled by their value at Ca = 0.6.
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Fig. 12. Evolution of (a) the principal major stress, τP
maj, and

(b) the principal isotropic stress, τP
iso, rescaled by their initial

value, for the capillary numbers reported in the legend. The
inset shows their maximum value versus the capillary number.

Opposite to the behavior of the fractional change in
area, A, the stress of soft capsules is lower, in relative
terms, as shown both by τP

maj and τP
iso. The stiffest cap-

sule (Ca = 0.05), which has a steady-state shape very
close to a sphere, has an initial principal isometric and
principal major stress very close to zero. Moreover, we
can clearly notice that soft capsules take a longer time to
recover their initial stress. The inset shows that the dimen-
sionless major and isotropic tensions (τP

maj/Gs, τP
iso/Gs) at

x = 0 decrease with the capillary number.

3.3 Effect of the constriction geometry

Finally, the sensitivity of the capsule transient dynamics
to the constriction geometry is investigated by studying
the capsule deformation and the variation of the centroid
velocity in different geometries.
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Fig. 13. (a) Evolution of the fractional change in area for a
capsule with Ca = 0.3, and, as an inset, maximum of the frac-
tional change in area versus the capillary number for different
constriction lengths as reported in the legends. (b) Evolution
for Ca = 0.3, of the capsule centroid velocity, Vcap, and as
an inset, maximum of the capsule velocity versus the capillary
number for the constriction lengths reported in the legend.

First, the effect of varying the constriction length, l,
is considered by studying the motion in two longer con-
figurations, S6 and S8 (see table 1). It emerges that the
evolution of the fractional change in area, A, is affected
by l, (fig. 13(a)). In order to directly compare the different
cases, the deformation is plotted as a function of a dimen-
sionless coordinate, xl = 2x/l so that the start and end
of the constriction are located at xl = ±1. The deforma-
tions are larger in S6 and S8 than in S4 although the flow
acceleration/deceleration is smoother in the longer geome-
tries. For l large enough, we expect the capsule to reach
a new steady state inside the constriction, characterized
by larger deformations. In longer constrictions, the mini-
mum and the second maximum of A are less pronounced,
likely because the section area varies more gradually. Note
also that in the geometry S4 the capsule seems to feel the
effect of the constriction from an earlier to a later stage,
probably because the acceleration in the converging part
is stronger and the time spent in the constriction is shorter
than the membrane relaxation times.

The inset in fig. 13(a), which displays the maximum of
the fractional change in area versus the capillary number,
confirms greater deformations for longer constrictions. It
also shows that the differences in deformation are more ev-
ident for soft capsules. It is interesting to note the similar-
ities between the inset of fig. 13(a) and fig. 6 in [46], where
the capillary number is plotted versus the vesicle excess
area. Since stiff capsules deform more quickly, one would
be tempted to say that the stiffest capsule (Ca = 0.05)
reaches an equilibrium shape even in the shortest constric-
tion S4. In fact, its deformation seems to be independent
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tries as reported in the legend.

of the constriction length. Interestingly, this is not the
same for the velocity, which differs at small Ca (fig. 13(b)
inset). Hence, apparently negligible deformations may be
rather and more simply attributed to the stiffness.

The behavior of the capsule velocity, Vcap, depends on
the length of the constriction as seen in fig. 13(b). The
capsule velocity is larger in longer constrictions because
the membrane has more time to deform and localize in
the centre of the channel. The inset in fig. 13(b), which
displays the maximum of the velocity, V max

cap , versus the
capillary number for different constriction lengths, shows
that the maximum velocity increases with the capillary
number from 0.05 to 0.3 and is roughly constant for capil-
lary numbers between 0.3 and 0.6; the maximum velocity
is higher if the constriction is longer, and the same qual-
itative behavior is observed as a function of the capillary
number for the three different geometries.

We finally analyse the effect of different constriction
shapes: an asymmetrical constriction, A6, a rectangular
constriction, R6, characterized by a sharper reduction of
the cross section, and the flow in a constricted square duct,
D6, as reported in table 1 and fig. 1. Figure 14 displays the
evolution of the fractional change in area and the veloc-
ity for the different geometries compared to the reference
case S6. In the asymmetric constriction A6, the capsule is
displaced from the mid plane of the channel, since it has
to pass through the “chicane” shaped by the asymmetry,
and it stretches slightly more than in a symmetrical con-
striction of the same length. We can thus conclude that
asymmetrical constrictions are more efficient in deforming
capsules than symmetrical ones. The difference in defor-

mation between A6 and S6 over the range of capillary
numbers is confirmed by the inset of fig. 14(a). Interest-
ingly, however, the velocity of the capsule in the asym-
metrical constriction does not differ much from that of
the reference case S6 as shown by the inset in fig. 14(b).

The confinement in a square duct does not appear to
considerably affect the dynamics in relative terms, in fact,
both the fractional change in the area and the velocity
of the capsule (scaled by their initial value) are similar
for case S6 and D6, cf. fig. 14(a)-(b). We notice however
small differences in the second maximum of the area and
the velocity. As a result of the confinement, the capsule
is not free to deform in the z direction (geometry D6),
and the flow is more affected by the presence of the cap-
sule than for the case in a quasi-twodimensional geom-
etry. Indeed, the non-rescaled quantities reported in the
insets of fig. 14(a)-(b) differ considerably between S6 and
D6. The velocity in the square duct is higher, due to the
confinement.

Remarkable differences are observed also for the
rescaled quantities when comparing the behavior in the
rectangular constriction R6: the deformation is larger and
experienced for longer times; the capsule moves faster as
noted earlier for the case of longer constrictions. These
effects can be explained by the fact that the capsule is
exposed to the faster flow in the constriction over a longer
distance.

4 Conclusion and outlook

We have studied the motion of a deformable capsule
through a constricted microchannel and quantified, in par-
ticular, how the capsule deformation, velocity, retention
time, and the maximum stress of the membrane are af-
fected by the capillary number and the constriction shape.
The capsule stress-free configuration is a sphere of unit ra-
dius. Simulations are performed for capillary numbers be-
tween Ca = 0.05 and Ca = 0.6. Our study is motivated in
the context of microfluidic devices and is relevant to ap-
plications in medical diagnostic that involve mechanical
characterization and sorting of cell samples.

We first calculate the equilibrium shape of a capsule
in an infinitely long channel with spanwise periodic or no-
slip boundary conditions and use it as initial condition for
calculations in constricted channels. This guarantees that
the dynamics of the capsule is solely affected by the geom-
etry of the domain, instead of being also influenced by the
convergence to a steady state. The steady state is nearly
spherical for stiff capsules, whereas it develops a front-
rear asymmetry and displays first a bullet-like, and then
a croissant-like shape by increasing the capillary number.
The stress is larger on the front part, and this is where
rupture may occur. These results confirm the findings of
previous studies.

The capsule moves faster than the cross-section aver-
age flow velocity accelerating and decelerating with the
flow inside the constriction. The velocity is maximum at
the center of the constriction. The softer is the capsule,
the faster it is in the constriction.
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The nonlinearity of the problem combined with the
different response times of the membrane (defined by the
capillary numbers), is responsible for a rich variety of dy-
namical behaviors. To mention some of them: i) the vari-
ation of the surface area and maximum stresses as the
capsule moves through the constriction are not symmet-
ric with respect to the constriction (streamwise) mid point
x = 0, rather a second peak appears past the constriction
whose location depends on the Ca number; the larger is
Ca, farther downstream the peak is located; ii) a sim-
ilar dependence on the capillary number is observed in
the relaxation time necessary for the capsule to restore its
steady-state past the constriction; iii) the behavior of the
velocity of the capsule centroid along the capsule trajec-
tory displays a qualitatively different behavior for small
Ca, which consists in the appearance of a second peak
past the constriction.

We estimate the deformation by measuring the vari-
ation of the three-dimensional surface area and a series
of alternative quantities that we imagine easier to extract
from experiments. These are the Taylor parameter, the
perimeter and the area of the capsule in the x-y plane. Our
aim is to identify an observable to measure experimentally
to efficiently distinguish capsules by deformability. We re-
port that the perimeter is the quantity that reproduces
the behavior of the three-dimensional fractional change in
area the best, followed by the Taylor parameter, while the
area of the capsule in the x-y plane has a markedly differ-
ent behavior. Hence, in conclusion, if the variation of the
surface area cannot be easily measured, the perimeter in
the x-y plane is a valid alternative.

We find that the velocity at the center of the con-
striction and the retention time are adequate parame-
ters to distinguish capsules with “low” capillary numbers
(0.05 � Ca � 0.3), while large capillary numbers are more
clearly distinguished by the deformability and perimeter
on the x-y plane at the center of the constriction. This is
because the velocity plateaus for Ca � 0.3 while the max-
imum deformation still grows linearly. The reason of this
different behavior is the fact that the velocity is related to
the minimum distance from the wall, which stabilizes for
high capillary numbers, while the deformation grows lin-
early in the entire range of our calculations, and for high
capillary numbers it is associated to the transition from
the convex to the concave shape of the capsule rear part
and the appearance of the typical “croissant-like” shape.
On the other hand, the minimum distance from the wall
is always measured at the front for soft capsules, and the
front shape is very similar for high capillary numbers, all
the changes occurring on the rear part.

Finally, we have observed that longer constrictions and
z-confined (versus z-periodic) domains cause larger defor-
mations and velocities. Interestingly, if the deformation
and velocity in z-confined domains are rescaled by the
equilibrium shape deformation and velocity, their behav-
ior is undistinguishable from that in a z-periodic domain.
In contrast, a remarkably different behavior is reported in
sinusoidal and smoothed rectangular constrictions indicat-
ing that the capsule behavior is particularly sensitive to

abrupt changes in the cross section. In a smoothed rectan-
gular constriction larger deformations and velocities occur
over a larger distance.

We hope that our numerical calculations will serve as
a reference for future experiments, to validate the model
of membrane dynamics and the effects of the viscosity in
the membrane model.
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