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We perform interface-resolved simulations of finite-size evaporating droplets in weakly
compressible homogeneous shear turbulence. The study is conducted by varying three
dimensionless physical parameters: the initial gas temperature over the critical temperature
Tg,0/Tc, the initial droplet diameter over the Kolmogorov scale d0/η and the surface
tension, i.e. the shear-based Weber number, WeS . For the smallest WeS , we first discuss the
impact on the evaporation rate of the three thermodynamic models employed to evaluate
the gas thermophysical properties: a constant property model and two variable-properties
approaches where either the gas density or all the gas properties are allowed to vary.
Taking this last approach as reference, the model assuming constant gas properties
and evaluated with the ‘1/3’ rule is shown to predict the evaporation rate better than
the model where the only variable property is the gas density. Moreover, we observe
that the well-known Frössling/Ranz-Marshall correlation underpredicts the Sherwood
number at low temperatures, Tg,0/Tc = 0.75. Next, we show that the ratio between the
actual evaporation rate in turbulence and the one computed in stagnant conditions is
always much higher than one for weakly deformable droplets: it decreases with Tg,0/Tc
without approaching unity at the highest Tg,0/Tc considered. This suggests an evaporation
enhancement due to turbulence also in conditions typical of combustion applications.
Finally, we examine the overall evaporation rate and the local interfacial mass flux at higher
WeS , showing a positive correlation between evaporation rate and interfacial curvature,
especially at the lowest Tg,0/Tc.
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1. Introduction

The understanding of droplets evaporation in turbulent flows is a crucial aspect in many
different contexts, such as geophysics and spray combustion to name a few. In the first
example, evaporation is central for the formation and evolution of clouds and, more in
general, in many of the grand challenges of environmental fluid mechanics (Dauxois
et al. 2021). In the second example, droplet evaporation is a precursor of combustion;
ensuring that all the liquid vaporizes before chemical reactions occur is fundamental to
minimize the pollutants formation and to maximize the efficiency of the entire process
(Birouk & Gökalp 2006). More recently, evaporation in turbulence acquired a prominent
role also in our understanding of the fluid dynamics aspects of COVID-19 spreading (e.g.
droplet generation due to exhalation and airborne dispersion) as described in Mittal, Ni &
Seo (2020), Balachandar et al. (2020), Bourouiba (2021). Therefore, several studies have
been conducted to understand how relative humidity affects evaporation and condensation
(Rosti et al. 2020; Chong et al. 2021; Ng et al. 2021) as well as on the interaction between
droplets and turbulent flows (Bourouiba 2020; Rosti et al. 2021) with the ultimate goal of
improving social distancing guidelines.

Historically, evaporating droplets in turbulence have been the subject of numerous
and extensive experimental campaigns which have mainly focused on the flow topology
inside the droplets (Wong & Lin 1992; Mandal & Bakshi 2012), on the interaction
between droplet dispersion and vapour clouds structure (De Rivas & Villermaux 2016;
Villermaux et al. 2017; Sahu, Hardalupas & Taylor 2018) and on evaporation enhancement
of super-Kolmogorov (i.e. finite-size) droplets (Marti et al. 2017; Verwey & Birouk
2018, 2020). On the computational side, the most common approach has been the point
particle method (Kuerten 2016; Maxey 2017) for the studies of sub-Kolmogorov droplets
in different flow configurations, i.e. forced homogeneous isotropic turbulence (Mashayek
1998a; Weiss, Meyer & Jenny 2018), homogeneous shear turbulence (Mashayek 1998b;
Weiss et al. 2020), turbulent channel flow (Bukhvostova et al. 2014; Russo et al. 2014)
and turbulent jets (Reveillon & Demoulin 2007; Wang, Dalla Barba & Picano 2021). The
main limitation of this approach is represented by the inherent need of empirical closure
equations to model the mass, momentum and energy coupling between the disperse and the
continuous phase. This feature limits their rigorous applications only to sub-Kolmogorov
droplets (Elghobashi 2019) and hinders the possibility to investigate directly aspects such
as the reciprocal influence of nearby droplets (Lupo et al. 2020; Chong et al. 2021) or
the evaporation enhancement due to turbulence (which typically occurs for droplets of
the order of the Taylor length, Birouk & Gökalp 2006). Moreover, assessing the impact
of droplets deformation on the evaporation rate as well as the local interfacial mass flux
distribution over the droplet surface is not possible, unless further models are introduced.
On the other hand, less work has been dedicated to numerical simulations of droplets
larger than the Kolmogorov scale and the only few works available consider homogeneous
isotropic turbulence (HIT). Specifically, in Albernaz et al. (2017) the authors studied
by means of a hybrid lattice Boltzmann method the deformation and heat transfer of a
single droplet with a diameter between 25η and 40η, with η the Kolmogorov length. In
this set-up, however, little can be said about the mass transfer because evaporation and
condensation compensate for a statistically constant droplet volume. Recently, Dodd et al.
(2021) employed a geometric volume of fluid (VoF) method to study the evaporation of
droplets at different volume fractions (0.01 % ≤ α ≤ 1 %) with an initial droplet diameter
ranging between 4η and 17η, in order to highlight the limitations of point particle closures
for the calculation of the evaporation rate and the semi-empirical correlations of the
Sherwood number in absence of mean flow and for non-isolated droplets.
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Finite-size evaporating droplets in HST

The limited number of studies and the need of further understanding of such a complex
process motivates us to further investigate finite-size evaporating droplets in homogeneous
shear turbulence (HST). As noted in Kasbaoui et al. (2017), this configuration can
be regarded as one of intermediate complexity between homogeneous isotropic and
non-homogeneous flows and it represents a particularly convenient set-up for two reasons.
First, it allows us to study shear flows without the complications induced by the presence
of the walls. Next, given the intrinsic production of turbulent kinetic energy by the mean
shear, turbulence is self-sustained without any external forcing and the flow achieves
a statistically stationary condition (SS-HST) (Pumir 1996; Sekimoto, Dong & Jiménez
2016). The SS-HST has been recently considered in multiphase flows, e.g. in Rosti
et al. (2019b) for emulsions and in Tanaka (2017), Yousefi, Ardekani & Brandt (2020)
for turbulence modulation by rigid particles of different shapes. In both cases, the
characteristic length of the disperse phase was chosen larger than the Kolmogorov scale.

In the current study we therefore consider finite-size evaporating droplets in SS-HST,
assuming an incompressible liquid surrounded by a compressible gas phase at higher
temperature. The initial size, ranging between 10.5η and 21.5η, is chosen to focus on
evaporation enhancement by turbulence (Verwey & Birouk 2020) and to elucidate the
effects of the interface deformation. This last aspect is less discussed in literature and, so
far, the spherical assumption has been invoked to describe the droplet shape also in fully
resolved simulations (Lupo et al. 2019, 2020). Given the large parameter space which
characterizes evaporating flows, here we focus on changing the ratio between the droplet
initial diameter and the Kolmogorov scale (d0/η), the surface tension and the initial gas
temperature. Moreover, in all cases, to study the isolated droplet behaviour, we consider
a small initial liquid volume fraction, α0 = 0.14 %, corresponding to five droplets. The
resulting parametric study aims at addressing the following questions.

(a) What is the level of approximation of the estimated evaporation rates when the gas
thermophysical properties are assumed constant?

(b) What are the effects on the evaporation rate and on the liquid temperature of
the droplet size? Moreover, how does the ratio K/K0 (actual evaporation rate in
turbulence over the evaporation rate in stagnant conditions) changes when increasing
the gas temperature in conditions relevant for combustion applications?

(c) How does the interface deformation affect the evaporation rate and does the local
interfacial mass flux correlate with changes in the droplet shape?

To investigate this complex phenomenon numerically, we propose a new VoF method for
evaporating flows in weakly compressible homogeneously sheared turbulence, extending
the algorithm in Scapin, Costa & Brandt (2020). The tool addresses the two main issues
arising when performing this kind of simulation with more realistic and challenging
conditions. First, as already remarked in Kasbaoui et al. (2017), numerical simulations
in HST are demanding even in single phase since the commonly employed multistep
time-integration schemes (e.g. Adams–Bashforth and Runge–Kutta), if employed in their
classical formulation, are weakly unstable and, therefore, not adequate for long-time
simulations. Next, since the HST computational domain does not possess any outflow
boundary, a rigorous description of the two-phase evaporating system requires a
compressible formulation that allows the thermodynamic pressure to vary with the state
variables. To address the first issue, we present a modified version of the Adams–Bashforth
scheme which recovers the analytical solution of Kelvin modes in the limit of the rapid
distortion theory (RDT) (Maxey 1982) and, overall, ensures a stable integration over long
times. The second issue is addressed by deriving and presenting a new mathematical
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formulation for evaporating flows with phase change in the low-Mach limit (weakly
compressible formulation) with a detailed numerical implementation. Differently from
other approaches available in the literature (Wang et al. 2019; Ni et al. 2021), this
formulation relaxes the assumption of constant thermodynamic pressure and allows its
dynamic variation according to the global expansion and contraction of the compressible
gas phase, as well as, on the amount of mass flux exchanged at the interface.

This paper is organized as follows. In § 2 we introduce the mathematical model
employed to describe a two-phase evaporating system, adapted to the HST configuration.
In § 3 the numerical algorithm is presented, with a note on an improved Adams–Bashforth
scheme for HST simulations. The results, discussed in § 4, focus on the role played
by the specific thermodynamic model used to describe the weakly compressible phase
and the effects on the evaporation induced by the variation of the shear-based Reynolds
number and the shear-based Weber number. Finally, the main findings and conclusions are
summarized in § 5.

2. Governing equations

2.1. Mathematical model for weakly compressible evaporating flows
We consider a system of two immiscible and Newtonian fluids: a single component liquid
(phase 1) and an ideal mixture of an inert gas and vaporized liquid (phase 2). The two
phases are bounded by an infinitesimally small interface, through which mass, momentum
and energy are exchanged. The evaporation is driven by the partial pressure of the inert
gas in phase 2. To represent this system, a phase indicator function H is defined at position
x and time t to distinguish between the two phases,

H(x, t) =
{

1 if x ∈ Vl,

0 if x ∈ Vg; (2.1)

where Vl and Vg are the domains pertaining to the liquid and gas phases, divided by a
zero-thickness interface Γ (t) = Vl

⋂
Vg.

Hereinafter and unless otherwise state, we assume that the liquid is incompressible
with constant properties, while the gas is compressible and its properties are allowed to
vary with temperature, pressure and composition. Thus, given the possible variation of
the density with the state variables, we consider compressibility, which in this work is
treated within the low-Mach approximation (Majda & Sethian 1985). This allows us to
filter acoustic effects, while still retaining potentially large density variations in the bulk
region of the compressible phase. Under this assumption, the conservation equations for
species, momentum, thermal energy and mass across the interface read as

ρ
Du
Dt

= −∇p + 1
Re

∇ · τ + f σ

We
, (2.2)

ρg
DYv

l
Dt

= 1
ReSc

∇ · (ρgDlg∇Yv
l ), (2.3)

ρcp
DT
Dt

= 1
RePr

∇ · (k∇T) +
⎛⎝Πp,1

dpth

dt
+ ρgDlg

ReSc

2∑
j=1

∇hj · ∇Yj

⎞⎠ (1 − H)

−(ṁΓ δΓ )

Ste
, (2.4)
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Finite-size evaporating droplets in HST

ṁΓ = 1
ReSc

ρg,Γ Dlg,Γ

1 − Yv
l,Γ

∇Γ Yv
l · nΓ . (2.5)

Here, u is the fluid velocity assumed to be continuous in the two phases, p is the
hydrodynamic pressure, T the temperature, h the enthalpy (with ∇h = ∇(cpT)), Yv

l the
mass fraction of the vaporized liquid in the inert gas and ṁΓ is the interfacial mass flux. In
(2.2), τ is the viscous stress tensor for compressible Newtonian flows and f σ = κΓ δΓ with
κΓ the interfacial curvature. The generic thermophysical property ξ (density ρ, dynamic
viscosity μ, thermal conductivity k or specific heat capacity cp) is computed with an
arithmetic average, i.e. ξ = 1 + (λξ − 1)H, where λξ = ξl/ξg,r. Since ξl is kept constant
and uniform no further modelling is needed, while the generic gas property ξg is computed
with appropriate equation of states. The gas density ρg is computed with the ideal gas
law and the liquid diffusion coefficient with the Wilke–Lee correlation (Reid, Prausnitz
& Poling 1987). More details on how the remaining gas thermophysical properties are
evaluated are given in Appendix A. Unless otherwise stated, all the property ratios λξ are
computed with respect to the reference gas property ξg,r, taken as the initial value.

In (2.2), (2.3), (2.5) and (2.4) different dimensionless parameters appear. By introducing
a reference velocity ur and reference length lr, we define the Reynolds number Re =
ρg,rurlr/μg,r, the Weber number We = ρg,rurlr/σ , with σ the surface tension; Sc =
μg,r/(ρg,rDlg,r) and Pr = μg,rcpg,r/kg,r are the Schmidt and Prandlt numbers. Note
that the temperature equation (2.4) requires the definition of the Stefan number Ste =
cpg,rTg,0/�hlv , where Tg,0 is the initial gas temperature and �hlv is the latent heat and
of the dimensionless group Πp,1 = Ru/(cpg,rMg), where Mg is the molar mass of the gas
phase and Ru the universal gas constant. To form a close set of equations, two additional
equations are needed, one for the velocity divergence and one for the thermodynamic
pressure pth, i.e.

∇ · u = fΓ (xΓ , t) +
[

fY(x, t) + fT(x, t)
pth

−
(

1 − Πp,1

cpM̄m,av

)
1

pth

dpth

dt

]
(1 − H), (2.6)

1
pth

dpth

dt

∫
Vg

(
1 − Πp,1

cpM̄m,av

)
dVg =

∫
V

[
fΓ (xΓ , t) + fT(x, t) + fY(x, t)

pth
(1 − H)

]
dV.

(2.7)

In (2.6) and (2.7) the functions fΓ (xΓ , t), fY(x, t) and fT(x, t) represent the different
contributions to the total velocity divergence from the phase change (fΓ ) and the change
of the gas density either due to composition (fY ) or to temperature (fT ),

fΓ (xΓ , t) = ṁΓ

(
1

ρg,Γ

− 1
λρ

)
δΓ , (2.8a)

fY(x, t) = 1
ReSc

M̄m,av

ρg

(
1
λM

− 1
)

∇ · (ρgDlg∇Yv
l ), (2.8b)

fT(x, t) = 1
Re

Πp,1

cpM̄m,av

⎡⎣ 1
Pr

∇ · (k∇T) + ρgDlg

Sc

2∑
j=1

∇hj · ∇Yj

⎤⎦ , (2.8c)

where λM = Ml/Mg is the molar mass ratio. The complete derivation of (2.6), (2.7) and of
relations (2.8) is provided in Appendix B.
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Figure 1. Sketch of the computational box: the rendering represents the volume contour of the vapour mass
fraction for the case at ReS = 6700, WeS = 0.1 and Tg,0/Tc = 1.5.

2.2. Governing equations for the HST configuration
Equations (2.2), (2.3), (2.5), (2.4), (2.6) and (2.7) are solved in a periodic box assuming
an imposed uniform mean shear S , as depicted in figure 1. In a shear-periodic domain the
streamwise x and spanwise y directions are periodic, whereas the so-called shear-periodic
condition applies in the z direction, which reads for the generic scalar quantity g as

g(x + lx, y, z) = g(x, y, z),

g(x, y + ly, z) = g(x − Stly, y, z),

g(x, y, z + lz) = g(x, y, z).

⎫⎪⎬⎪⎭ (2.9)

The presence of a mean velocity, i.e. Sz, suggests to decompose the velocity field u into
a mean and a fluctuating component u′,

u = u′ + Szex, (2.10)

where ex = (1, 0, 0). Given the decomposition (2.10), the momentum equation (2.2) is
written in terms of u′,

ρ

(
Du′

Dt
+ Sz

∂u′

∂x
+ Sw′ex

)
= −∇p + 1

ReS

[
∇ · τ + S

(
∂μ

∂z
ex + ∂μ

∂x
ez

)]
+ f σ

WeS
,

(2.11)

where ez = (0, 0, 1). Three new terms appear: the first, Sz(∂u′/∂x), is the convection of
the velocity fluctuations by the mean shear; the second, Sw′ex, represents the production
of streamwise momentum caused by the fluid parcel transport in the normal direction
owing to the mean shear; the third and last term, S(∂μ/∂zex + ∂μ/∂xez), represents the
viscous dissipation due to the mean shear in the case of a fluid with variable viscosity.
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Finite-size evaporating droplets in HST

Note that ReS and WeS are the shear-based Reynolds and Weber numbers, computed
taking ur = Slr.

The same decomposition (2.10) is applied to the mass fraction and temperature
equations, giving

ρg

(
DYv

l
Dt

+ Sz
∂Yv

l
∂x

)
= 1

ReSSc
∇ · (ρgDlg∇Yv

l ), (2.12)

ρcp

(
DT
Dt

+ Sz
∂T
∂x

)
= 1

ReSPr
∇ · (k∇T) (2.13)

+
⎛⎝Πp,1

dpth

dt
+ ρgDlg

ReSSc

2∑
j=1

∇hj · ∇Yj

⎞⎠ (1 − H) − ṁΓ δΓ

Ste
. (2.14)

In (2.14) and (2.12) the two new terms, Sz(∂T/∂x) and Sz(∂Yv
l /∂x), represent the

convection of the temperature/vapour mass fraction by the mean shear.

3. Methodology

3.1. Numerical method for low-Mach HST simulations with phase change
The governing equations are solved on a uniform Cartesian grid of equal spacing �x =
�y = �z, with a staggered arrangement for the velocity while the remaining scalar fields
are defined at the cell centres. The convection terms of the governing equations are
discretized with the QUICK scheme (Leonard 1979), while central schemes are employed
for the diffusive terms. The numerical method for phase change in the incompressible
limit is presented in Scapin et al. (2020), while the details of the weakly compressible
two-phase code are reported in Dalla Barba et al. (2021). Both implementations are based
on the solver CaNS (Costa 2018), extended in this work to handle shear-periodic boundary
conditions. In this section we therefore only describe the main modifications needed to
handle weakly compressible phase-change processes in HST. The validation of the present
algorithm against three benchmarks is provided in Appendix C.

3.1.1. Dispersed phase
The first step is the interface reconstruction and subsequent advection, handled in a fully
Eulerian manner using an algebraic VoF method, i.e. the MTHINC by Ii et al. (2012),
Rosti, De Vita & Brandt (2019a). We start from the topological equation for the phase
indicator function (2.1),

∂H
∂t

+ uΓ · ∇H = 0, (3.1)

where uΓ is the interface velocity, taken as the sum of the extended liquid velocity uext
l

and the contribution due to the interfacial mass flux ṁΓ nΓ /ρl; see Scapin et al. (2020)
for more details. Note that since uext

l and uΓ are derived from the one-fluid velocity u, the
decomposition (2.10) applies directly to the interface velocity.

Equation (3.1) is then rewritten in terms of the volume fraction, Φ, defined as the
volumetric average of H over a discrete computation cell of volume Vc = �x�y�z.
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Employing the decomposition (2.10) in the colour function advection equation (3.1) yields

∂Φ

∂t
+ ∇ · (Hhtu′

Γ ) + Sz
∂Hht

∂x
= Φ∇ · u′

Γ , (3.2)

where Hht represents the hyperbolic tangent function approximating the indicator function
H. From (3.2), we see that an additional term is present, Sz(∂Hht/∂x), which represents
the convection of volume fraction by S .

Equation (3.2) is solved in three sub-steps. First, it is advanced by �tn+1 to the new
time step omitting the convection by the mean shear and the right-hand side term. By
employing the classical directional splitting, we obtain a provisional Φ̃; see Ii et al. (2012)
for more details. Next, the convection by mean shear is included,

∂Φ̃

∂t
+ Sz

∂H̃ht

∂x
= 0. (3.3)

Note that the time derivative in (3.3) is computed explicitly for Φ̃ while the convective
term contains the phase indicator function Hht. Since the latter is a function of the former
and the mathematical form of this dependency varies according to the type of interface
reconstruction method, it is possible to express the convective term as a function of Φ.
Nevertheless, this would modify the advection velocity in (3.3) adding a spatial-dependent
term along the mean shear direction (i.e. x), making more elaborated and complex the
application of the method of characteristics. For this reason, we prefer to compute this
extra term by an additional directional splitting along x, with Sz as advection velocity.

Finally, the divergence is corrected. This consists in adding, after the four directional
splittings, a correction term proportional to the discrete velocity divergence, i.e.

Φn+1
i,j,k = Φ̃i,j,k − �tn+1Fn

i,j,k + �tn+1Φn+1
i,j,k (∇ · uΓ )n

i,j,k, (3.4)

where Φn+1
i,j,k is the volume fraction resulting from the directional splitting procedure, Fn

i,j,k
represents the correction used in the previous directional splitting steps, and the last term
is the volume correction which ensures that the interface velocity divergence is employed
to update Φn+1

i,j,k (Scapin et al. 2020). The thermodynamic properties (ρ, μ, k and cp) are
then updated using the new value Φn+1.

3.1.2. Vapour mass fraction equation
The conservation of the vapour mass fraction, see (2.12), is solved only in the gas domain
(i.e. Vg), assuming saturation conditions at the interface Γ . In other words, the value Yv

l =
Yv

l,Γ , which is a function of the thermodynamic pressure and temperature, is imposed
at the interface Γ as a Dirichlet boundary condition. To compute Yv

l,Γ , we employ the
Span–Wagner equation of state (see (A6) and (A7) in Appendix A). Equation (2.12) is
advanced with the first-Euler method neglecting the mean shear contribution. This yields
a provisional vapour mass fraction field Ỹn+1

v,l ,

ρn+1
g

Ỹv,n+1
l − Yv,n

l

�tn+1 = −ρn+1
g (u · ∇Yv

l )n + 1
ReSSc

∇ · (ρn+1
g Dn+1

lg ∇Yv,n
l ). (3.5)

The calculation of the gradient in the convective part of (3.5) is performed as detailed
in Scapin et al. (2020), while some modifications are required for the linear term as it
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Finite-size evaporating droplets in HST

contains the diffusion coefficient Dlg and the gas density ρg, which, in general, vary with
the thermodynamic pressure, temperature and composition. Since the procedure can be
performed dimension by dimension, we present the discretization along x as example, the
same approach being repeated for the other two directions,

∂

∂x

(
ρgDlg

∂Yv
l

∂x

)
i
= 1

�x

(
(ρgDlg)i+1/2

∂Yv
l

∂x

∣∣∣∣
i+1/2

− (ρgDlg)i−1/2
∂Yv

l
∂x

∣∣∣∣
i−1/2

)
i

. (3.6)

The evaluation of the gradients ∂Yv
l /∂xi±1/2 is performed on an irregular grid, employing

one-sided finite difference equations for the cell cut from the interface or central scheme
for cells away from the interface (see Scapin et al. (2020) for details). Next, the coefficients
(ρgDlg)i±1/2 are obtained as the arithmetic mean,

(ρgDlg)i±1/2 = 0.5[(ρgDlg)i + (ρgDlg)
G]. (3.7)

If the cell i and its neighbours (i ± 1) are not cut by the interface, ρgDG
lg is set equal to

(ρgDlg)i±1. Otherwise, (ρgDlg)
G is evaluated as

(ρgDlg)
G = (ρgDlg)Γ + (θ − 1)(ρgDlg)i±1

θ
, (3.8)

where θ represents the sub-cell resolution computed from the level-set function,
reconstructed from the VoF field. Since (3.8) poorly behaves for small values of θ ,
we set (ρgDlg)

G = (ρgDlg)i when θ ≤ 1/4. Note that (3.8) requires the value of the
coefficient (ρgDlg) at the interface location, i.e. (ρgDlg)Γ . These are evaluated with
the corresponding equations of state using the temperature and the vapour composition
at the interface location. It is worth mentioning that we cannot access directly the liquid
and gas temperatures, separately, since the temperature equation is solved over the whole
domain, irrespective of the interface location. Therefore, to avoid problems of artificial
heating (especially when the difference between the gas and the liquid density is high), we
locally reconstruct the gas temperature in Vl and the liquid temperature in Vg relying on
a simple constant extrapolation of T . The resulting two fields, Tg and Tl, defined in a few
grid cells around the interface, are then used to update the thermophysical properties; see
Appendix A for more details.

Finally, the mean shear contribution is included using the method of characteristic over
a time �tn+1,

∂Yv
l

∂t
+ Sz

∂Yv
l

∂x
= 0. (3.9)

Equation (3.9) can be conveniently rewritten in more compact form as in Gerz, Schumann
& Elghobashi (1989), Kasbaoui et al. (2017),

Yv,n+1
l = Ỹv,n+1

l (x − �tn+1Szex). (3.10)

Equation (3.10) is solved using a Fourier interpolation (Tanaka 2017), which ensures a
spectral accuracy provided that �tn+1 is chosen lower or equal than (SNz)

−1, where Nz is
the number of grid points along the z direction (see § 3.2 for more details).

3.1.3. Calculation of the interfacial mass flux
The interfacial mass flux (2.5) is computed only in the gas region by projecting
the interfacial gradient along the normal direction and adopting a dimension by
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N. Scapin and others

dimension approach. The interfacial vapour mass fraction Yv
l , gas density ρg and diffusion

coefficient Dlg should be estimated at the interface location. Similarly to the case of the
vapour mass fraction described in § 3.1.2, all these quantities depend on the local gas and
liquid temperatures and on the thermodynamic pressure. Therefore, we first estimate the
interfacial liquid and gas temperatures in those grid cells cut by the interface. Depending
on the interface position, this is done in each direction independently, providing different
estimates for the gas and liquid temperatures for the three coordinates, Tx

p,Γ , Ty
p,Γ and

Tz
p,Γ , where the subscript p stands for the gas and liquid phases. The resulting values are

averaged using the local normal, i.e.

Tp,Γ = Tx
p,Γ n2

x + Ty
p,Γ n2

y + Tz
p,Γ n2

z . (3.11)

Once Tp,Γ is known, the values of ρg,Γ , Dlg,Γ and Yv
l,Γ are computed using the

corresponding equations of state; see Appendix A. Note that by employing the procedure
here explained, the mass flux ṁΓ is available only on the grid nodes pertaining the gas
region. Nevertheless, as (2.6) suggests, the values of ṁΓ are needed also in some grid
points inside the liquid region. Accordingly, ṁΓ is extrapolated over a narrow band at the
interface to populate all cells where |∇Φ|i,j,k /= 0.

3.1.4. Temperature equation
The temperature equation (2.4) is solved using a whole domain approach as in Scapin et al.
(2020), with additional care paid to the time discretization. The adopted approach follows
that proposed in Gerz et al. (1989) and has been improved here to enhance the numerical
stability and to include the additional source terms due to the gas compressibility, phase
change and enthalpy diffusion. First, a prediction temperature field T̃ is computed using
the Adams–Bashforth method,

T̃n+1 − Tn

�tn+1 =
(

1 + 1
2

�tn+1

�tn

)
RTn −

(
1
2

�tn+1

�tn

)
RTn−1, (3.12)

where the terms RTn and RTn−1 include all the convective and diffusive terms at the
current, n, and old time level, n − 1. The term RTn−1 is first shear mapped to the new
time level n + 1 and this step has proved to be crucial for the numerical stability of the
Adams–Bashforth scheme (see Appendix D).

Next, the temperature field is shear mapped to the new time level n + 1 by employing
the same spectral interpolation described for the vapour mass fraction equation,

Tn+1,∗ = T̃(x − Sz�tn+1ex). (3.13)

Finally, the source terms in (2.4) are included using the first-order Euler scheme,

ρn+1cn+1
p

Tn+1 − Tn+1,∗

�tn+1 = Πp,1

(
dpth

dt

)ext

(1 − Φn+1)

+ 1
ReSSc

⎛⎝ρgDlg

2∑
j=1

∇Yj · ∇h∗
j

⎞⎠n+1

(1 − Φn+1)

− (ṁΓ |∇Φ|)n+1

Ste
, (3.14)
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Finite-size evaporating droplets in HST

where (dpth/dt)ext represents the linear extrapolation in time of the derivative of the
thermodynamic pressure. It is important to note that the second and third terms in (3.14),
which include variables shear mapped to the new time level (i.e. Φn+1 and Yv,n+1

l,j ), should
be computed after (3.13).

3.1.5. Thermal divergence and thermodynamic pressure
The calculation of the velocity divergence is performed simply by discretizating the
right-hand side of (2.6) node by node as done in Dalla Barba et al. (2021) for the case
of weakly compressible two-phase solvers without phase change. The calculation of the
thermodynamic pressure requires, however, more care. In the low-Mach framework, the
role of pth is to ensure mass conservation of the compressible phase at the discrete level,
since it enters the calculation of the gas density. This cannot be fulfilled simply by the
advection of the colour function, which is designed to satisfy the volume conservation of
the incompressible liquid, or by the pressure-correction step through the imposition of the
divergence constrain (2.6) on u. In fact, these ensure only the overall volume conservation
of the closed and isochoric system under consideration. Therefore, we compute pth by
integrating the equation for the gas density ((A1) in Appendix A) over the computation
domain occupied by the gas phase Vg (Demou, Frantzis & Grigoriadis 2019; Dalla Barba
et al. 2021),

pn+1
th = Gn+1

g Πp,2∫
V

M̄n+1
m,av

Tn+1 (1 − Φn+1) dx dy dz

. (3.15)

The total mass of the gas Gg, used above, varies in time according to the following relation,
derived from the material balance across the droplet surface,

dGg

dt
= ṁt,Γ =

∫
V

ṁn+1
Γ |∇Φn+1| dx dy dz. (3.16)

Once the volume integral in (3.16) is computed, the gas mass at the new time level is
computed from the time integration of (3.16),

Gn+1
g = Gn

g +
∫ tn+1

tn
ṁt,Γ dt. (3.17)

To evaluate numerically the integral in (3.17), we employ a trapezoidal quadrature. With
this approach, we impose correctly the conservation of the compressible phase at the
discrete level.

3.1.6. Momentum equation and pressure correction method
Once the thermodynamic divergence is computed, the momentum equation (2.2) is solved
with a standard pressure correction method, reported below in semi-discrete form,

RUn−1 = R̃Un−1
(x − �tnSzex), (3.18)

ρn+1
(

u�� − un

�tn+1

)
=
(

1 + 1
2

�tn+1

�tn

)
RUn −

(
1
2

�tn+1

�tn

)
RUn−1, (3.19)

u� = u��(x − �tn+1Szex) + �tn+1

ρn+1

κn+1
Γ ∇Φn+1

WeS
, (3.20)
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∇2pn+1 = ∇ ·
[(

1 − ρn+1
0

ρn+1

)
∇p̂

]
+ ρn+1

0
�tn+1

(
∇ · u�−∇ · un+1

)
, (3.21)

un+1 = u�−�tn+1

[
1

ρn+1
0

∇pn+1 +
(

1
ρn+1 − 1

ρn+1
0

)
∇p̂

]
, (3.22)

where RUn and RUn−1 in (3.19) include the convective and diffusive terms computed
at the current and previous time level, neglecting the surface tension force and the mean
shear contribution. As done for the temperature equation and explained in detail in the
Appendix D, it is very important for the stability and the accuracy of the time-integration
scheme that the term RUn−1 is shear mapped to the current time level n. The intermediate
velocity u�� is shear mapped to the new time level n + 1, similarly to what is done for the
temperature and vapour mass fraction, and updated with the contribution from the surface
tension (Rosti et al. 2019b).

Finally, the pressure equation (3.21) is solved with a time-splitting technique which
allows us to transform the variable Poisson equation into a constant coefficient one (Dodd
& Ferrante 2014). Note that ρn+1

0 and p̂ in (3.21) and (3.22) are the minimum density
over the entire computational domain and the extrapolated hydrodynamic pressure p̂ =
(1 + (�tn+1/�tn))pn − (�tn+1/�tn)pn−1. As already discussed in Motheau & Abraham
(2016), Dalla Barba et al. (2021), the use of the pressure splitting to solve the variable
density Poisson equation in a low-Mach framework is suitable when the temperature ratio
between the two phases is below 2–3, which is the case of the current study. Finally, it is
worth mentioning that the presence of the shear, if left untreated, would make the use of
the eigenexpansion method to solve (3.21) not possible, since one direction is not periodic.
For these reasons, in order to still benefit from the FFT-based solvers, (3.21) is solved in a
coordinate system moving with the mean shear for which, triperiodic boundary conditions
can be applied. The solution is then transformed back to the shear-periodic domain, as
detailed in Tanaka (2017), Rosti et al. (2019b).

3.2. Time-step restriction
The time step �tn+1 is estimated from the stability constraints of the overall system,

�tn+1 = min
[

C�tc�tn+1
c , C�td min(�tμ, �tσ , �tm, �tk)n+1, C�tS

�z
Slz

]
, (3.23)

where �tc, �tσ , �tμ, �tm and �tk are the maximum allowable time steps due to
convection, surface tension, momentum, thermal energy and mass diffusion. These can
be determined as suggested in Scapin et al. (2020), Dalla Barba et al. (2021),

�tc = �x
|umax| + |vmax| + |wmax| , �tμ = min

(
min
Vg

{
μg

ρg

}
,
λμ

λρ

)
�x2ReS

6
,

�tσ =
√

WeS(minVg{ρg} + λρ)�x3

4π
, �tm = min

Vg
{Dlg} (θm�x)2Sc

6
,

�tk = min

(
min
Vg

{
kg

ρgcpg

}
,
λk

λρλcp

)
�x2Pr

6
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.24)
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Finite-size evaporating droplets in HST

Case Tg,0/Tc Model for ξg ReS WeS Dav Group Definition Value

1 1.50 CP 6700 0.02 0.8213 Pr μg,rcpg,r/kg,r 1.39
2 1.50 VPρ 6700 0.02 0.8213 Sc μg,r/(ρg,rDlg,r) 1.66
3 1.50 VPa 6700 0.02 0.8213 Ste cpg,rTg,r/�hlv 5.70
4 0.75 CP 6700 0.02 0.1528 λρ ρl/ρg,r 13.15
5 0.75 VPρ 6700 0.02 0.1528 λμ μl/μg,r 2.10
6 0.75 VPa 6700 0.02 0.1528 λcp cpl/cpg,r 2.00
7 1.00 VPa 6700 0.02 0.5531 λk kl/kg,r 1.87
8 1.50 VPa 2800 0.02 0.9584 λM Ml/Mg 2.58
9 1.00 VPa 2800 0.02 0.6589 �p,1 Ru/(Mgcpg,r) 0.18
10 0.75 VPa 2800 0.02 0.2341 �p,2 pth,rMg/(ρg,rRuTg,r) 1.00
11 1.50 VPa 6700 0.06 0.8212 �p,3 pc/pth,r 0.83
12 1.50 VPa 6700 0.10 0.8213 α0 [%] Vl,0/(lxlylz) 0.14
13 0.75 VPa 6700 0.06 0.1528 Ndp,0 — 5
14 0.75 VPa 6700 0.10 0.1528 RH0 [%] — 0.0

Table 1. Left: Dimensionless parameters defining the investigated cases, the initial gas temperature over the
critical temperature Tg,0/Tc, the thermodynamic model employed to evaluate the gas thermophysical property,
the shear-based Reynolds number ReS = ρg,rSl2y/μg,r and the shear-based Weber number WeS = ρg,rS2d3

0/σ

with d0 the initial droplet diameter. The vaporization Damköhler number, the ratio between the turbulence time
scale and the evaporation time scale in stagnant conditions, Dav = τt/τv,L, is also reported (see (4.4)). Note
that in the current study d0/ly = 0.10. Right: Dimensionless parameters kept constant in the current study
(Ndp,0 is the initial number of droplets, α0 is the initial liquid volume and RH0 is the initial relative humidity).

where |ui,max| is an estimate of the maximum value of the ith component of the flow
velocity, θm = 0.25 and maxVg{ξg} and minVg{ξg} denote the maximum and minimum over
the computational domain, Vg, of the generic thermophysical property of the gas phase.
For the cases presented here, the convective constrain represents the main limitation;
setting C�tc = 0.15, C�td = 0.5 and C�tS = 1 was found sufficient for a stable and
accurate time integration.

3.3. Computational set-up
Given the large number of dimensionless parameters that characterizes flows involving
evaporation, we focus our attention on the role of the ratio between droplet initial diameter
and the Kolmogorov dissipative flow scale (tuned by varying the shear-based Reynolds
number, ReS ), the role of surface tension (varying the shear-based Weber number WeS ),
the ratio between the initial gas temperature and the critical temperature, Tg,0/Tc, and the
type of model employed to evaluate the thermophysical properties of the gas phase during
the simulations. Concerning this last aspect, we first consider all the gas thermophysical
properties constant and computed with a proper averaging between the liquid and the
gas temperature (i.e. with the 1/3 rule by Hubbard, Denny & Mills 1975) (case denoted
as CP); secondly, we allow only the gas density ρg to vary (case denoted as VPρ) and,
finally, we allow all the thermophysical properties to vary with the local thermodynamic
variables and vapour composition (case VPa). A summary of the numerical campaign
is reported in table 1, together with the remaining dimensionless physical parameters,
which are all kept constant. Note that the physical parameters reported in table 1 are
representative of pentane evaporating droplets in dry air at high pressure (∼ 43 bar). In
particular, we will consider three values of the ratio Tg,0/Tc = 0.75, 1.00, 1.50, where Tc
is the critical temperature (469.69 K for pentane), which gives Tg,0 = 354, 470 and 705 K.
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Figure 2. Normalized square droplet diameter, (d/d0)
2, as a function of the dimensionless time (based on

the diffusion time scale) for temperature ratio (a) Tg,0/Tc = 1.50 and (b) Tg,0/Tc = 0.75 for ReS = 6700
and WeS = 0.02. The dotted curves indicate the slope of the curves after the initial transient (extracted
from direct numerical simulations), whereas the dashed curves indicate the estimation from the theoretical
Frössling/Ranz-Marshall correlation. The length of the error bars indicates the droplet with the fastest/slowest
evaporation rate among the five droplets in the simulations.

The initial liquid temperature Tl,0 is the wet bulb temperature at Tg,0 and corresponds to
Tl,0 = 334, 388 and 432 K.

The focus of the study is the behaviour of evaporating isolated droplets in HST and,
therefore, we consider five isolated droplets (i.e. initial volume fraction α0 ≈ 0.14 % with
Ndp,0 = 5), injected in a single-phase statistically steady-state HST field at the desired
shear-based ReS (2800 or 6700). For all the cases, the computational domain has the
streamwise aspect ratio, ARxy = lx/ly ≈ 2.10, and the cross-stream ratio, ARzy = lz/ly ≈
1.05. As discussed in Sekimoto et al. (2016), employing such values, the effects on the
flow induced by a finite-size computational box are reduced. The domain is discretized
with 1280 × 608 × 640 grid points, thus ensuring not only an adequate resolution of the
flow field (i.e. �x/η ≈ 0.33 for ReS = 2800 and �x/η ≈ 0.40 for ReS = 6700, where η

is the Kolmogorov length scale), but also of the droplets, whose initial resolution is 64
points per diameter. This value is consistent with our previous study (Scapin et al. 2020),
where we have assessed that a minimum of 50 grid points per diameter is needed to fully
resolve mass, momentum and energy transfer across the droplet interface. Note that the
resolution is also sufficient to resolve the smallest scales of the two active scalar fields, Yv

l
and T , since the associated Batchelor scales ηB,Y = η/

√
Sc and ηB,T = η/

√
Pr, although

smaller than the Kolmogorov scale, are always larger than �x.

4. Results

4.1. Comparison of the three thermodynamic models
We start our analysis by assessing the influence on the evaporation dynamics of the
type of thermodynamic model employed to evaluate the gas thermophysical properties.
A common approach (Abramzon & Sirignano 1989; Lupo et al. 2019, 2020) is to consider
the thermophysical properties of the gas phase uniform, constant and evaluate them at
an intermediate temperature, Tm = Tg,0 + m(Tg,0 − Tl,0). Hubbard et al. (1975) show
that the value m = 1/3 guarantees a good agreement between experimental results and
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Figure 3. Volume rendering of the normalized gas density ρg/ρg,0 around a droplet for the case
ReS = 6700, WeS = 0.02 and Tg,0/Tc = 1.5.

the theoretical predictions based on the d2–law (Langmuir 1918). In the mathematical
framework introduced above, this amounts to limiting the expansion and contraction at
the interface, i.e. the terms fY and fT in (2.6), (2.7) become zero. Here, we will denote
the results obtained with these assumptions as CP. In many fully resolved simulations,
the only thermophysical property allowed to vary is the density and this is typically
done within the Oberbeck–Boussinesq approximation (Piedra et al. 2015). This model,
denoted VPρ , is considered here to asses whether it can provide accurate results. In typical
conditions of evaporating droplets, however, other thermophysical properties may play
a role. In particular, ρg and Dlg scale differently with the gas temperature, i.e. ρg ∼
pth/Tg and Dlg ∼ T1.5

g /pth and both appear in the expression of the interfacial mass flux.
These variations may significantly affect the evaporation dynamics, especially when the
difference between the liquid and gas temperatures is large. We will therefore also consider
variations of all the thermophysical properties, case VPa. To compare the different models,
we consider two temperature ratios, Tg,0/Tc = 0.75 and Tg,0/Tc = 1.50 at ReS = 6700
and the lowest Weber number under consideration in this study, WeS = 0.02, to limit
droplet breakup and reduce the droplet deformation. Unless otherwise stated, the results
refer to the averaged values over the five droplets initially in the computational domain
and error bars are included to represent the droplet with the largest positive and negative
deviation from the mean value. Firstly, we show the square of the normalized droplet
diameter; see figure 2. From the cases at Tg,0/Tc = 1.50, we observe that the complete
model and the constant property model provide similar evaporation rates; when the gas
density is the only varying thermophysical property, the evaporation rate is the highest.
This behaviour can be attributed to the presence of colder gas around the droplets, leading
to larger local gas densities (up to three times the initial gas density, see figure 3) and,
thus, to increased evaporation rates, as shown in figure 4(a) where we report the time
history of the surface-averaged gas temperature. Relaxing the assumption of constant
liquid diffusion coefficient reduces Dlg ∝ T1.5

g . This counteracts the effect of the higher
gas density, decreasing the overall evaporation rate, which approaches the values obtained
assuming constant property values. The results at Tg,0/Tc = 0.75 show a limited impact of
compressibility on the evaporation dynamics, with an almost identical evaporation from
the CP and VPa models. Once more, allowing only the gas density to vary leads to an
overestimation of the evaporation rate, which is explained by a lower gas temperature and
higher density at the interface; see figure 4(b). Note that in all the cases and regardless of
the model, the mean evaporation rate represents a good estimation of the evaporation rate
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Figure 4. Normalized gas temperature at the interface as a function of the dimensionless time (based on the
diffusion time scale) for temperature ratio (a) Tg,0/Tc = 1.50 and (b) Tg,0/Tc = 0.75 for ReS = 6700 and
WeS = 0.02. Here Tg,0 and Tl,0 are the initial gas and liquid temperatures.

of the single droplet since the magnitude of the largest positive and the negative deviations
(represented by the error bars in figure 2) is within 5 %.

Figure 5 displays the time evolution of the ratio between the instantaneous area
A = |∇Φ|�x3 and the area of a spherical droplet with the same volume with error
bars indicating the maximum and minimum values at each instance at Tg,0/Tc = 1.5
and Tg,0/Tc = 0.75. Note that the mean deviation from the spherical shape is always
below 10 % (over the simulated physical time) which makes the present data suitable
for comparisons with existing scaling laws, which are commonly derived under the
assumption of rigid and spherical droplets. In all cases, the evaporation rate follows the
linear trend predicted by the d2–law since the droplets are isolated. We therefore test the
closure relations available in the literature against the data from the interface-resolved
simulations. To this end, we estimate the evaporation rate as proposed in Birouk & Gökalp
(2006). First, we obtain the dimensionless evaporation rate in laminar conditions KL
(Abramzon & Sirignano 1989) as

KL = 4ShRM

ReSSc
log(1 + BM)

λρ
, (4.1)

where the Spalding number BM = (〈Yv
l,Γ 〉Γ − Yv

l,∞)/(1 − 〈Yv
l,Γ 〉Γ ), with 〈〉Γ the

average over the surface Γ . The Sherwood number in (4.1) is estimated with the
Frössling/Ranz-Marshall correlation (Ranz & Marshall 1952; Birouk & Gökalp 2006),

ShRM = 2 + BM

(1 + BM)0.7 log(1 + BM)
Sh0,RM, (4.2)

with Sh0,RM = 2 + 0.552Re0.50
d Sc0.33. In this last expression, Sc is the Schmidt number

and Red is the droplet Reynolds number, defined as Red = ρg,r|u′
l,d − u′

g,d|d/μg,r.
Following the original reference (Ranz & Marshall 1952) and more recent works (Ng
et al. 2021; Wang et al. 2021), we compute Red using the instantaneous droplet diameter,
the instantaneous droplet velocity u′

l,d and the surrounding gas velocity u′
g,d at the droplet

location (Ng et al. 2021). Note that this correlation is based on experiments with droplets
larger than the Kolmogorov scale and in presence of a mean velocity field and is therefore
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Figure 5. Ratio between the instantaneous interfacial area A and the area of a spherical droplet with the same
volume V , i.e. Aeq = π1/3(6V)2/3, for WeS = 0.02 and (a) Tg,0/Tc = 1.50 and (b) Tg,0/Tc = 0.75. The upper
lengths of the error bar refer to the droplet with the largest A/Aeq, while the lower lengths displacement to the
droplet with lowest A/Aeq. The data refers to the simulations conducted with the VPa thermodynamic models
(negligible difference has been observed between the CP and VPa models).

suitable for the current study. Finally, we correct (4.1) for the presence of turbulence via a
Damköhler number (Gökalp et al. 1992),

K
KL

= 0.74Da−0.115
v . (4.3)

In the above,

Dav = τt

τv,L
, (4.4)

where τt = d2/3
0 /〈εg〉1/3

Mg
is the characteristic time scale of the turbulent eddies, d0 is

the initial droplet diameter and 〈εg〉Mg is the mass-averaged turbulent dissipation (see
Abramzon & Sirignano 1989; Birouk & Gökalp 2006). The characteristic time scale of
evaporation τv,L, is computed as

τv,L = δM

Vr
, (4.5)

where δM = d0/(ShRM − 2) (Abramzon & Sirignano 1989) is the vapour film boundary
layer thickness and Vr is the Stefan flow velocity computed as Vr = 8πDlg,r log(1 +
BM)/d0. Note that while (4.1), (4.2) and the expressions for τt and δM are evaluated using
also the instantaneous data from the interface-resolved simulations, the Stefan velocity Vr
is evaluated a priori as it depends only on the initial thermodynamic conditions.

The estimated values of K, dashed lines in figure 2, display a good agreement with
the interface-resolved simulations at Tg,0/Tc = 1.50, especially for the CP and VPa
models, while a significant deviation is observed at Tg,0/Tc = 0.75, regardless of the
thermodynamic model employed. Finally, it is worth noting that the evaporation rate
estimated with (4.1) depends linearly on Sh, whose calculation is generally affected by
a higher degree of uncertainty (Lupo & Duwig 2020).
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Next, we examine the temporal evolution of the Sherwood number, Sh, for the three
different models, see figure 6, using directly the definition

Sh = ṁt,Γ deq

ρg,rDlg,rA(〈Yv
l,Γ 〉Γ − Yv

l,∞)
. (4.6)

Here ṁt,Γ is the total interfacial mass flux, A the interfacial area, deq the instantaneous
equivalent diameter (i.e. deq = (6V/π)3), ρg,r and Dlg,r the reference gas density and
gas–vapour diffusion coefficients, 〈Yv

l,Γ 〉Γ the surface-averaged vapour mass fraction
at the interface and Yv

l,∞ the reference vapour mass fraction, i.e. its initial value. The
Sherwood number defines the ratio between the mass transfer in the actual flow and
the mass transfer by diffusion, i.e. evaporation in stagnant conditions, so that it can be
used to quantify the effect of the flow on the evaporation. Note that since we perform a
comparison among different thermodynamic models, the gas thermophysical properties in
(4.6) are taken equal to the reference ones (i.e. those obtained with the ‘1/3’ rule for the
CP model and those at the initial condition for the VPa and VPρ models). Both at high
and low temperatures, Sh approaches an asymptotic value after the initial transient. Note
that for the cases at Tg,0/Tc = 1.5, the transient is faster (�tDlg,r/d2

0 ≈ 0.02) than for the
cases at Tg,0/Tc = 0.75(�tDlg,r/d2

0 ≈ 0.1) since large temperature differences increase
the evaporation rates. For the high-temperature cases, the Sh number differs significantly
with the model employed, with the model VPρ giving the largest value of Sh for the
reasons explained above. Conversely, at lower temperature, the three models provide a
similar Sh, confirming the limited impact on the evaporation rate of the choice of the
thermodynamic models in this regime. All other parameters being fixed, the Sherwood
number is higher at the lower temperature ratio, Tg,0/Tc = 0.75 than for Tg,0/Tc = 1.50,
regardless of the thermodynamic model used. Recalling that the Sherwood number is the
ratio between the actual mass transfer and the mass transfer by diffusion, the increase of
evaporation rate due to the background turbulence is thus larger at low temperatures. For
the highest temperature ratio, the enhancement induced by the turbulence is lower since
evaporation is mainly driven by the large temperature difference and by the larger values
of (〈Yv

l,Γ 〉Γ − Yv
l,∞).

As a final remark, note that the Sherwood number from direct numerical simulation
(DNS) agrees well with the estimation from the Frössling/Ranz-Marshall correlation at
high temperature (cf. models CP and VPa against the dashed line in figure 6). Conversely,
at lower temperature, the estimated value is much lower than the one extracted from DNS,
indicating that the Frössling/Ranz-Marshall correlation underpredicts convective effects
due to turbulence at low evaporation rates, i.e. when the evaporation time becomes longer
than the turbulence time scale (Dav � 0.2 instead of Dav ≈ 1 as shown in table 1). This
finding is consistent with the recent investigations in HIT performed by Méès et al. (2020)
and suggests the need of including the turbulent effects (via the vaporization Damköhler
number) in the available correlations for the Sherwood number and more in general in the
evaporation models (Lupo et al. 2020).

4.2. Effects of the shear-based Reynolds number
We now consider the effect of the shear-based Reynolds number on the evaporation rate.
Reducing from ReS = 6700 to ReS = 2800 results in a reduction of the ratio between
the initial droplet diameter and the Kolmogorov length scale from d0/η = 21.5 to d0/η =
10.5. For this analysis, we assume that WeS = 0.02, three temperature ratios, Tg,0/Tc =
934 A15-18
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Figure 6. Temporal evolution of the Sherwood number as a function of the dimensionless time (based on the
diffusion time scale) for temperature ratio (a) Tg,0/Tc = 1.50 and (b) Tg,0/Tc = 0.75 and ReS = 6700 and
WeS = 0.02. The dashed curves are the theoretical prediction provided from the a priori analysis based on the
Frössling/Ranz-Marshall correlation. For the cases at Tg,0/Tc = 1.50, only one value of Sh is reported as the
three models provide almost identical predictions.

0.75 − 1.00 − 1.50 and employ the complete model (i.e. VPa). We first examine the
reduction of the droplet diameter, (d/d0)

2, as a function of the diffusion time scale
tDlg,r/d2

0; see figure 7(a). In all cases, droplets with larger d0/η (i.e. higher ReS ) evaporate
faster, in agreement with previous experimental studies in HIT (Verwey & Birouk 2018,
2020) and in the presence of a mean flow (Marti et al. 2017). This is explained by the
enhanced surface vapour gradient and faster dispersion of the vapour around the droplet
for larger d0/η, related to the fact that larger flow structures are more energetic. Note that
a relative increase of the evaporation rate, quantified as the ratio between the evaporation
rate K extracted from DNS and the one computed in stagnant conditions, K0, occurs at all
temperatures as reported in figure 7(b) and it scales with the dimensionless gas temperature
with similar exponents for the two different d0/η investigated, i.e. (Tg,0/Tc)

−0.76 for
d0/η = 21.5 and (Tg,0/Tc)

−0.72 for d0/η = 10.5. The experimental correlations in Birouk
& Gökalp (2006) suggests that, at high temperature and pressure i.e. when the evaporation
is much faster than the turbulent time scale, the evaporation is only weakly dependent on
the droplet size d0/η. This is consistent with our results, where the difference in K for the
two droplet sizes examined decreases when increasing the temperature; however, we do
not observe the rate of evaporation to become independent of the size in the parameter
range considered.

The variation of the evaporation rate with d0/η significantly affects the liquid
temperature at the interface TΓ,l (computed as the surface average over the gas–liquid
interface, TΓ,l = (1/Γ )

∫
Γ

TdΓ ) and the mean liquid temperature TV,l (computed as the
volume average over the liquid, TV,l = (1/Vl)

∫
Vl

TdVl). This is shown in figure 8 for
the three temperatures under investigation. At the highest temperature, figure 8(a), both
TΓ,l and TV,l decrease with respect to the initial values due to the strong cooling caused
by the evaporation. However, due to the heat transfer enhancement at higher ReS , TΓ,l
remains greater than TV,l for droplets at larger d0/η, whereas TΓ,l is lower than TV,l for the
smaller d0/η considered. Clearly, the two temperatures eventually converge to a similar
value once the thermal gradients inside the liquid reduce. For the case with intermediate
temperature, see figure 8(b), the cooling due to evaporation is not sufficiently high to
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Figure 7. (a) Normalized square droplet diameter (d/d0)
2 as a function of the diffusion time scale tDlg/d2

0.
(b) Ratio between the turbulent evaporation rate K and the one at stagnant conditions K0 = (8/λρ) log(1 +
BM), with BM = (Yv

l,Γ − Yv
l,∞)/(1 − Yv

l,Γ ). The data refer to the cases at ReS = 2800 − 6700 and Tg,0/Tc =
1.5, 1.00 and 0.75. The length of the error bars indicates the droplet with the fastest/slowest evaporation rate
among the five droplets in the simulations.

counteract the heat released from the gas and the two temperatures reach a regime value
larger than the initial one. The final values of TΓ,l and TV,l are higher for the droplets with
larger d0/η (larger Reynolds number). We also note that the interface region is warmer
than the droplet bulk (i.e. TΓ,l > TV,l) for both droplet sizes. At the lowest temperature,
figure 8(c), both TΓ,l and TV,l increase with time, when the evaporation is too slow to cool
the droplets. Unlike the previous two cases, the values of TΓ,l and TV,l at d0/η = 21.5 are
always lower than the corresponding ones at d0/η = 10.5, due to the higher evaporation
rate at the highest ReS . For this case, the faster evaporation also changes the transient
of TΓ,l, which at the beginning is higher than TV,l while for tDlg,r/d0 > 0.2 becomes
lower.

We conclude this section by analysing the relative importance of the convective and
conductive heat and mass vapour fluxes, FT,i=c,d and FY,i=c,d, in the gas region around
the droplets and inside the liquid region. These are computed as an integral over the control
surfaces ST and SY ,

FT,d = − 1
ST

∫
ST

k∇T · nΓ dST ,

FT,c = 1
ST

∫
ST

ρcp(u′T + SzexT) · nΓ dST ,

FY,d = − 1
SY

∫
SY

ρgDlg∇Yv
l · nΓ dSY ,

FY,c = 1
SY

∫
SY

ρg(u′Yv
l + SzexYv

l ) · nΓ dSY .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.7)

In the gas phase, ST and SY are surfaces conforming to the droplet shape (quasi-spherical
at this low value of WeS ) at a distance approximately equal to the thermal and vapour
mass fraction boundary layer thicknesses δT and δY . These are determined as the distance
from the interface where (T(δT) − TΓ )/(Tg,0 − TΓ ) = 0.99 and (Yv

l (δY) − Yv
l,Γ )/(Yv

l,0 −
Yv

l,Γ ) = 0.99 as in Ni et al. (2021), moving normal to the interface thanks to a level-set
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(b)(a)
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Figure 8. Dimensionless liquid temperature at the interface (Tl,Γ − Tl,0)/(Tg,0 − Tl,0) (dotted line) and
average liquid temperature (Tl,V − Tl,0)/(Tg,0 − Tl,0) (continuous line) at (a) Tg,0/Tc = 1.5 , (b) Tg,0/Tc = 1.0
and (c) Tg,0/Tc = 0.75.

function, reconstructed from the VoF field. We evaluate F as in (4.7) after the evaporation
reaches a steady condition (i.e. d2 regime) and average in time over a time interval
�t = [0.20, 0.50, 0.60](tDlg,r)/d2

0 for the high, intermediate and low temperature ratios.
To capture the dominant transport mechanism in the liquid phase, ST is defined at a
distance from the interface equal to half the instantaneous droplet radius. The relative
importance of the conductive and convective heat fluxes in the gas region are shown
in figure 9: increasing the ratio Tg,0/Tc, the main transport mechanism changes from
convection to conduction, as already anticipated in § 4.1 when discussing the Sherwood
number Sh. The same applies to lower ReS , where we observe a slightly higher conductive
contribution for Tg,0/Tc = 1.5. In the liquid region, figure 10, the heat transport is mainly
driven by convection in all cases. In agreement with previous experimental results (Wong
& Lin 1992; Pinheiro et al. 2019), the dominant transport mechanism is weakly affected by
a change of the droplet Reynolds number, here varied by changing ReS , since the motion
of the liquid inside the droplet is not significantly affected by the intensity of the gas
turbulence. Finally, the vapour fluxes reported in figure 11 show that Yv

l is predominantly
transported by convection for the two Reynolds numbers investigated, mass diffusion being
relevant only at the highest temperatures.
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Figure 9. Conductive and convective heat fluxes FT (over the sum of the two, ΣF ), FT,i=c,d , in
the gas region for Tg,0/Tc = 0.75 − 1.00 − 1.50 and (a) ReS = 6700, (b) ReS = 2800. At ReS =
6700, ΣF ,0.75 = 0.08ΣF ,1.50 and ΣF ,1.00 = 0.14ΣF ,1.50. At ReS = 2800, ΣF ,0.75 = 0.04ΣF ,1.50 and
ΣF ,1.00 = 0.13ΣF ,1.50 (in ΣF ,x, x is the temperature ratio).
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Figure 10. Conductive and convective heat fluxes FT (over the sum of the two, ΣF ), FT,i=c,d , in
the liquid region for Tg,0/Tc = 0.75 − 1.00 − 1.50 and (a) ReS = 6700, (b) ReS = 2800. At ReS =
6700, ΣF ,0.75 = 0.12ΣF ,1.50 and ΣF ,1.00 = 0.24ΣF ,1.50. At ReS = 2800, ΣF ,0.75 = 0.11ΣF ,1.50 and
ΣF ,1.00 = 0.48ΣF ,1.50 (in ΣF ,x, x is the temperature ratio).

4.3. Effects of the shear-based Weber number
At last, we consider the effect of the shear-based Weber number on the evaporation rate.
For this analysis, three Weber numbers WeS = 0.02 − 0.06 − 0.10 and two temperature
ratios Tg,0/Tc = 0.75–1.5 are considered and, as for the previous section, the complete
thermodynamic model (i.e. VPa) is employed to evaluate the gas thermophysical
properties. Figure 12(a,b) reports the time evolution of d2 for the three values of WeS
under investigation at high and low temperatures, respectively. Increasing WeS leads to a
higher evaporation rate, due to the increase of the surface area available for mass transfer
as a consequence of deformation. Note, also, that the increase in the evaporation rate with
WeS is more pronounced at lower temperature (see figure 12c), which can be explained
by the fact that the evaporation is faster at higher temperatures, the droplets are therefore
smaller, which leads to a limited deformation with respect to the cases at the same WeS and
Tg,0/Tc = 0.75. In other words, the effective Weber number based on the droplet diameter
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Figure 11. Conductive and convective vapour mass fluxes FY (over the sum of the two, ΣF ),
FY,i=c,d , in the gas region for Tg,0/Tc = 0.75 − 1.00 − 1.50 and (a) ReS = 6700, (b) ReS = 2800.
At ReS = 6700, ΣF ,0.75 = 0.58ΣF ,1.50 and ΣF ,1.00 = 0.89ΣF ,Tg,0/Tc=1.50. At ReS = 2800, ΣF ,0.75 =
0.56ΣF ,Tg,0/Tc=1.50 and ΣF ,1.00 = 0.87ΣF ,1.50 (in ΣF ,x, x is the temperature ratio).

becomes quickly smaller at higher temperatures, so differences in nominal surface tension
are compensated by the reduced droplet size. To quantify deformation while accounting
for the decrease of the liquid volume, we measure the deviation from the initial spherical
shape as the ratio between the instantaneous interfacial area A (computed numerically
as A = |∇Φ|�x3) and the area of a spherical droplet with the same volume V , i.e.
Aeq = π1/3(6V)2/3. This calculation is performed for each droplet q separately and each
contribution Aq/Aeq,q averaged according to the instantaneous number of droplets, Ndp,

A
Aeq

= 1
Ndp

Ndp∑
q=1

Aq

Aeq,q
. (4.8)

The time evolution of A/Aeq is reported in figure 13: as expected, the ratio A/Aeq
increases with WeS . For Tg,0/Tc = 1.5, the data in the figure also display two peaks: at
tDlg,r/d2

0 ≈ 0.075 − 0.10 for WeS = 0.10 and tDlg,r/d2
0 ≈ 0.085 − 0.10 for WeS = 0.06.

These are associated to the droplet breakup as we have Ndp = 7 droplets for WeS = 0.06
and Ndp = 9 for WeS = 0.10 at the end of the simulations. For WeS = 0.02, no breakup
events have been observed within the simulation time. For Tg,0/Tc = 0.75, given the lower
evaporation rate and consequently the higher effective Weber number, breakup events have
been observed for all the cases in the interval 0.05 < tDlg,r/d2

0 < 0.125, finally yielding
Ndp = 7 − 9 − 12 for WeS = 0.02 − 0.06 − 0.10.

Interestingly, for the case Tg,0/Tc = 0.75, A/Aeq approaches a statistically stationary
value for tDlg/d2

0 > 0.125, whereas a regime value is not reached in the investigated time
window for Tg,0/Tc = 1.50. This behaviour is interpreted by comparing the time scale of
deformation as dictated by surface tension and applied shear, τσ , with the time scale of
evaporation extracted from the simulations, τv ,

Πσv = τσ

τv

, (4.9)

where τσ = ρg,r(Sd0)d2
0/σ and τv = d2

0/K, with K the evaporation at statically steady
state; see figure 14. At the high temperature ratio, evaporation is faster than deformation
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Figure 12. Time history of (d/d0)

2 when varying the Weber number, WeS = 0.02 − 0.06 − 0.10 and for
temperature ratios (a) Tg,0/Tc = 1.50 and (b) Tg,0/Tc = 0.75. The black dashed curves represent the theoretical
prediction of the actual evaporation rate obtained with the procedure explained in § 4.1. The length of the
error bars (included for tDlg,r/d2

0 > 0.025 and tDlg,r/d2
0 > 0.04, respectively) indicates the droplet with the

fastest/slowest evaporation rate among the five droplets in the simulations. (c) Evaporation enhancement (i.e.
K/K0) as a function of WeS for ReS = 6700 and Tg,0/Tc = 0.75 − 1.50.

(i.e. τσ > τv) and the surface tension does not have time to adjust the droplet shape after
the mass losses due to the differential evaporation across the interface. An increasing
deviation from the spherical shape is therefore observed in time. Conversely, at low
temperature, the deformation time is comparable or lower than the evaporation time (i.e.
τσ < τv) and the droplet shape can compensate for the local deformations induced by the
evaporation mass flux (note that the droplet tends to a constant deformation, increasing
with WeS and not to the spherical shape, i.e. A/Aeq > 1, as we have an imposed shear).
From the data in figure 14, we also notice that for a fixed Tg,0/Tc, increasing WeS
accelerates the evaporation time scale (i.e. higher Πσv), consistently with what is observed
in figure 12.

Given the variation of the evaporation rate with the WeS , it is worth investigating
whether the evaporation flux at the droplet surface is correlated to the local curvature.
This has been already assessed in laminar flows analytically for evaporating droplets
of spheroidal shapes (Tonini & Cossali 2013), and experimentally for sessile droplets
(Sáenz et al. 2017). In turbulent flows this analysis is missing and is performed here by
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Figure 13. Ratio between the instantaneous interfacial area A and the area of a spherical droplet with the same
volume V , i.e. Aeq = π1/3(6V)2/3, for WeS = 0.02 − 0.06 − 0.10 and (a) Tg,0/Tc = 1.50 and (b) Tg,0/Tc =
0.75.
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Figure 14. Ratio between the deformation time scale and the evaporation time scale (in turbulent condition)

as a function of WeS for Tg,0/Tc = 0.75 and 1.50.

computing the joint probability density function (p.d.f.) of the normalized interfacial mean
curvature κΓ /κΓ,eq and the dimensionless interfacial mass flux ṁΓ /ṁΓ,0, where κΓ,eq is
the curvature of a spherical droplet with the same volume V (i.e. κΓ,eq = 4/deq, with
deq = (6V/π)1/3) and ṁΓ,0 is the interfacial mass flux for a purely diffusion-dominated
evaporation process, i.e.

ṁΓ,0 = 8πρg,rDlg,r log(1 + BM)/d0. (4.10)

Note that ṁΓ is evaluated using the expression (2.5) in all the nodal points cut by the
interface, whereas κΓ is computed directly from its definition, i.e. κΓ = ∇ · nΓ . The
reconstructed level-set function is employed for a more accurate estimation of κΓ .

From the results at high temperature (i.e. Tg,0/Tc = 1.5) reported in figure 15, we do not
note a clear relation between ṁΓ and κΓ , yet there is a relatively broad distribution of mass
fluxes over the droplet surface, which can be attributed to the local variations of vapour
concentrations in the gas phase induced by the turbulence and by the flow anisotropy.
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Figure 15. Joint p.d.f. of the dimensionless mass flux ṁΓ /ṁΓ,0 and the normalized interfacial curvature
κΓ /κΓ,eq for ReS = 6700, Tg,0/Tc = 1.5 and (a) WeS = 0.02, (b) WeS = 0.10.

Indeed, the regions whose local outward normal vector is parallel to the mean flow
direction (i.e. droplet front) experience higher surface vapour gradients, whereas larger
concentrations are found in those where the normal vector is opposite to the flow (i.e.
droplet rear). Note also that the increase of WeS corresponds to a shift of the most probable
values of ṁΓ and κΓ towards higher values. When the gas temperature is reduced (i.e.
Tg,0/Tc = 0.75), the correlation between ṁΓ and κΓ is still weak for WeS = 0.02, while
for the case at WeS = 0.10, a higher interfacial curvature is associated with a higher
interfacial mass flux. Also at lower temperatures, the most probable values are located
at higher κΓ when increasing the Weber number. Comparing with the results at higher
temperatures, figure 15, we note that ṁΓ /ṁΓ,0 is larger: turbulence enhances evaporation
more efficiently at low temperature, when the evaporative time scale is longer and the ratio
with the turbulent time scales decreases, i.e. Dav decreases.

Finally, we display in figure 17 the joint p.d.f. from the simulations at lower Reynolds
number, ReS = 2800, for Tg,0/Tc = 0.75–1.5 and WeS = 0.02. In this case, the reduction
of Tg,0/Tc leads to more pronounced deformation, i.e. larger values of κΓ /κΓ,eq (due
to the slower evaporation and higher effective WeS ) and to higher values of ṁΓ /ṁΓ,0
(more pronounced effects of turbulence at lower absolute evaporation rates) and a broader
distribution, again attributed to fluctuations induced by the turbulence. Comparing with
the results at the same WeS and Tg,0/Tc but ReS = 6700 in panels (a) of figures 15
and 16, we see that, for both temperature ratios, the reduction in ReS restricts the range of
attained values for the curvature and the ratio ṁΓ /ṁΓ,0, confirming that the increase of
deformation and evaporation rate is more pronounced for bigger droplets.

5. Conclusions

Fully resolved simulations of finite-size evaporating droplets are performed in HST
using a weakly compressible solver for evaporating flows. The new methodology, here
described, combines two features. First, an improved version of the Adams–Bashforth
method in order to address the limitations of the classical formulation, already highlighted
in Kasbaoui et al. (2017). The improvement allows us to match the single-phase analytical
solution in the rapid distortion limit and ensures a stable integration over long times.
Second, a mathematical model with the details of the numerical implementation for a
two-phase evaporating system composed of an incompressible liquid and a compressible
gas phase. In order to remove the acoustic time-step restriction, compressible effects
are here handled in the low-Mach number limit. This new methodology is applied to
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Figure 16. Joint p.d.f. of the dimensionless mass flux ṁΓ /ṁΓ,0 and the normalized interfacial curvature
κΓ /κΓ,eq for ReS = 6700, Tg,0/Tc = 0.75 and (a) WeS = 0.02, (b) WeS = 0.10.
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Figure 17. Joint p.d.f. of the dimensionless mass flux ṁΓ /ṁΓ,0 and the normalized interfacial curvature
κΓ /κΓ,eq for ReS = 2800 for WeS = 0.02 and (a) Tg,0/Tc = 1.50 and (b) Tg,0/Tc = 0.75.

investigate the behaviour of finite-size evaporating droplets in HST when changing the gas
temperature over the critical temperature Tg,0/Tc = 0.75, 1.00 and 1.50, the initial droplet
diameter in terms of Kolmogorov scale, d0/η = 10.5 and 21.5 and the surface tension,
quantified by the shear-based Weber number WeS = 0.02, 0.06 and 0.10.

First, using the data at d0/η = 21.5 and WeS = 0.02, we study the differences when
employing different thermodynamic models for the gas thermophysical properties. Three
approaches are investigated: a constant property model where the gas properties are kept
constant and initialized with the ‘1/3 rule’ (CP) and two variable-property approaches
where either the gas density, VPρ , or all the gas properties are allowed to vary, VPa. We
find that the predictions by the CP and VPa models agree well, whereas the VPρ model
overpredicts the evaporation rate, especially at high temperature. This overestimation
occurs since the local increase of the gas density (due to evaporative cooling) is captured
by the VPρ model, but the decrease of the diffusion coefficient with temperature,
which slows down the evaporation, is not accounted for. Moreover, by extracting the
Sherwood number for the three models at Tg,0/Tc = 0.75, 1.50 and comparing it with the
Frössling/Ranz-Marshall correlation (Ranz & Marshall 1952), we show that the correlation
provides an excellent estimation of Sh at high temperature (conduction-dominated regime),
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whereas it substantially underestimates Sh at lower temperature (convective-dominated
regime), in agreement with recent experimental observations (Méès et al. 2020).

Next, reducing the ratio d0/η from 21.5 to 10.5 (obtained by reducing ReS from 6700
to 2800), we show that the ratio between the actual evaporation rate, and that computed
in stagnant conditions, is always much higher than 1, while decreasing with Tg,0/Tc.
Interestingly, this ratio does not approach unity at the highest temperature level, suggesting
an evaporation enhancement due to turbulence also in these conditions. The variation of
the droplet size, d0/η, also affects the liquid temperature at the interface and the mean
liquid temperature. For Tg,0/Tc = 1.0, 1.5, the regime values of both quantities are larger
for droplets of d0/η = 21.5, whereas the opposite is true at Tg,0/Tc = 0.75 when the
regime values of the liquid temperature are lower for the largest droplets. This is explained
as the result of two competing effects: cooling by evaporation and heating from the hot
gas.

Finally, by varying WeS in the range 0.02 and 0.10, we observe an increase in the
evaporation rate for higher WeS given the larger surface area available for mass transfer. At
fixed WeS , this increase is more pronounced at Tg,0/Tc = 0.75 due to a slower evaporation
rate and higher deformation (larger effective Weber number based on the instantaneous
droplet diameter). By computing the joint p.d.f. of the interfacial mass flux and curvature, a
weak correlation between the two is observed at high temperature regardless of the Weber
number, whereas a positive correlation is recovered at Tg,0/Tc = 0.75 and WeS = 0.10,
consistently with the theoretical prediction in laminar environments (Tonini & Cossali
2013) and the experimental observations for sessile droplets (Sáenz et al. 2017).

Note that in all the cases, the initial liquid volume fraction has been kept small (i.e.
α0 ≈ 0.14 %), the droplets do not interact with each other and, as expected, no significant
deviations from the d2–law have been observed. To investigate such deviations and more
in general the collective dynamics of a dense suspension of evaporating droplets we
are currently exploring the same configurations presented in this work at higher volume
fractions.
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Appendix A. Equations of state

In this appendix we report the equations of state employed for the gas density, the gas
thermal diffusivity, the gas viscosity, thermal conductivity, heat capacity at constant
pressure and the Span-Wagner equation of state.
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Finite-size evaporating droplets in HST

A.1. Gas density
The gas density variations as a function of pth, Tg and Yv

l follow the ideal gas model

ρg = Πp,2
pthM̄m,av

Tg
, (A1)

where M̄m,av is the mixture molar mass computed using a harmonic average between the
gas and liquid molar masses and Πp,2 = ( pth,rMg)/(RuTg,r), where pth,r and Tg,r are the
reference thermodynamic pressure and gas temperature, taken equal to the corresponding
initial value and Ru is the universal gas constant.

A.2. Liquid–gas diffusion coefficient
The liquid gas diffusion coefficient is computed using the relation (Reid et al. 1987)

Dlg = T3/2
g

pth
, (A2)

where Tg is the gas temperature.

A.3. Gas viscosity
The gas viscosity varies with the temperature according to the simplified Sutherland’s law
(Reid et al. 1987),

μg = T2/3
g . (A3)

A.4. Specific heat capacity at constant pressure
The specific heat capacity at constant pressure is evaluated as a function of the temperature
using the virial polynomials (Reid et al. 1987)

cp = A1 + A2Tg + A3T2
g + A4T3

g + A5T4
g , (A4)

where the coefficients A1 = 1.012, A2 = 0.0553, A3 = 0.006, A4 = 2 · 10−3 and A5 = 5 ·
10−4 are adequate to estimate the heat capacity at constant pressure for dry air over a wide
range of temperatures.

A.5. Gas thermal conductivity
As for the gas viscosity, the gas thermal conductivity is a function of the temperature only
and computed as (Reid et al. 1987)

kg = μgcpg

Pr
, (A5)

where Pr is the Prandtl number.
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A.6. Span–Wagner equation of state
In order to compute the value of Yv

l at the interface, see § 3.1.2, we assume that the gas
mixture is ideal and composed of ideal components. Hence, Yv

l,Γ can be computed using
Rault’s law,

Yv
l,Γ =

ps,Γ

pth
ps,Γ

pth
+
(

1 − ps,Γ

pth

)
1
λM

, (A6)

where λM = Ml/Mg is the molar mass ratio, while pth and ps,Γ are the thermodynamic
pressure and the partial pressure of the vaporized species at the interface. Since the
interface is assumed at saturation, ps,Γ is computed as a function of the liquid temperature
at the interface. For most of the substances, the Span–Wagner equation of state represents
a valid approximation over a wide range of thermodynamic pressures and temperatures
(Span & Wagner 1996),

ps,Γ

pth
= Πp,3

pth
exp
[

B1ηsw + B2η
1.5
sw + B3η

2.5
sw + B4η

5
sw

1 − ηsw

]
, (A7)

where ηsw = 1 − TΓ (Tg,0/Tc) and Πp,3 = pc/pth,r, with Tg,0, Tc and pc the initial gas
temperature, the critical temperature and critical pressure, respectively. The coefficients
Bi=1,4 = {−7.32714, 1.82365, −2.272744, −2.711929} are experimentally determined
and correspond in the current study to those of pentane; see Span & Wagner (1996).
Note that the use of the Span–Wagner model is also convenient since it does not involve
the saturation temperature (like the Clausius–Clapeyron relation), which in a weakly
compressible phase-changing system is not a constant anymore, but should be computed
as a function of the time-varying thermodynamic pressure.

As a final remark, to justify the assumption of incompressible liquid with constant
properties, we evaluate a posteriori the variations of ρl, cpl, kl and μl given the maximum
variation of liquid temperature discussed in § 4.2. Using the data reported in Reid
et al. (1987) and taking as reference the cases at Tg,0/Tc = 1.5 (when the liquid
temperature variation is more pronounced), these amount to �ρl/ρl,0 = 6 %, �μl/μl,0 =
8 %, �cpl/cpl,0 = 4 %, �kl/kl,0 = 5 %.

Appendix B. Derivation of the velocity divergence

The system composed of (2.2), (2.3), (2.5) and (2.4) reported in § 2 is not closed and
an additional equation should be included. To derive it, we adapt the approach proposed
in Majda & Sethian (1985) in the context of reacting flows and recently employed for
phase change in Dodd et al. (2021). Nevertheless, since a detailed derivation is missing in
literature, it is provided here for completeness. The idea is to compute the missing relation
from the divergence of the velocity field, u, which can be computed as Hul + (1 − H)ug.
Taking the divergence yields

∇ · u = (ug − ul) · ∇H + (1 − H)∇ · ug + H∇ · ul. (B1)

The first term on the right-hand side represents the volume variation at the interface due to
phase change, while the second and the third come from the density variations in the gas
and liquid phases. We start with the phase-change contribution and consider a reference
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Finite-size evaporating droplets in HST

frame moving with the interface. Accordingly, we decompose the vector ug − ul along the
normal nΓ , tangential tΓ and bi-normal directions nΓ ,

ug − ul = (ug,n − ul,n)nΓ + (ug,t − ul,t)tΓ + (ug,b − ul,b)bΓ . (B2)

If the interface has zero thickness, the mass balance imposes that the velocity is continuous
along the tangential and bi-normal direction (i.e. ug,t = ul,t and ug,b = ul,b). Along the
normal direction, conversely, the velocity has a discontinuity proportional to the mass flux
ṁΓ between the two phases, i.e.

ṁΓ = ρg,Γ (ug,n − uΓ,n),

ṁΓ = ρl,Γ (ul,n − uΓ,n),

}
(B3)

where uΓ,n represents the normal component of the interface velocity and ρi=l,g,Γ the
phase density at the interface location. Combining the previous two equations yields

ug,n − ul,n = ṁΓ

(
1

ρg,Γ

− 1
ρl,Γ

)
. (B4)

Inserting (B2) and (B4) into (B1), we obtain

(ug − ul) · ∇H = ṁΓ

(
1

ρg,Γ

− 1
ρl,Γ

)
δΓ , (B5)

where δΓ = ∇H · nΓ .
The second term of (B1) is computed from the continuity in the gas region. If chemical

reactions are absent, this reads as

∇ · ug = − 1
ρg

Dρg

Dt
. (B6)

Using the equation of state for the gas density (A1), the total derivative of ρg can be
expanded as

1
ρg

Dρg

Dt
= 1

pth

Dpth

Dt
− 1

T
DT
Dt

− M̄m,av

D
Dt

(
1

M̄m,av

)
. (B7)

Combining equations (B5) and (B7) finally provides the velocity divergence in the gas
region (Dodd et al. 2021),

∇ · ug = − 1
pth

dpth

dt
+ 1

T
DT
Dt

+ M̄m,av

D
Dt

(
1

M̄m,av

)
. (B8)

Note that, given the low-Mach assumption, the total derivative of pth in (B8) has been
replaced by the time derivative of pth. A similar strategy can be employed to compute
∇ · ul; however, we consider here constant and uniform liquid density and, therefore, ∇ ·
ul = 0 in (B1) and ρl,Γ = ρl.

Differently from what it is commonly done in literature (Motheau & Abraham 2016), we
found preferable to replace the total derivative of the molar mass and of the temperature
with the corresponding spatial derivatives. By doing so, this solution completely removes
the time discretization errors when computing the terms in (B8). For the contribution due
to composition, we employ (2.3) and we treat the mixture of inert gas and vapour as ideal,
so that the mixture molar mass is given by the harmonic average of the molar mass of each
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component (Reid et al. 1987). Accordingly, using the relation Yg = YN = 1 −∑N−1
j=1 Yv

l,j
the third term on the right-hand side of (B8) becomes

M̄m,av

D
Dt

(
1

M̄m,av

)
= M̄m,av

N−1∑
j=1

(
1
λM,j

− 1
) DYv

l,j

Dt
, (B9)

where λM,j = Ml,j/Mg. For the temperature T , we start from the generic enthalpy equation
for the gas phase,

ρ
Dh
Dt

= 1
RePr

∇ · (k∇T) + Πp,1
dpth

dt
+ 1

ReSc

N∑
j=1

hv
j ∇ · (ρgDlg∇Yj). (B10)

In a weakly compressible system, being the enthalpy of the gas phase function of
temperature, thermodynamic pressure and vapour composition, the left-hand side of (B10)
can be expanded as

ρ
Dh
Dt

= ρ

(
∂h
∂T

)
Yv

l,j,pth

DT
Dt

+ ρ

(
∂h
∂pth

)
Yv

l,j,T

dpth

dt
+ ρ

N−1∑
j=1

(
∂h

∂Yv
l,j

)
T,Yi /= j

DYv
l,j

Dt

= ρcp
DT
Dt

+ ρ(1 − βT)
dpth

dt
+ ρ

N−1∑
j=1

(
∂h

∂Yv
l,j

)
T,pth,Yv

l,i /= j

DYv
l,j

Dt
. (B11)

Note that for an ideal gas, the isothermal compressibility coefficient β = 1/T and, thus,
(1 − βT) = 0, which can be omitted. Considering the term varying with the composition
Yv

l,j, this can be recast as (see Lupo et al. (2019) for details)

N−1∑
j=1

(
∂h

∂Yv
l,j

)
T,pth,Yv

l,i /= j

DYv
l,j

Dt
=

N−1∑
j=1

(hv,j − hg)
DYv

l,j

Dt
. (B12)

Inserting (B12) and (B11) into (B10) and using (2.3), we get

ρcp
DT
Dt

= 1
RePr

∇ · (k∇T) +
⎛⎝Πp,1

dpth

dt
+ ρg

ReSc

N∑
j=1

Dlg,j∇hj · ∇Yj

⎞⎠ (1 − H). (B13)

Note that (B13) is the same as (2.4) except for the source term due to phase change which
acts at the interface location. Finally, by combining (B13), (B9) (B8) in expression (B1),
the velocity divergence u can be expressed as

∇ · u = ṁΓ

(
1

ρg,Γ

− 1
λρ

)
δΓ︸ ︷︷ ︸

fΓ (xΓ ,t)

+ 1
pth

1
ReSc

M̄m,av

ρg

N−1∑
j=1

(
1
λM,j

− 1
)

∇ · (ρgDlg,j∇Yv
l,j)︸ ︷︷ ︸

fY (x,t)

(1 − H)
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Finite-size evaporating droplets in HST

+ 1
pth

1
Re

Πp,1

cpM̄m,av

⎡⎣ 1
Pr

∇ · (k∇T) + ρg

Sc

N∑
j=1

Dlg,j∇hj · ∇Yj

⎤⎦
︸ ︷︷ ︸

fT (x,t)

(1 − H)

−
(

1 − Πp,1

cpM̄m,av

)
1

pth

dpth

dt
(1 − H), (B14)

where fΓ , fY and fT are functions representing the different contributions to the total
velocity divergence, i.e. phase change, (fΓ ), change of the gas density due to composition
(fY ) and due to temperature (fT ).

The last step is to derive an expression for the thermodynamic pressure, pth. For an open
domain, pth is constant, whereas for a closed or triperiodic domain, it can be obtained by
imposing the volume conservation on the global domain V . This can formally be expressed
as a constrain on the velocity divergence∫

V
∇ · u dV = 0. (B15)

By employing (B15), we can easily rearrange the rate of change of pth as

1
pth

dpth

dt

∫
Vg

(
1 − Πp,1

cpM̄m,av

)
dVg =

∫
V

[
fΓ (xΓ , t) + ( fT(x, t) + fY(x, t))

pth
(1 − H)

]
dV.

(B16)

Appendix C. Verification/validation of the low-Mach solver with phase change

In this appendix we provide a verification and two validation cases of the weakly
compressible code employed to perform the numerical simulations in the present work.

C.1. Droplet evaporation due to a prescribed, constant mass flux
The set-up of this verification case consists of a two-dimensional circular droplet with
initial diameter d0, which evaporates due to a prescribed, constant mass flux ṁΓ,A. In this
case, the momentum equation is decoupled from the transport of energy and vapour mass
fraction equations and it is straightforward to show that the droplet diameter evolves as

d(t)
d0

= 1 −
(

2ṁΓ,A

d0ρl

)
t. (C1)

In our previous work (Scapin et al. 2020), we reproduce this test case using a zero-pressure
outflow boundary condition, whereas here we prescribe periodic boundary conditions.
Accordingly, as evaporation starts, the thermodynamic pressure builds up and eventually
reaches a stationary value when the droplet is completely evaporated. By setting fY and fT
to zero in (B16) and after some manipulations a nonlinear ordinary differential equation
can be derived for pth,

dpth(t)
dt

− 42ṁΓ,Aπd2(t)
30Gtot − 5ρlπd3(t)

(
1 − pth(t)

ρl(Ru/Mg)T0

)
pth(t) = 0, (C2)

where d(t) is computed using (C1), Gtot is the mass inside the system, taken equal to
its initial value (i.e. Gtot = ρg,0Vg,0 + ρlVl,0), T0 and (Ru/Mg) are chosen so that the
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Figure 18. (a) Temporal evolution of the instantaneous droplet diameter over the initial value, d/d0.
(b) Temporal evolution of the thermodynamic pressure over the initial value, pth/pth,0.

group pth,0/(ρg,0(Ru/Mg)T0) = 1. Equation (C2) is here solved with the fourth-order
Runge–Kutta scheme. The test has been repeated for three density ratios λρ = 10 − 50 −
100, with the remaining dimensionless physical parameters Re = 25, We = 0.10, λμ =
50; gravity is absent. The governing equations are solved in a square domain [−2d0; 2d0]2,
discretized with 128 × 128 grid points. The droplet is held at the centre of the domain.
Results are reported in figure 18: an excellent agreement between the numerical and the
analytical solutions is found for all the cases.

C.2. Hexadecane static droplet evaporation in a hot gas
As a validation case, we reproduce the numerical test proposed in Ni et al. (2021)
consisting of a static hexadecane droplet of initial diameter d0 = 550 μm, which
evaporates in dry air at Tg = 673 K. For this test case, we set Re = 25, We = 0.1,

Pr = Sc = 1, λρ = 770, λμ = 202, λk = 20, λcp = 2.1. Zero-pressure outflow boundary
conditions are prescribed (therefore, pth = pth,0) and the assumption of constant liquid
bulk density is relaxed (see Ni et al. (2021) for more details). The whole set of governing
equations are solved in a square domain [−10d0; 10d0]2 using 256 × 256 grid points. Once
evaporation starts, the liquid droplet undergoes a local initial expansion (i.e. (d/d0)

2 > 1)
until t/d2

0 ≈ 2, after which the d2 regime is approached (see figure 19a). Overall, good
agreement between our simulations and the reference data is observed, confirming once
more the validity of our numerical algorithm.

C.3. Single droplet evaporating in HIT
As a final validation case, we reproduce the experimental results in Verwey & Birouk
(2018), reproduced also in Dodd et al. (2021), consisting of a single n-heptane droplet
of initial diameter d0 = 200 μm, which evaporates in nitrogen at Tg = 348 K and
pth,0 = 10 bar. For this test case, we consider HIT sustained by an artificial forcing
(Podvigina & Pouquet 1994) at a Reynolds number based on the Taylor’s microscale
Reλ = u′

rmsλ/νg,r ≈ 32. The initial droplet Weber number Werms = ρg,ru′2
rmsd0/σ is set

equal to 0.0044, Pr = 0.715, Sc = 2.81, Ste = 1.05, λρ = 25.27, λμ = 11.82, λk = 3.72
and λcp = 2.45. The whole set of governing equations are solved in a cubic domain
[−16d0; 16d0]3 using 7683 grid points corresponding to about 48 grid points per initial
diameter. Figure 19(b) reports (d/d0)

2 as a function of t/d2
0 for both the experimental and
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Figure 19. Temporal evolution of the instantaneous droplet diameter (d/d0)
2 over the initial value for (a) the

validation case described in C.2 and (b) in C.3.

numerical results. A good agreement is observed with a deviation of evaporation rate KDNS
of less then 7 % with respect to the experimental data, which is considered a satisfactory
result and within the uncertainty of the measurement (Verwey & Birouk 2018).

Appendix D. Improved Adams–Bashforth scheme for HST simulations

Kasbaoui et al. (2017) show that the classical Adams–Bashforth scheme (AB2) employed
in Gerz et al. (1989) is not suitable for DNS of HST. Using as a benchmark the Kelvin
modes derived in the framework of the RDT (Maxey 1982; Isaza & Collins 2009), they
show that the method fails to reproduce the analytical solution with an unbounded growth
of the error. In this appendix we propose a modification of the classical Adams–Bashforth
scheme able to reproduce the Kelvin modes and, more generally, stable and accurate
simulations.

D.1. Proof of the numerical stability
We follow the approach proposed in Kasbaoui et al. (2017) and compute the time
discretization error introduced by the classical Adams–Bashforth scheme using the
simplified equation

∂u
∂t

+ Sz
∂u
∂x

= Au, (D1)

where A is a positive constant and S is the applied shear. As noted in Kasbaoui et al. (2017),
(D1) allows us to remove the complications due to the pressure gradient while preserving
some important key features of homogeneously sheared flows, i.e. the exponential growth
of the turbulent kinetic energy (Maxey 1982). The solution of (D1), u = û(t) exp(ik · x),
needs to satisfy two conditions for the amplitude û(t) and for the wave vector k,

dû
dt

= Aû, (D2a)

dk
dt

· x = −Szk · ex. (D2b)
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Assuming that the discretization error evolves as a wave of amplitude ε̂ and wave vector
k, at the nth time step

εn = ε̂n exp(ikn · x). (D3)

Employing the classical Adams–Bashforth integration scheme, we obtain a first
intermediate error neglecting the mean shear contribution,

ε̄n+1 = εn + A�tn+1[γ1RU(ε̂n, kn) − γ2RU(ε̂n−1, kn−1)], (D4)

where RU represents the discrete operator for the spatial terms in the governing
equation of the error and γ1 = (1 + 0.5�tn+1/�tn) and γ2 = 0.5�tn+1/�tn are the two
coefficients of the Adams–Bashforth scheme for a variable time-step size. Note again that,
at this stage, the mean shear contribution is not included in RU .

Following the approach proposed by Gerz et al. (1989), we set RU(ε̂n, kn) =
ε̂n exp(ikn · x) and RU(ε̂n−1, kn−1) = ε̂n−1 exp(ikn−1 · x). Moreover, by using the
identity exp(ikn−1 · x) = exp(−i�k · x) exp(ikn · x), (D4) becomes

ε̄n+1 = {εn + A�tn+1[γ1ε̂
n − γ2ε̂

n−1 exp(−i�k · x)]} exp(ikn · x), (D5)

where �k = kn − kn−1. Next, the mean shear contribution is included and this results in
an error at time n + 1,

εn+1 =
ε̂n+1︷ ︸︸ ︷

{εn + A�tn+1[γ1ε̂
n − γ2ε̂

n−1 exp(−i�k · (x − �tn+1Szex))]}
· exp[ikn · (x − �tn+1Szex)︸ ︷︷ ︸

ikn+1

]. (D6)

If we analyse (D6), we see that the new wave vector kn+1 satisfies the first condition, i.e.
(D2a). In fact,

kn · (x − �tn+1Szex) = kn+1 · x → kn+1 − kn

�tn+1 · x = −Szkn · ex. (D7)

Conversely, the amplitude at the new time level, ε̂n+1, does not satisfy the condition
(D2b) since it contains a spatial-dependent term, �k, which is caused by the difference in
orientation between the wave vector at the current and old time level, n and n − 1.

The approach proposed in this work improves the method by Gerz et al. (1989) by
removing the spatial-dependent term, �k. To this end, the third term on the right-hand
side of (D4) is first shear mapped to the current time level,

ε̂n−1 exp(ikn−1 · (x − �tnSzex)) = ε̂n−1 exp(ikn · x). (D8)

Equation (D8) is key to obtain two wave errors of different amplitudes (i.e. ε̂n and ε̂n−1)
but equal wave vector, i.e. kn. Inserting (D8) in (D4) gives

ε̄n+1 = {εn + A�tn+1[γ1ε̂
n − γ2ε̂

n−1]} exp(ikn · x). (D9)

Next, the shear-mapping step is applied to (D9), providing an error at n + 1,

εn+1 =
ε̂n+1︷ ︸︸ ︷

[εn + A�tn+1(γ1ε̂
n − γ2ε̂

n−1)] exp[ikn · (x − �tn+1Szex)︸ ︷︷ ︸
ikn+1

]. (D10)

As expected, and similarly to what is observed for (D5), (D10) satisfies the condition for
kn+1 given by (D2b). This time, however, also the condition (D2a) is met since the term
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Figure 20. Temporal evolution of the horizontal mode for tS = 1, 3 and 5 using the modified
Adams–Bashforth scheme.
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Figure 21. Temporal evolution of the horizontal mode for tS = 1, 3 and 5 using the standard
Adams–Bashforth scheme.
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Figure 22. Temporal evolution of the horizontal mode for tS = 1, 3 and 5 using the explicit Crank–Nicolson
method.

ε̂n+1 does not contain any spatial-dependent term, i.e. k. The effectiveness of the proposed
approach is shown in the next subsection with an analytical benchmark.
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Figure 23. Comparison between the numerical solution obtained with AB2 (proposed method) and the
analytical results from RDT.

105

100

10–5

105

100

10–5

0 1 2 3 4 5 6 0 1 2 3 4 5 6

AB2 - Modified
AB2 - Original
RK3
CN2

‖u
 –

 u
K
‖/‖

uK
‖

‖v
 –

 v
K
‖/‖

v
K
‖

tS tS

(a) (b)

Figure 24. Temporal evolution of the discretization of error (in log scale) for (a) the horizontal mode (i.e. u),
(b) the vertical mode (i.e. v) using the three time-integration methods, AB2 - Gerz et al. and AB2 - Modified,
RK3 and CN2.

D.2. Validation
To validate the modified algorithm proposed here, we employ the two-dimensional
analytical Kelvin modes derived in the framework of the RDT,

vK(x, t) = vK
0

(
k0

k

)2

exp

[
− tS

Reλ

(
k2

0 − kx,0ky,0St + k2
x,0S2t2

3

)]
exp(ik · x),

uK(x, t) = −ky(t)
kx

vK(x, t),

ky = ky,0 − kxSt,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(D11)

where Reλ, defined as Sλ2
0/ν, is the Reynolds number based on the perturbation

wavelength λ0 =
√

(2π/kx)2 + (2π/ky,0)2, taken as a reference length. As done by
Kasbaoui et al. (2017), we consider a two-dimensional square box lx = ly = 2π,
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discretized with N = 128 points along each direction. The analytical solution (D11)
is employed as the initial condition, with initial vertical amplitude vK

0 = √
2/2, initial

wave vector k0 = (4, 1) and Reλ = 208. We compare three time-integration methods:
(1) the Adams–Bashforth (AB2) in the two variants (classical and modified), (2) the
third-order Runge–Kutta (RK3) method proposed in Tanaka (2017), Yousefi et al. (2020)
and (3) the explicit Crank–Nicholson (CN2) method proposed in Kasbaoui et al. (2017).
In all cases, the momentum equation is advanced with a constant time step, �t =
0.25 (SN)−1. Figures 20–22 report the horizontal mode obtained with the three different
time-integration schemes, which according to the RDT should go to zero at tS = 1. Using
the modified AB2 scheme and CN2, we obtain almost identical results and zero horizontal
mode up to machine precision at tS = 1. Conversely, using the original approach by Gerz
(figure 21), the normal mode does not go to zero for tS = 1 and, for tS = 5, the numerical
errors largely affect the solution.

The excellent agreement between the results obtained with our approach and the
analytical solution from RDT are reported in figure 23. A more detailed analysis considers
the evolution in time of the relative error, reported in figure 24 for the horizontal and
vertical Kelvin modes. The modified AB2, RK3 and CN2 provide similar errors, especially
for tS > 2, while for tS ≤ 2, the CN2 method appears to be slightly more accurate. On the
contrary, the error of the classical AB2 is well above that from the other three methods,
with a local peak at tS = 1 in the horizontal mode uK , as already observed in the first
panel of figure 21. Furthermore, the error evolves at a much faster pace, which is the main
reason for the poor performance of the classic AB2 in more demanding simulations.
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