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The first bifurcation and the instability mechanisms of shear-thinning and shear-
thickening fluids flowing past a circular cylinder are studied using linear theory and nu-
merical simulations. Structural sensitivity analysis based on the idea of a "wavemaker" is
performed to identify the core of the instability. The shear-dependent viscosity is modeled
by the Carreau model where the rheological parameters, the power-index and the material
time constant, are chosen in the range 0.4 6 n 6 1.75 and 0.1 6 λ 6 100. We show how
shear-thinning/shear-thickening effects destabilize/stabilize the flow dramatically when
scaling the problem with the reference zero shear-rate viscosity. These variations are ex-
plained by modifications of the steady base flow due to the shear-dependent viscosity;
the instability mechanisms are only slightly changed. The characteristics of the base flow,
drag coefficient and size of recirculation bubble are presented to assess shear-thinning
effects. We demonstrate that at critical conditions the local Reynolds number in the core
of the instability is around 50 as for Newtonian fluids. The perturbation kinetic energy
budget is also considered to examine the physical mechanism of the instability.

1. Introduction

The aim of the present work is to study the effects of shear-dependent viscosity on
the appearance of the first instability for the flow past a circular cylinder. We consider
shear-thinning and shear-thickening fluids obeying the Carreau-Yasuda rheological law.
The flow past a circular cylinder is chosen as the classical example of bluff body flows.
Although an idealized configuration, flows past circular cylinders are relevant to many in-
dustrial applications. Some examples are tubular and pin type heat exchangers, filtration
screens, membrane based separation modules (see e.g. Panda & Chhabra 2010).

From a stability point of view, the cylinder flow displays intrinsic dynamics and the spa-
tial distribution of the disturbance synchronizes in space. The instability of the cylinder
flow has been extensively studied in the past for Newtonian fluids. Based on these pre-
vious works, Mossaz, Jay & Magnin (2010), among many, describe the different regimes
observed when varying the Reynolds number. The flow changes from creeping flow with
no separation to laminar flow with two symmetrical steady vortices at Reynolds num-
ber about 6. The length of the steady recirculation regions increases linearly with the
Reynolds number (e.g. Giannetti & Luchini 2007). The transition to unsteady periodic
flow (i.e., the Hopf bifurcation) of the two-dimensional flow is at Reynolds number about
47 (Provansal, Mathis & Boyer 1987). Finally a three-dimensional wake appears when
the Reynolds number is about 190 (Barkley & Henderson 1996). In this work, we focus
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on the first bifurcation to unsteady flow and use a sensitivity analysis to understand the
instability mechanisms.

1.1. Cylinder flow of non-Newtonian fluids

Recently several investigations have been conducted to understand the non-Newtonian
effects on the characteristics of the flow around a circular cylinder in different regimes.

As regards shear-thinning fluid past a cylinder, Coelho & Pinho (2003a), Coelho &
Pinho (2003b) and Coelho & Pinho (2004) carried out experimental studies on the vor-
tex shedding flow regimes of both Newtonian fluids and shear-thinning weakly elastic
polymer solutions. The Reynolds number is varied from 50 to 9000 including laminar
vortex shedding, transition and shear-layer transition regimes. It was shown that shear-
thinning gives rise to a reduction of the cylinder boundary-layer thickness and a decrease
of the diffusion length which increases the Strouhal number. Conversely, fluid elasticity
is responsible for an elongation of the formation region which results in a decrease of the
Strouhal number.

Only a few studies have considered shear-dependent viscosity. Sivakumar, Bharti &
Chhabra (2006) and Patnana, Bharti & Chhabra (2009) investigated lift and drag coeffi-
cients as well as instantaneous streamlines and vortices for the flow past a stationary and
a rotating cylinder by means of numerical simulations. These authors examined both
shear-thinning and shear-thickening fluids, using power law, in the range of creeping
flow up to Reynolds number equal to 140. In the case of a stationary cylinder, the drag
coefficient decreases with shear-thinning at a fixed value of Reynolds number. For rotat-
ing cylinders, the viscosity variation influences the drag and the lift coefficients of low
Reynolds number flows more than those of high Reynolds number flows. Nejat, Abdollahi
& Vahidkhah (2011) simulate the Power-law flow past a series of tandem arrangement of
two cylinders in a confined domain, using a lattice Boltzman algorithm. For a Reynolds
number equal to 40, the drag on the upstream cylinder is one order of magnitude larger
than the one downstream for the cylinder spacing up to two times the cylinder diame-
ter. Mossaz et al. (2010) simulate a Herschel-Bulkley viscoplastic fluid behind a circular
cylinder in order to obtain a criteria for the appearance of non-stationary regimes at
subcritical Reynolds numbers. The frequency of the vortex shedding in the supercritical
regime decreases with the Oldroyd number and it is therefore concluded that viscoplastic
effects stabilize the flow.

As seen from the above discussion, several efforts considered the flow of a visco-elastic
fluid past a cylinder, see among others Sarpkaya, Rainey & Kell (1973) and Pipe &
Monkewitz (2006). In a recent study, Richter, Iaccarino & Shaqfeh (2010) investigate a
dilute solution of polymers at Reynolds numbers of 100 and 300 via numerical simula-
tions of the FENE-P model. In particular at Reynolds number equal to 100, an increase
in polymer extensibility elongates the recirculating region behind the cylinder and in-
creases the average drag. At larger Reynolds number, polymer elasticity suppresses the
secondary three-dimensional mode which dominates the structure of the near-wake for
Newtonian fluids. Later on, the same authors investigated the viscoelastic effects on the
stability of the cylinder wake using linear theory (Richter, Shaqfeh & Iaccarino 2011).
They found that viscoelasticity modifies the underlying baseflow which results in a re-
duction of vorticity intensity and strain rate in the wake and successively a decrease in
the production of perturbation energy.

1.2. Instability in shear-thinning fluids

The pseudo-plastic fluids (shear-thinning fluids) can be classified as inelastic non-Newtonian
fluids in which the viscosity is decreasing with the shear rate. The two most popular
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rheological laws for shear-dependent viscosity are the Power-law model and the Carreau-
Yasuda model. Nouar & Frigaard (2009) note that the Power-law model can only be
used for a limited range of shear rates, while the Carreau model is more realistic and has
the flexibility to fit a wide range of experimental data. Coelho & Pinho (2004) experi-
mentally showed that the Carreau-Yasuda model can fit to a solution of dilute polymers
with different degrees of shear-thinning for the flow past a cylinder . Nouar, Bottaro
& Brancher (2007) choose the Carreau model because of its capability to model steady
shear, complex viscosity, stress growth and the stress relaxation function. In this work
the Carreau-law is chosen to model viscosity of shear-thinning and shear-thickening fluid
past a circular cylinder.

The stability of a variety of shear-thinning fluids, has already been studied for canonical
parallel flows, e.g. the circular Couette flow, channel flow, mixed plane Couette and
Poiseuille flow and gravity driven flow over an inclined plane. Caton (2006) presented
linear stability results of a power law fluid for circular Couette flow. For small gaps
between the two cylinders, the critical Reynolds numbers for the onset of instability
reduces with increasing shear-thinning. Nouar et al. (2007) used the Carreau rheological
law model to investigate modal and non-modal instability of channel flow. Nouar &
Frigaard (2009) analyzed the instability of the mixed plane Couette and Poiseuille flow
for a shear-thinning fluid, using also the Carreau law. These authors showed that the
production of kinetic energy in the critical layer next to the fixed wall controls the
stability of the flow. Milleta, Rousset & Hadid (2009) showed the stabilizing effects of
shear-thinning on the flow of two layers of fluid with different density over an inclined
plane using linear theory.

Here we study how shear-thinning and shear-thickening effects vary the critical Reynolds
number for the cylinder flow. We present the first global stability analysis for this two-
dimensional configuration and shear-dependent inelastic fluids. Note that recently Panda
& Chhabra (2010) investigated by numerical simulations the critical Reynolds number
of the Power-law cylinder flow for the range of 0.3 < n < 1.8. They reported that the
critical Reynolds number first increases with the power index, to about n ≈ 0.6, and
then decreases sharply. (In contrast, we show in this work, using Carreau law, that the
critical Reynolds number is always decreasing when increasing the shear-thinning).

1.3. Structural Sensitivity

Structural sensitivity analysis is used to determine the instability mechanism that ini-
tiates the transition to an unsteady flow(Chomaz 2005). Giannetti & Luchini (2007)
analyzed the instability mechanism of the flow past a stationary cylinder and introduced
the concept of structural sensitivity. The spatial structure of the modes shows maximum
amplitude of the perturbation downstream of the cylinder. However, highest receptiv-
ity is found in the near wake (close to the cylinder). Structural sensitivity identifies the
core of instability: this is associated to the location in space where a feedback provides
the largest shift of the eigenvalues. The disturbance equations is forced by a local force-
velocity feedback modeling the effect of small control device. Such a device has actually
two distinct effects: in the quasi-static limit, it indeed forces the disturbance through
a feedback as that studied by Giannetti & Luchini (2007). Nevertheless, it would also
modify the base flow. Marquet, Sipp & Jacquin (2008) studied the sensitivity to base flow
modifications of the flow past a circular cylinder, still related to the maximum variation
of the eigenvalue. The authors identified the region that mostly contributes to the onset
of vortex shedding. The sensitivity to steady forcing determines the regions which can
stabilize the unstable global modes. This approach is used in Marquet et al. (2009) to
control separation in an S-shaped duct. Pralits, Brandt & Giannetti (2010) used the same
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formulation as Giannetti & Luchini (2007) to examine the first and the second shedding
modes of flow past a rotating cylinder. These authors compared their results with the
analysis of the perturbation kinetic energy budget. They also suggested how to place a
small cylinder close to the main rotating cylinder to control the instabilities based on
the sensitivity maps originating from the structural sensitivity analysis. Other investiga-
tions worth mentioning regarding the effect of base flow modifications are Bottaro et al.

(2003) for the plane Couette flow, Meliga et al. (2010a) and Meliga et al. (2010b) who
analyse compressible axisymmetric wake flows and Alizard et al. (2010) concerning the
flow formed by the intersection of two perpendicular flat plates.

A recent review about linear approaches to sensitivity and control can be found in Sipp
et al. (2010). The authors describe the dynamics of instabilities and introduce open-loop
and closed-loop control strategies to suppress them. Sensitivity of globally stable flows
to transient disturbance growth is considered in Brandt et al. (2011).

The paper is organized as follows. The viscosity model and stability equations are given
in section 2. After introducing the numerical method in 3, we present results for shear–
thinning and shear-thickening fluids in section 4 and 5. Section 6 reports a summary of
the main conclusions and a final discussion.

2. Problem formulation

2.1. Viscosity model

The Carreau-Yasuda model describes the behavior of fluids with shear-dependent viscos-
ity, so called shear-thinning and shear-thickening fluids. The relation between viscosity
and deformation rate is given by

µ =
µ̂∞

µ̂0
+ [1 −

µ̂∞

µ̂0
][1 + (λγ̇)a](n−1)/a. (2.1)

In the expression above, µ̂0 and µ̂∞ are the zero shear-rate and infinite shear-rate
viscosities, set to 1 and 0.001 in this work. µ is non-dimensional and normalized with
respect to µ̂0. The second invariant of the strain-rate tensor is denoted as γ̇ and is
determined by the dyadic product γ̇ = (1

2G : G)
1

2 , where G = ∇u + (∇u)T (see Bird
et al. 1987). The non-dimensional parameter a describes the transition between the zero
shear-rate viscosity and the infinite-shear rate viscosity (Bird et al. 1987). The Carreau-
Yasuda model can be fitted to the rheological behavior of many polymeric solutions
when a=2, also denoted the Carreau model. The power-law index ”n” characterizes the
fluid behavior: i) shear-thinning when n < 1, ii) Newtonian when n = 1 and iii) shear-
thickening fluids when n > 1. Here, ”λ” is the material time constant. Newtonian fluid
is also obtained setting λ = 0, and for large values of λ the Carreau model is reduced to
the power-law model

µ = K(γ̇)n−1,

where K is a consistency factor. A logarithmic plot of the viscosity versus the shear rate
for the Carreau-law model provides intuition on how the viscosity of a shear-thinning fluid
decreases when increasing the shear rate. In figure 1 the viscosity is shown as a function
of γ̇ for different λ’s and a fixed value n = 0.5 of power index. The shear-thinning effects
become more evident when increasing λ and the viscosity tends to the asymptotic value
µ∞ for large shear rates.
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Figure 1. Viscosity µ of Carreau-law model versus shear rate γ̇ for n = 0.5, (◦): λ = 0.1, (�):
λ = 1, (•): λ = 10, (�): λ = 100

2.2. Governing equation: base flow and stability problem

The continuity and Navier-Stokes equations with shear-dependent viscosity govern the
flow past a stationary circular cylinder of an incompressible shear-thinning fluid. The
non-dimensional form of the governing equations reads

∂ũ

∂t
+ ũ · ∇ũ = −∇p +

1

Re
∇ · [µ(ũ)(∇ũ + ∇ũT )] (2.2)

∇ · ũ = 0,

where ũ = (ũ, ṽ, w̃) is a vector containing the non-dimensional velocity components,
p is the non-dimensional pressure and µ the viscosity defined by the Carreau model
introduced above. The Reynolds number is here defined by

Re =
ρU∞D

µ̂0
,

where µ̂0 is the viscosity at zero shear rate, U∞ is the free-stream velocity, D the cylinder
diameter and ρ the fluid density.

To perform a linear stability analysis, we introduce small perturbations in the flow
and study their spatial and temporal evolution. The flow variables are decomposed into
a two-dimensional steady base flow and a small unsteady perturbation, in general three-
dimensional. For shear-thinning and thickening fluids the decomposition includes not
only the velocity and the pressure but also the viscosity µ

ũ(x, y, z, t) = Ub(x, y) + u′(x, y, z, t) (2.3)

p(x, y, z, t) = Pb(x, y) + p′(x, y, z, t)

µ(x, y, z, t) = µb(x, y) + µ′(x, y, z, t).

The base flow variables Ub, Pb and µb are time independent and satisfy the steady
Navier-Stokes equation

Ub · ∇Ub = −∇Pb +
1

Re
∇ · [µb(Ub)(∇Ub + ∇UT

b )] (2.4)

∇ ·Ub = 0.

To derive the linearized stability equations, we first define the viscosity fluctuations by
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the linear term of the Taylor expansion of the viscosity function µ(γ̇)

µ′ = γ̇ij(u
′)

∂µ

∂γ̇ij
(Ub), (2.5)

where µ′ is a scalar quantity that can be expressed as the inner product of a vector B
and the velocity perturbation. For the sake of clarity, we present here the derivation only
for two-dimensional perturbations which are found to be the first to become unstable; in
this case the viscosity fluctuation can be written

µ′ = B(Ub)
T · u′ =

[

X1 X2
]

·





u′

v′



 ,

with X1 and X2 defined as

X1 = 2
∂µ

∂γ̇11
(Ub)

∂

∂x
+ 2

∂µ

∂γ̇12
(Ub)

∂

∂y

X2 = 2
∂µ

∂γ̇12
(Ub)

∂

∂x
+ 2

∂µ

∂γ̇22
(Ub)

∂

∂y
.

Introducing the decomposition (2.3) into equations (2.2) and neglecting higher order
terms, we can write the linearized stability equations

∂u′

∂t
+ L(Ub, Re)u′ + ∇p′ = 0 (2.6)

∇ · u′ = 0,

where the operator L is

L(Ub, Re)u′ = u′ · ∇Ub + Ub · ∇u′

−
1

Re
∇ · [µ(Ub)(∇u′ + (∇u′)T ) + (B(Ub) · u

′)(∇Ub + ∇UT
b )].

Perturbations are assumed to decay far from the cylinder and vanish at the cylinder
surface. Solutions of the stability problem are sought in the form

u′(x, y, z, t) = û(x, y)exp(σt + iβz); p′(x, y, z, t) = p̂(x, y)exp(σt + iβz), (2.7)

where β is the spanwise wavenumber introduced to exploit the homogeneity in the span-
wise direction z.

Finally the stability problem reduces to the following eigenvalue problem,

σû + L(Ub, Re)û + ∇p̂ = 0 (2.8)

∇ · û = 0.

The complex number σ is the eigenvalue of our stability problem and the complex field
q̂ = (û, p̂) the corresponding eigenmode. The real and imaginary part of σ represent the
growth rate and circular frequency of the perturbation.

2.3. Structural sensitivity and energy budget

Structural sensitivity analysis based on the idea of "wavemaker" was introduced in Gi-
annetti & Luchini (2007) to identify the location of the core of a global instability. Wave-
maker is the region in the flow where variations in the structure of the problem provide
the largest drift of the eigenvalues. This will be considered in parallel to production of
perturbation kinetic energy. In this section, we follow the derivation of the structural
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sensitivity as presented in Pralits et al. (2010) and include viscosity perturbation in the
formulation. We start with the perturbed eigenvalue problem

σ′û′ + L(Ub, Re)û′ + ∇p̂′ = δH(û′, p̂′) (2.9)

∇ · û′ = 0.

where δH is the generalized structural perturbation. It is assumed to be a momentum
force localized in space and proportional to the local velocity perturbation defined by a
(2×2) coupling matrix δM0 and the delta function

δH(û′, p̂′) = δM(x, y) · û′ = δ(x − x0, y − y0)δM0 · û′. (2.10)

Neglecting the higher order terms, variations of the eigenvalue δσ and of the corre-
sponding eigenfunction (δû, δp̂) satisfy the following expression

σδû + L(Ub, Re)δû + ∇δp̂ = −δσû + δM · û (2.11)

∇ · δû = 0.

We introduce the Lagrange identity as a function of the differentiable direct field
q = (u, p) and its adjoint field g+ = (f+, m+)

[(σû + L(Ub, Re)û + ∇p̂) · f̂+ + (∇ · û) · m+]

+ [û · (−σf̂+ + L+(Ub, Re) + ∇m+) + p̂∇ · f̂
+
] = ∇ · J(q̂, ĝ+), (2.12)

where J is the bilinear concomitant

J(q̂, ĝ+) = Ub(û · f̂
+
) +

1

Re
[µ(Ub)(∇f̂

+
+ (∇f̂

+
)T ) · û− µ(Ub)(∇û + ∇ûT ).̂f

+

− (B(Ub) · û)(∇Ub + ∇UT
b ).̂f

+
] + m+û + p̂f̂

+
.

Using equation (2.12), the equation for the adjoint field ĝ+(x, y) = (̂f
+
, m̂+) is

−σf̂+ + L+(Ub, Re) + ∇m+ = 0 (2.13)

∇ · f̂
+

= 0,

where L+ is the adjoint operator of the linearized Navier-Stokes

L+(Ub, Re)̂f
+

= Ub · ∇f̂
+
−∇Ub · f̂

+

+
1

Re
[µ(Ub)(∆f̂

+
+ (∆f̂

+
)T ) + (∇Ub + ∇UT

b ) · ∇f̂
+
B(Ub)].

Considering equations (2.16), (2.12), and (2.13), taking the integral over the whole
domain D, we obtain the following

−δσ

∫

D

f̂
+
· ûdA +

∫

D

f̂
+
· δM · ûdA =

∫

∂D

J(q̂, ĝ+) · ndl. (2.14)

Note that the boundary conditions are set in such a way that the right hand side of
equation (2.14) becomes zero. Introducing the sensitivity tensor

S(x0, y0) =
f+(x0, y0)û(x0, y0)

∫

D f̂
+
· ûdA

, (2.15)
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the expression for the eigenvalue drift is

δσ(x0, y0) =

∫

D
f̂
+
· δM · ûdA

∫

D f̂
+
· ûdA

=
f̂
+
· δM0 · û

∫

D
f̂ · ûdA

= S : δM0 = SijδM0ij . (2.16)

The core of instability can be identified by different norm of the tensor S. Here we will
show the spectral norm, the largest singular value of the tensor S.

2.3.1. Structural sensitivity to base-flow modifications

To clarify the role of the base flow in the instability and gain information about the
effect of passive control devices, we investigate the structural sensitivity due to base-
flow modifications. Here, we briefly outline the formulation presented in Pralits et al.

(2010). The expression for the eigenvalue drift is derived in two steps: first we consider
the sensitivity to an arbitrary variation of the base flow and, second, we assume that
such a variation is induced by a steady structural forcing to the steady Navier-Stokes
equations, where the structural perturbation is of the same form as that discussed above
(proportional to the local velocity). An arbitrary variation of the base-flow gives the
following perturbed eigenvalue problem

σδû + L(Ub, Re)δû + ∇δp̂ = −[δσû + δUb · ∇û + û · ∇δUb] (2.17)

∇ · δû = 0,

which can be subject to the same analysis as in the previous section to obtain an expres-
sion for the sensitivity. A base-flow varation due to a small structural perturbation can
be written as a solution of the steady linearized equations

L(Ub, Re)δUb + ∇δPb = δM ·Ub (2.18)

∇ · δUb = 0.

Following the derivation in Pralits et al. (2010), the Lagrange identity is built upon
the base flow δQb(x, y) = {δUb, δPb}and on its adjoint field G+

b (x, y) = {f+b , m+
b }, so

that the eigenvalue drift can be expressed as

δσ(x0, y0) =

∫

D
f+b · δM · ÛbdA
∫

D f̂
+
· ûdA

=
f+b (x0, y0) · δM0 ·Ub(x0, y0)

∫

D f̂
+
· ûdA

= Sb(x0, y0) : δM0,

where

Sb(x0, y0) =
f+b (x0, y0)Ub(x0, y0)

∫

D f̂
+
· ûdA

.

Hence different norms of the tensor Sb represent the structural sensitivity to a small local
force proportional to the local base-flow velocity.

2.3.2. Perturbation kinetic energy budget

Analysis of perturbation kinetic energy is a classical approach to examine instability
mechanisms. The velocity fluctuations are complex functions (see 2.7), and thus the evo-
lution equation for perturbation kinetic energy is obtained by multiplying the linearized
stability equations (2.6) with the complex conjugate of the velocity fluctuation u′∗

i (in
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the following ∗ denotes the complex conjugate). The kinetic energy budget reads

d(E)

dt
=

∂

∂xj

[

Uju
′

iu
′∗

i −
1

2
(u′∗

j p′ +u′

jp
′∗)+

1

Re
µb(u

′∗

i eij +u′

ie
∗

ij)+
1

Re
Eij(u

′∗

i µ′ +u′

iµ
′∗)

]

−
1

2
(u′∗

i u′

j + u′

iu
′∗

j )
∂Ui

∂xj
−

2

Re
µb(eije

∗

ij) −
1

Re
(µ′e∗ijEij + µ′∗eijEij), (2.19)

where Eij and eij are the shear-rate tensors corresponding to base flow and perturbations
and E = 1

2 (u′

iu
′∗

i ) is the pertubation kinetic energy. The first term on the right hand side
of the equation (2.19) is the divergence of four transport terms that do not contribute to
the energy amplification once integrated across the domain (perturbations are assumed
to decay to zero far away from the cylinder). The second and the third terms are the
classic production and viscous dissipation. The last term is an additional term due to
the non-Newtonian effects. Using the Carreau model (2.1) and the expression for the
viscosity fluctuation in equation (2.5), we obtain

µb =
µ̂∞

µ̂0
+ [1 −

µ̂∞

µ̂0
][1 + 2λ2E2

ij ]
(n−1)/2

µ′ = eij
∂µb

∂Eij
= AeijEij ,

where the coefficient

A = λ2[1 −
µ̂∞

µ̂0
][

n − 1

2
][1 +

λ2

2
E2

ij ]
(n−3)/2.

The last term on the right hand side of equation (2.19) therefore becomes

−
2

Re
A(eijEij)(eijEij)

∗ = −
2

Re
A|eijEij |

2.

For shear thinning fluids, n < 1, the coefficient A is negative and the last term in
equation (2.19) is always positive; it can be seen as an additional production term in the
perturbation kinetic energy budget. The opposite is true for shear-thickening fluids.

3. Numerical method and validation

The numerical code used for the stability calculations presented here is a modified
version of the code employed by Giannetti & Luchini (2007) and Pralits et al. (2010).
As a first step, we solve the non-linear steady Navier-Stokes equations via Newton itera-
tions and compute the base flow. Eigenvalues and eigenmodes of the linearized stability
problem are computed via the Arnoldi algorithm with a shift and invert strategy. The
solutions of the linear systems involved in the computations of both the base flow and
the linear stability are determined by the use of a Unsymmetric MultiFrontal sparse LU
decomposition (UMFPACK package). The adjoint modes are computed as left eigenvec-
tors of the discrete systems derived from the discretization of the linearized equations.
In this way, the sensitivity function can then be computed by the product of the direct
and the adjoint fields.

We use a second-order finite-difference code where the Navier–Stokes equations are
solved on a staggered Cartesian mesh without considering body-fitted coordinates for
the cylinder. The equations are discretized starting from their conservative form. An
Immersed Boundary technique is implemented to impose zero velocity on the cylinder
surface: Velocities at the grid points near the cylinder surface are forced to those values
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Figure 2. Mesh used for the present simulations; only one out of eight lines passing through
the pressure nodes is drawn for clarity. The boundary conditions pertaining the outer boundary
are also reported for base flow and perturbation. Zero velocity is imposed at the surface of the
cylinder.

needed to fulfill the zero velocity condition on the surface by interpolation (see Gian-
netti & Luchini 2007, for more details). To obtain more accurate results, stretching is
implemented to cluster grid cells near the cylinder. Discretization of the viscous terms
involving γ̇ requires special attention: compared to the newtonian case, in fact, a larger
stencil is needed to obtain second order accuracy. Generally, increasing the width of the
discretization stencil is not a problem, although the resulting scheme may be more time
and memory demanding. However, when an immersed boundary technique is used to
impose the boundary conditions on the wall of the cylinder, care must be taken in order
to coordinate the interpolation points with those of the discretization so that the solution
inside and outside the cylinder do not affect each other. This is obtained by discretizing
the γ̇ term by one sided higher order formulae (second or third order) with stencils having
at maximum one point inside the cylinder, exactly as in the interpolation scheme used
for the immersed boundary. Tests performed on different geometry confirmed the second
order global accuracy of the adopted scheme.

The geometry and computational domain used are shown in figure 2, where the bound-
ary conditions at the outer boundary are also reported. The cylinder is located symmet-
rically between the upper and the lower boundaries of the domain and its diameter D
is set equal to one. The Cartesian coordinate system has its origin in the centre of the
cylinder. In most of the cases, the domain size is chosen to be Lx = 50 (x ∈ [−15, 35])
and Ly = 30 (y ∈ [−15, 15]). The domain is large enough to satisfy the assumption of
unconfined flow. The number of grid points along the x and y direction is nx = 260 and
ny = 180 respectively. The coordinates (xi, yj) of the grid points node in the domain are
specified as in Giannetti & Luchini (2007),

xi = xc

{

1 +
sinh[τx(i/nx − Bx)]

sinh(τxBx)

}

(3.1)

and similarly for yj . In the expression above, Bx is defined as

Bx =
1

2τx

[

1 + (exp(τx) − 1)(xc/Lx)

1 + (exp(−τx) − 1)(xc/Lx)

]

where xc (and analogously yc for the discretization in the cross-stream direction) is the
coordinate of the cylinder center (xc = 0, yc = 0). τx is the stretching parameter and
can range from zero for equi-spaced grid points to large values when clustering of the
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grid cells near the cylinder is desirable. Typically we use 60 stretched grid points in
x ∈ [−15,−1], 60 equi-spaced grid points in x ∈ [−1, 1] and 140 stretched grid cells in
x ∈ [1, 35] along the streamwise x-direction. In the y-direction, we use 60 stretched grid
points in both y ∈ [−15,−1] and y ∈ [1, 15] and 60 equi-spaced grid points in y ∈ [−1, 1].

Boundary conditions are specified as in Giannetti & Luchini (2007) and are listed in
figure 2, where Ub, Vb and Pb refer to the base flow quantities and u, v and p to the
velocity perturbation. Zero velocity is imposed at the cylinder surface.

3.1. Validation

The code is initially validated against the results by Nouar et al. (2007). These authors
investigate the instability of a shear-thinning fluid in the channel flow. The results from
our code are in perfect agreement with the results of Nouar et al. (2007) for base flow
and instability of a parallel flow. As discussed below, stability analysis of the cylinder
flow is also validated against non-linear simulations performed with the spectral-element
method.

A parameter study for resolution and domain size is carried out to determine the
best grid in terms of accuracy and computational costs. We examine the difference in
eigenvalue and critical Reynolds number when increasing resolution from 260 × 180 to
390 × 270 grid points in the x − y plane at fixed domain size, and when increasing the
domain from Lx = 50, Ly = 30 to Lx = 75, Ly = 45 with fixed resolution. The difference
is below 1% for all cases and this motivates the choice of the grid whose details have
been given above.

3.1.1. Direct numerical simulation

To further validate our results we perform direct numerical simulation of the nonlinear
equations using the code Nek5000 (Fischer & Rφnquist 1994). This is adapted for the
simulation of complex fluids by adding explicit terms that account for the shear-thinning
and thickening. Nek5000 is based on the Spectral Element Method (SEM) (Patera 1984).
This method shares similarities with both finite element methods (FEM) and spectral
methods. The computational domain is sub-divided into a number of elements, where
the governing equation is discretized and cast into variational formulation. The solution
is approximated by the Galerkin method as an expansion in a finite set of Legendre
basis functions, which together with the corresponding Gauss-Lobatto grid enable exact
Gaussian quadrature for the evaluation of the element-wise integrals. For the results
presented here we used a grid with (56× 26) elements and 6th polynomial order and the
same computational domain used for linear instability calculation (see figure 2).

4. Results for pseudo-plastic fluids

We investigate shear-thinning and shear-thickening effects on the instability of the
cylinder flow. The shear-dependent viscosity is defined by the Carreau model where the
shear-thinning effect is more pronounced for low values of power index ”n” and large
values of material time constant ”λ”. The power index and the time constant are chosen
here in the range 0.4 6 n 6 1.75 and 0.1 6 λ 6 100. In this section we will consider only
shear-thinning fluids (n < 1) whereas shear-thickening fluids (n > 1) will be considered
in the next section. It is relevant to note here that values of n < 1 can be shown to match
most of experimental observation for polymer solutions (Bird et al. 1987).

First we report the critical Reynolds number, the Reynolds number at which the flow
first becomes unstable. Stability calculations have been carried out for several values of
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Figure 3. (a) Neutral curves Re (b) Frequencies σi - Linear Instability Analysis,
(−. − . − .) : λ = 0.1, (...) : λ = 1, (−) : λ = 10 & (− − −) : λ = 100 and Direct Numer-
ical Simulation, (×) : unstable cases and (+) : stable cases

the spanwise wavenumber β and the first mode to become unstable is found to be a two-
dimensional mode, as for the Newtonian fluid, for all cases considered here. We display the
critical values obtained with the Carreau-law in figure 3(a), where the neutral curves are
displayed versus power index n for four different values of the time constant λ = 0.1, 1, 10
and 100. The shear-thinning effect induces a monotonic decrease of the critical Reynolds
number. For the strongest shear-thinning examined, n = 0.4 and λ = 100, the critical
Reynolds number decreases from 47 for a Newtonian fluid to about 3. Figure 3(b) displays
the frequency (imaginary part of the eigenvalue) of the unstable solutions just above the
neutral curves. The frequency increases when increasing the shear-thinning from 0.735
for the Newtonian case to 1.04 for λ = 10 and n = 0.2.

The results of the finite-difference stability code have been validated by Direct Numer-
ical Simulation (DNS) using Nek5000. As shown in figure 3(a), unstable (time-periodic)
and stable solutions are obtained just above and below the neutral curves computed from
linear stability for several test cases. In figure 3(b) we report the frequency of the peri-
odic limit cycle obtained via DNS. The frequency of the oscillations is also in agreement
with the results obtained with the linearized equations and a different spatial discretiza-
tion. Indeed, close to the neutral point we expect linear stability to predict accurately
the frequency of the limit cycle: this is no more the case further away from the neutral
conditions.

4.1. Base flow characteristics

In this section we examine the effect of shear-thinning on the steady base flow solutions.
First, we analyze the shear-thinning effect on the size of the recirculating bubble behind
the cylinder. We plot the streamline associated to separation in figure 4(a) and, in white,
the region delimited by zero velocity for a fixed value of the Reynolds number Re = 40,
λ = 10 and different values of n. The recirculation region elongates considerably as shear-
thinning becomes stronger: it extends from about 3 diameters behind the cylinder for the
Newtonian case to about 10 diameters for n = 0.4. Figure 4(b) displays the streamlines
and zero-velocity curve for λ = 10 along the neutral curve; the recirculation bubble is
seen to approach a similar length at critical conditions.

To quantify this effect we report the dimensions of the recirculation bubble versus
the Reynolds number for a fixed value of λ = 10 and different values of n in figure 5.
The length of the steady recirculation bubble for Newtonian fluid increases linearly with
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Figure 4. Visualization of the recirculation bubble behind the cylinder for different values of
the exponent n. (a) Re = 40 and λ = 10, (b) critical values of the Reynolds number for fixed
λ = 10.

Reynolds number (Giannetti & Luchini 2007); we show in figure 5(a) that this is true
also for the values of the power index examined here. In figure 5(b), we instead report the
width of the recirculation region. The recirculating bubble widens with shear-thinning in
all the cases.

The drag coefficient for shear-thinning Carreau cylinder flow with λ = 10 and several
n is displayed in figure 6. In the Newtonian case (n=1), the drag coefficient reduces
from about 2.7 to 1.5 when the Reynolds number increases from 10 to 40, as already
known (see e.g. Kunde & Cohen 1990). Shear-thinning decreases the drag coefficients
significantly for all Reynolds numbers between 10 and 40. For a fixed Reynolds number
equal to 10 the drag coefficient reduces from 2.7 for Newtonian case to 1.24 when n = 0.4.
This observation is in agreement with the results by Patnana et al. (2009) at subcritical
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Figure 6. Drag coefficient, D, versus the Reynolds number, Re, for λ = 10, (◦): n = 0.4, (�):
n = 0.6, (•): n = 0.8, (�): n = 1

conditions; these authors show that for a fixed value of the Reynolds number the drag
coefficient of power-low fluids increases with increasing value of power index (n).

Coelho & Pinho (2004) indicate that the reduction in the turbulent shear stresses in
the wake of the cylinder is responsible for elongating the recirculation bubble. A similar
reduction in drag and elongation of the recirculation bubble is observed here for laminar
flows. This can be explained by considering the reduction in shear stress, associated to
shear-thinning, occurring on the sides of the recirculation region where the largest shear
is found. This causes an increase of the pressure behind the cylinder to keep the balance of
forces within the recirculation bubble. As shown in figure 4(a), indeed separation moves
closer to the top/bottom of the cylinder when decreasing the value of n, which explains
also the increase in wake width. The reduction of the shear stress also causes a decrease
of the entrainment by the shear layers of fluid from the region behind the cylinder during
the transient to the steady state. This elongates the recirculating bubble.

4.2. Global modes and sensitivity

The direct and adjoint modes indicate the location of maximum amplitude of the per-
turbation and the region of highest receptivity respectively. As shown among others by
Giannetti & Luchini (2007) for Newtonian fluids, the maximum of the direct modes is
reached far downstream of the cylinder surface, while the peak of the adjoint modes is lo-
cated in the near wake. The characteristics of the direct global modes for shear-thinning
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Figure 7. Unstable global modes: Spatial distribution of the velocity field modulus at the
critical Reynolds number for fixed λ = 10 and for 4 values of n.

fluids are displayed in figure 7 where we show the spatial distribution of the velocity
perturbation magnitude at critical Reynolds numbers for λ = 10 and 4 different values
of n. The largest fluctuations are located far downstream of the cylinder for Newtonian
flow, at a distance of about 20 diameters. These peaks move gradually upstream when
increasing shear-thinning and are located only 5 diameters downstream of the cylinder
for n = 0.4: the region where significant fluctuations can be observed also shrinks signif-
icantly. As a consequence of this more pronounced localization, the normalized values of
the maximum of û and v̂ increase from 0.008 and 0.013 for n = 1 to 0.022 and 0.02 for
n = 0.4 (not shown here).

The regions most receptive to momentum forcing are visualized in figure 8 by the spatial
distribution of the adjoint modes at critical Reynolds number, again for λ = 10 and for
4 different values of the shear-thinning exponent n. In all cases, the region of maximum
receptivity is localized in the near wake of the cylinder, symmetrically on the upper and
lower side of cylinder surface. Unlike the direct modes, the adjoint modes decay quickly
both upstream and downstream of the cylinder, x < −2 and x > 4. These characteristics
of the adjoint field remain almost constant over the range of values of the rheological
parameters examined in this work, although one can notice an increased localization of
the peak of the adjoint velocity field when increasing shear-thinning (deceasing n). The
differences in the spatial localization of the maxima of the direct and adjoint modes
results from the convective non-normality of the Navier-Stokes equations (Chomaz 2005;
Sipp et al. 2010).

The instability mechanism however cannot be deduced from the study of either eigen-
functions separately. The onset of instability is generated by a self-exciting mechanism in
the region of flow with the role of wavemaker. This region of wavemaker can be identified
by structural sensitivity analysis of the unstable modes introduced above. The spatial
map of the spectral norm of the sensitivity tensor S (see section 2.3, equations 2.15
and 2.16) is shown in figure 9 for λ = 10, again at the critical Reynolds number pertain-
ing to different values of n. Results for different values of the parameter λ would show a
similar trend. In all cases, the core of instability consists of two lobes placed symmetri-
cally downstream of the cylinder. Although the spatial separation between the maxima
of the direct and adjoint modes decreases with shear-thinning, the main characteristics of
the sensitivity field do not change considerably. This finding may be explained by the fact
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Reynolds number for a fixed λ = 10 for 4 values of n.
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Figure 9. Sensitivity map for a fixed λ = 10 along the neutral curve

that the size of the recirculation bubble, clearly associated to the instability generation
by the sensitivity map in figure 9, is not substantially varying at critical conditions as
shown in figure 4(b). The most noticeable effect associated to shear-thinning is that the
area of maximum sensitivity shrinks when decreasing n while the peak value of the sensi-
tivity function increases (note that the sensitivity is obtained at lower nominal Reynolds
number for lower values of n).

The viscosity of a shear-thinning fluid varies with the local shear rate (µlocal(γ̇local)).
Therefore, a local Reynolds number can be defined as

Reµ =
ρU∞D

µlocal
,
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Figure 10. Spatial distribution of the local Reynolds number along the neutral curve for λ = 10
and values of n listed on each plot. The contour lines represent the regions of largest structural
sensitivity.

to gain further understanding on the instability mechanism. The spatial distribution of
the local Reynolds number Reµ is depicted in figure 10 for the same parameters considered
above. The color map is fixed for each plot to be in the range between 0 and 60 (Re = 47
being the critical value for Newtonian flow). The local Reynolds number appears to be
approximately equal to or slightly larger than 47 in the region of largest sensitivity in all
cases although the local Reynolds number can significantly decrease just outside of the
regions of highest shear. The data in the figure therefore confirm that the same physical
mechanisms is at work: shear-thinning effects act through significant modification of the
base flow at given Reynolds number whereas the instability seems to appear when similar
characteristics of the wake are occurring, both in terms of local viscosity and size of the
recirculation bubble.

To corroborate this observation, we define an average viscosity using the square of the
sensitivity function as weight

µ =

∫

D
µ(x, y)S(x, y)2dA
∫

D S(x, y)2dA
,

where D is the computational domain, S is the sensitivity defined above. An instability
Reynolds number can thus be defined as

Re =
ρU∞D

µ
.

Table 1 shows the value of this stability Reynolds number along the neutral curves: a
value close to 47 is found for all cases (this applies also to shear-thickening fluids discussed
in the next section).

Sensitivity analysis to base-flow modification provides information about the effect
of base flow on the instabilities and the role of passive control devices. The spatial
distribution of the structural sensitivity due to base-flow modifications is presented in
figure 11, for λ = 10 at 4 critical Reynolds numbers (see section 2.3.1). For all the
cases, the sensitivity to base-flow modifications is considerably stronger than that to
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index n 1.75 1.5 1.25 1 0.8 0.6 0.4

λ = 1 47.17 47.16 46.85 47 48 48.6 50.32
λ = 10 48.72 47.84 47.39 47 46.98 46.96 48.63
λ = 100 48.7 47.62 47.15 47 47.76 47.5 49.375

Table 1. Stability Reynolds number Re along the neutral curves (note that shear-thickening
results are also reported here).
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Figure 11. Sensitivity map due to base-flow modifications for a fixed λ = 10 along the neutral
curve

structural perturbations, as shown by Giannetti & Luchini (2007) for a Newtonian fluid.
For example, for a value n = 0.4 of the power index and λ = 10, the maximum value
of the sensitivity to base-flow modification is about 4 while it is about 0.5 for time-
dependent structural perturbations. The area of maximum sensitivity is localized close
to the cylinder surface, on the upper and lower side. As for the wavemaker in figure 9,
shear-thinning effects do not change the main features of the sensitivity map: the area
of maximum sensitivity gets thinner while the magnitude increases when decreasing n.

4.3. Energy analysis

The instability mechanism is now examined by considering the perturbation kinetic en-
ergy budget. Figure 12 shows the contribution from the different terms in the energy bud-
get (2.19) integrated over the computational domain. The data pertain to fixed Reynolds
number Re = 20 and λ = 10. The magnitude of the production and viscous dissipation
terms decreases with the power index n, whereas the additional positive contribution
related to shear-thinning effects become significant only for n . 0.5. The sum of the two
production terms and of viscous dissipation, normalized with the total kinetic energy of
the mode, yields the temporal growth rate (solid line in the figure); it crosses the value
of zero for n ≈ 0.6, the value of the critical Reynolds number presented above.

The spatial distribution of the total kinetic energy production of the perturbation is
reported in figure 13. Here, one can distinguish regions of positive and negative produc-
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Figure 13. Spatial distribution of the sum of the total production and dissipation of per-
turbation kinetic energy, normalized by the energy of perturbation, plotted together with the
contour level delimiting the area of maximum structural sensitivity at critical Reynolds number
for λ = 10.

tion. We notice that the positive production is more and more localized when increasing
shear-thinning and the magnitude of the peak production increases. The region of large
sensitivity is also reported in the figure and related to that of largest energy production:
for Newtonian flow and largest values of n, the wave-maker is clearly located upstream
of the region of largest production of fluctuation energy. Only for the lowest value of n
examined, the two regions partially overlap. As discussed e.g. in Pralits et al. (2010),
structural sensitivity and kinetic energy budget provide different information about the
instability process. The former identifies the region where the unstable perturbation is
created (the pocket of absolute instability in a weakly non-parallel context) while the
latter identifies where the largest amplification is attained (a region of strong convective
instability in a weakly non-parallel flow).

As introduced in section 2.3.2, an additional production term, strictly positive, appears
in the case of shear-thinning fluids, − 2

ReA|eijEij |
2. Its spatial distribution is displayed

in figure 14 for the same fluid considered in figure 13. This extra production term is
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2, for a fixed λ = 10 along the neutral curve-normalized by the energy of pertur-
bation.

zero everywhere in the domain for n = 1 and gradually increases with the magnitude
of the shear-thinning effects. The location and extension of the density of the additional
production are very similar to those of the total production displayed in figure 13. The
total production of the kinetic energy is largest downstream of the region of largest
structural sensitivity. The perturbations originate inside the wavemaker and propagate
as waves downstream. They are most amplified further downstream where the largest
production is found.

4.4. Viscosity fluctuation

Nouar et al. (2007) note that to assess whether there is stabilization and by how much
in the presence of shear-dependent viscosity, it is important to account for a viscosity
fluctuation in the perturbation equations; failure to do so can yield qualitatively and
quantitatively incorrect conclusions. This is demonstrated by these authors at least for
the case of plane channel flow where the critical Reynolds numbers are about a factor 2
larger when the viscosity perturbation is not taken into account. In this section we there-
fore investigate in further detail the effect of viscosity fluctuation (µ′) on the instability
mechanism for the flow past a circular cylinder. The results of stability calculations per-
formed excluding a viscosity disturbance in the perturbation equations are reported in
figure 15, where both the critical Reynolds number and the frequency of the least stable
mode are displayed. The flow is slightly stabilized only at the smallest small values of the
power exponent n when excluding µ′ from the equations. We can therefore conclude that
the viscosity fluctuation has no effect on the first bifurcation for the flow past a cylinder
of a shear-thinning fluid.

5. Dilatant fluids

In this section we examine the instability of dilatant or shear-thickening fluids flowing
past a circular cylinder. In contrast with the shear-thinning fluid, the viscosity of the
shear-thickening fluids increases with the shear rate of the flow. This behavior is described
by the Carreau model when the power index n > 1.

The critical Reynolds number versus the exponent n for a shear-thickening fluid is
shown in figure 16(a), where we display data for four different values of the time constant
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Figure 15. Effect of the viscosity disturbance in the perturbation equations. (a) Neutral sta-
bility curve and (b) frequencies of the least stable mode at critical conditions for λ = 10. (−):
including viscosity disturbance, (−. − . − .): excluding viscosity disturbance.
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Figure 16. (a) Neutral curves and (b) Frequency of the least stable mode for shear-thickening
cylinder flow, (−. − . − .) : λ = 0.1, (...) : λ = 1, (−) : λ = 10 and (− − −) : λ = 100. Symbols
indicate results from the direct numerical simulations: (+) : unstable cases & (×) : stable cases.

λ = 0.1, 1, 10 and 100. The shear-thickening effect stabilizes the cylinder flow dramati-
cally when considering the Reynolds number based on the zero shear-rate viscosity. For
n = 1.4 and λ = 10, the critical Reynolds number increases from 47 for a Newtonian fluid
to about 102. The symbols in the figure represent results obtained by direct numerical
simulation of the full nonlinear Navier–Stokes equations and validate the linear stability
analysis. The results are consistent with those obtained for shear-thinning fluids; in this
case the increase of the local viscosity prevents the formation of a sufficiently long recir-
culation bubble and thus delay the onset of the unsteady flow. Figure 16(b) displays the
frequencies of the solutions just above the neutral curve. The frequency of the unstable
modes decreases from 0.735 for the Newtonian case to 0.65 for λ = 10 and n = 1.4.

The structural sensitivity and the local Reynolds number Reµ are reported in figure 17
for different values of the exponent n. As for the case of shear-thinning fluids, the region
of largest sensitivity, the wavemaker, is not varying with the magnitude of the non-
Newtonian effects. One can just note an increase of the area of maximum sensitivity for
increasing n. The local viscosity can decrease to yield a local value Reµ ≈ 50 at the core
of the instability although it may be lower (higher Reµ) in the region further downstream.
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Figure 17. Spatial distribution of the local Reynolds number along the neutral curve for λ = 10
and values of n listed on each plot. The contour lines represent the regions of largest structural
sensitivity.

Indeed, as reported in table 1, the stability Reynolds number Re obtained by averaging
the local Reµ with the structural sensitivity is about 47 also for shear thickening fluids.
The sensitivity of shear-thickening fluids to base-flow modifications presents the same
characteristics as that of shear-thinning fluids. Further, as noted here for the wavemaker,
the area of maximum sensitivity increases while the magnitude of the sensitivity decreases
by increasing the power index n. In summary, the physical mechanisms associated to the
reduction of the critical Reynolds number discussed for shear-thinning fluids can be
applied, in the opposite direction, to the behavior of shear-thickening fluids.

6. Discussion and conclusions

We investigated the onset of the first instability for the flow past a circular cylinder
of shear-thinning and shear-thickening fluids. The shear-dependent viscosity is modeled
by the Carreau-law where the rheological parameters, the power-index and the material
time constant, are chosen in the range 0.4 6 n 6 1.75 and 0.1 6 λ 6 100. Structural
sensitivity analysis based on the idea of wavemaker is used to identify the core of the
instability. Sensitivity analysis to base-flow modifications is employed to investigate the
effect of a local steady forcing on the instability. Perturbation kinetic energy budget is
also considered to examine the physical mechanisms responsible for the production of the
instability. This work present the first global linear stability analysis of non-Newtonian
fluids for the configuration examined. The main conclusions can be summarized as follow.

It is observed that the first bifurcation occurs in all cases considered for two-dimensional
modes, as for the Newtonian case. Floquet analysis of the instability of the limit cy-
cle at higher Reynolds numbers is therefore a relevant extension of the present study.
The shear-thinning effect destabilizes the cylinder flow dramatically when defining the
Reynolds number with the zero shear-rate viscosity. For the strongest shear-thinning ef-
fect, n = 0.4 and λ = 100, the critical Reynolds number decrease from 47 for a Newtonian
fluid to about 3. The frequency of the unsteady solutions computed via direct numerical
simulations just above the neutral curves increases with shear-thinning from 0.735 for
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the Newtonian case to 1.04. In the case of shear-thickening fluids, the critical Reynolds
number increases with the time constant λ and the exponent n. For n = 1.75 and λ = 10,
the critical Reynolds number increases from 47 for Newtonian fluids to about 193. The
corresponding frequencies of the solutions just above the neutral curve decreases from
0.735 to 0.65. The numerical simulation of the full nonlinear equations also provides a
validation for the results presented.

The direct and adjoint modes indicate the location of maximum amplitude of the per-
turbation and the region of highest receptivity in the flow field. The maxima of the direct
global modes are located far downstream of the cylinder for Newtonian flow and move
gradually upstream with shear-thinning when considering the flow just above critical
conditions. In all the cases, the regions of maximum receptivity are localized in the near
wake, close to the upper and lower side of the cylinder surface. The wavemaker, the core
of the instability, is found to be in the two lobes placed symmetrically downstream of
the cylinder, similarly to what found in the Newtonian case (Giannetti & Luchini 2007;
Marquet et al. 2008). The area of maximum sensitivity becomes more and more localized
when increasing shear-thinning effects, while it becomes more diffuse for shear-thickening
fluids. The region of maximum sensitivity to base-flow modifications is found close to the
cylinder surface in the upper and lower side for all the cases examined.

The total production of perturbation kinetic energy is largest downstream of the region
of the wavemaker. The perturbations originate from the region of the wavemaker and are
most amplified further downstream where the largest production is observed, possibly
due to strong shear rate. We further examine the effect of the viscosity fluctuation (µ′)
on the instability of the flow past a cylinder. Indeed, analysis of the perturbation kinetic
energy budget reveals that an additional production term is originating in the presence
of shear dependent viscosity. This term is strictly positive for shear-thinning fluids and
negative for shear-thickening fluids. We demonstrate that µ′ does not affect the neutral
curves nor the core of instability. However it is responsible for increased amplification of
the disturbance kinetic energy downstream of the region of the wavemaker in the case of
shear-thinning fluids, while the opposite applies to dilatant fluids.

As the instability mechanism is not changed significantly by shear-thinning and shear-
thickening, we explain the difference in critical Reynolds number by the effects that the
non-Newtonian character of the fluid has on the steady base flow. We show that the drag
coefficient decreases significantly with shear-thinning for Reynolds numbers between 10
to 40. The recirculating bubble behind the body elongates considerably with the shear-
thinning effect, while it shortens for shear-thickening fluids. As an example, at Re = 40,
the bubble extends from about 3 diameters for the Newtonian case to 10 diameters for
n = 0.4 and λ = 10. The shear-thinning effects also intensifies the magnitude of vorticity
in the region close to the cylinder surface. These effects can be explained by considering
the reduction in shear stress, associated to shear-thinning, occurring in the regions of
largest shear on the sides of the recirculation region.

Most importantly, we show that at critical conditions the recirculation region ap-
proaches the same size for all cases considered here. Thus, there appears to be a critical
configuration of the wake for the onset of the instability, which is then mainly of inviscid
type. These critical conditions are determined by the local viscosity creating the sepa-
ration region. Indeed we displayed the spatial distribution of a local Reynolds number
based on the local value of the viscosity. Along the neutral curves, the same region around
the cylinder represents Reynolds number equal or around 47 for both pseudo-plastic and
dilatant fluids. This region where the local Reµ ≈ 50 overlaps significantly with the area
of largest structural sensitivity.

Nouar et al. (2007) discuss the importance of the choice of the viscosity used to define
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the Reynolds number; the conclusions when comparing results for fluids with different
rheological properties, including Newtonian fluids, can indeed depend on the choice of
the viscosity scale. They argue that the tangent viscosity evaluated at the wall is a more
relevant choice than the average effective viscosity for the case of plane channel flow. The
extension to an open configuration like that considered here is not straightforward: an
effective viscosity averaged over all the domain is certainly not useful as the core of the
instability is localized in the near wake. In the same spirit, the shear stress at the wall
may not be that relevant for separating flows where pressure gradient effects are more
relevant. Therefore here we decide to define a stability Reynolds number obtained as a
weighted average of the local Reynolds number over the whole domain where the weight
function is the norm of the structural sensitivity. In this way we obtain a value of the
critical Reynolds number of about 47 for all cases considered.

This study represents a first theoretical analysis of the instability mechanisms in the
wake past a solid bluff body for inelastic non-Newtonian fluids. The work can therefore
be extended to consider confined object (Camarri & Giannetti 2007, 2010), as well as an
array of objects (Nejat et al. 2011).
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