First instability of the flow of shear-thinning and shear-thickening fluids past a circular cylinder

IMAN LASHGARI,1 JAN O. PRLITS2,3, FLAVIO GIANNETTI2 AND LUCA BRANDT1

1 Linné Flow Centre, KTH Mechanics, S-100 44 Stockholm, Sweden
2 DIIN, University of Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy
3 DICAT, University of Genova, Via Montallegro 1, 16145 Genova, Italy

(Received 19th March 2012)

The first bifurcation and the instability mechanisms of shear-thinning and shear-thickening fluids flowing past a circular cylinder are studied using linear theory and numerical simulations. Structural sensitivity analysis based on the idea of a "wavemaker" is performed to identify the core of the instability. The shear-dependent viscosity is modeled by the Carreau model where the rheological parameters, the power-index and the material time constant, are chosen in the range $0.4 \leq n \leq 1.75$ and $0.1 \leq \lambda \leq 100$. We show how shear-thinning/shear-thickening effects destabilize/stabilize the flow dramatically when scaling the problem with the reference zero shear-rate viscosity. These variations are explained by modifications of the steady base flow due to the shear-dependent viscosity; the instability mechanisms are only slightly changed. The characteristics of the base flow, drag coefficient and size of recirculation bubble are presented to assess shear-thinning effects. We demonstrate that at critical conditions the local Reynolds number in the core of the instability is around 50 as for Newtonian fluids. The perturbation kinetic energy budget is also considered to examine the physical mechanism of the instability.

1. Introduction

The aim of the present work is to study the effects of shear-dependent viscosity on the appearance of the first instability for the flow past a circular cylinder. We consider shear-thinning and shear-thickening fluids obeying the Carreau-Yasuda rheological law. The flow past a circular cylinder is chosen as the classical example of bluff body flows. Although an idealized configuration, flows past circular cylinders are relevant to many industrial applications. Some examples are tubular and pin type heat exchangers, filtration screens, membrane based separation modules (see e.g. Panda & Chhabra 2010).

From a stability point of view, the cylinder flow displays intrinsic dynamics and the spatial distribution of the disturbance synchronizes in space. The instability of the cylinder flow has been extensively studied in the past for Newtonian fluids. Based on these previous works, Mossaz, Jay & Magnin (2010), among many, describe the different regimes observed when varying the Reynolds number. The flow changes from creeping flow with no separation to laminar flow with two symmetrical steady vortices at Reynolds number about 6. The length of the steady recirculation regions increases linearly with the Reynolds number (e.g. Giannetti & Luchini 2007). The transition to unsteady periodic flow (i.e., the Hopf bifurcation) of the two-dimensional flow is at Reynolds number about 47 (Provansal, Mathis & Boyer 1987). Finally a three-dimensional wake appears when the Reynolds number is about 190 (Barkley & Henderson 1996). In this work, we focus
on the first bifurcation to unsteady flow and use a sensitivity analysis to understand the instability mechanisms.

1.1. Cylinder flow of non-Newtonian fluids

Recently several investigations have been conducted to understand the non-Newtonian effects on the characteristics of the flow around a circular cylinder in different regimes. As regards shear-thinning fluid past a cylinder, Coelho & Pinho (2003a), Coelho & Pinho (2003b) and Coelho & Pinho (2004) carried out experimental studies on the vortex shedding flow regimes of both Newtonian fluids and shear-thinning weakly elastic polymer solutions. The Reynolds number is varied from 50 to 9000 including laminar vortex shedding, transition and shear-layer transition regimes. It was shown that shear-thinning gives rise to a reduction of the cylinder boundary-layer thickness and a decrease of the diffusion length which increases the Strouhal number. Conversely, fluid elasticity is responsible for an elongation of the formation region which results in a decrease of the Strouhal number.

Only a few studies have considered shear-dependent viscosity. Sivakumar, Bharti & Chhabra (2006) and Patnana, Bharti & Chhabra (2009) investigated lift and drag coefficients as well as instantaneous streamlines and vortices for the flow past a stationary and a rotating cylinder by means of numerical simulations. These authors examined both shear-thinning and shear-thickening fluids, using power law, in the range of creeping flow up to Reynolds number equal to 140. In the case of a stationary cylinder, the drag coefficient decreases with shear-thinning at a fixed value of Reynolds number. For rotating cylinders, the viscosity variation influences the drag and the lift coefficients of low Reynolds number flows more than those of high Reynolds number flows. Nejat, Abdollahi & Vahidkhah (2011) simulate the Power-law flow past a series of tandem arrangement of two cylinders in a confined domain, using a lattice Boltzman algorithm. For a Reynolds number equal to 40, the drag on the upstream cylinder is one order of magnitude larger than the one downstream for the cylinder spacing up to two times the cylinder diameter. Mossaz et al. (2010) simulate a Herschel-Bulkley viscoplastic fluid behind a circular cylinder in order to obtain a criteria for the appearance of non-stationary regimes at subcritical Reynolds numbers. The frequency of the vortex shedding in the supercritical regime decreases with the Oldroyd number and it is therefore concluded that viscoplastic effects stabilize the flow.

As seen from the above discussion, several efforts considered the flow of a visco-elastic fluid past a cylinder, see among others Sarpkaya, Rainey & Kell (1973) and Pipe & Monkewitz (2006). In a recent study, Richter, Iaccarino & Shaqfeh (2010) investigate a dilute solution of polymers at Reynolds numbers of 100 and 300 via numerical simulations of the FENE-P model. In particular at Reynolds number equal to 100, an increase in polymer extensibility elongates the recirculating region behind the cylinder and increases the average drag. At larger Reynolds number, polymer elasticity suppresses the secondary three-dimensional mode which dominates the structure of the near-wake for Newtonian fluids. Later, the same authors investigated the viscoelastic effects on the stability of the cylinder wake using linear theory (Richter, Shaqfeh & Iaccarino 2011). They found that viscoelasticity modifies the underlying baseflow which results in a reduction of vorticity intensity and strain rate in the wake and successively a decrease in the production of perturbation energy.

1.2. Instability in shear-thinning fluids

The pseudo-plastic fluids (shear-thinning fluids) can be classified as inelastic non-Newtonian fluids in which the viscosity is decreasing with the shear rate. The two most popular
Instability of shear-thinning and shear-thickening fluids past a circular cylinder

rheological laws for shear-dependent viscosity are the Power-law model and the Carreau-Yasuda model. Nouar & Frigaard (2009) note that the Power-law model can only be used for a limited range of shear rates, while the Carreau model is more realistic and has the flexibility to fit a wide range of experimental data. Coelho & Pinho (2004) experimentally showed that the Carreau-Yasuda model can fit to a solution of dilute polymers with different degrees of shear-thinning for the flow past a cylinder. Nouar, Bottaro & Brancher (2007) choose the Carreau model because of its capability to model steady shear, complex viscosity, stress growth and the stress relaxation function. In this work the Carreau-law is chosen to model viscosity of shear-thinning and shear-thickening fluid past a circular cylinder.

The stability of a variety of shear-thinning fluids, has already been studied for canonical parallel flows, e.g. the circular Couette flow, channel flow, mixed plane Couette and Poiseuille flow and gravity driven flow over an inclined plane. Caton (2006) presented linear stability results of a power law fluid for circular Couette flow. For small gaps between the two cylinders, the critical Reynolds numbers for the onset of instability reduces with increasing shear-thinning. Nouar et al. (2007) used the Carreau rheological law model to investigate modal and non-modal instability of channel flow. Nouar & Frigaard (2009) analyzed the instability of the mixed plane Couette and Poiseuille flow for a shear-thinning fluid, using also the Carreau law. These authors showed that the production of kinetic energy in the critical layer next to the fixed wall controls the stability of the flow. Milleta, Rousset & Hadid (2009) showed the stabilizing effects of shear-thinning on the flow of two layers of fluid with different density over an inclined plane using linear theory.

Here we study how shear-thinning and shear-thickening effects vary the critical Reynolds number for the cylinder flow. We present the first global stability analysis for this two-dimensional configuration and shear-dependent inelastic fluids. Note that recently Panda & Chhabra (2010) investigated by numerical simulations the critical Reynolds number of the Power-law cylinder flow for the range of 0.3 < n < 1.8. They reported that the critical Reynolds number first increases with the power index, to about n ≈ 0.6, and then decreases sharply. (In contrast, we show in this work, using Carreau law, that the critical Reynolds number is always decreasing when increasing the shear-thinning).

1.3. Structural Sensitivity

Structural sensitivity analysis is used to determine the instability mechanism that initiates the transition to an unsteady flow (Chomaz 2005). Giannetti & Luchini (2007) analyzed the instability mechanism of the flow past a stationary cylinder and introduced the concept of structural sensitivity. The spatial structure of the modes shows maximum amplitude of the perturbation downstream of the cylinder. However, highest receptivity is found in the near wake (close to the cylinder). Structural sensitivity identifies the core of instability: this is associated to the location in space where a feedback provides the largest shift of the eigenvalues. The disturbance equations is forced by a local force-velocity feedback modeling the effect of small control device. Such a device has actually two distinct effects: in the quasi-static limit, it indeed forces the disturbance through a feedback as that studied by Giannetti & Luchini (2007). Nevertheless, it would also modify the base flow. Marquet, Sipp & Jacquin (2008) studied the sensitivity to base flow modifications of the flow past a circular cylinder, still related to the maximum variation of the eigenvalue. The authors identified the region that mostly contributes to the onset of vortex shedding. The sensitivity to steady forcing determines the regions which can stabilize the unstable global modes. This approach is used in Marquet et al. (2009) to control separation in an S-shaped duct. Pralits, Brandt & Giannetti (2010) used the same
formulation as Giannetti & Luchini (2007) to examine the first and the second shedding modes of flow past a rotating cylinder. These authors compared their results with the analysis of the perturbation kinetic energy budget. They also suggested how to place a small cylinder close to the main rotating cylinder to control the instabilities based on the sensitivity maps originating from the structural sensitivity analysis. Other investigations worth mentioning regarding the effect of base flow modifications are Bottaro et al. (2003) for the plane Couette flow, Meliga et al. (2010a) and Meliga et al. (2010b) who analyse compressible axisymmetric wake flows and Alizard et al. (2010) concerning the flow formed by the intersection of two perpendicular flat plates.

A recent review about linear approaches to sensitivity and control can be found in Sipp et al. (2010). The authors describe the dynamics of instabilities and introduce open-loop and closed-loop control strategies to suppress them. Sensitivity of globally stable flows to transient disturbance growth is considered in Brandt et al. (2011).

The paper is organized as follows. The viscosity model and stability equations are given in section 2. After introducing the numerical method in 3, we present results for shear–thinning and shear-thickening fluids in section 4 and 5. Section 6 reports a summary of the main conclusions and a final discussion.

2. Problem formulation

2.1. Viscosity model

The Carreau-Yasuda model describes the behavior of fluids with shear-dependent viscosity, so called shear-thinning and shear-thickening fluids. The relation between viscosity and deformation rate is given by

\[\mu = \frac{\mu_\infty}{\mu_0} + \left[1 - \frac{\mu_\infty}{\mu_0}\right][1 + (\lambda\dot{\gamma})^a]^{(n-1)/a}. \]

(2.1)

In the expression above, \(\mu_0 \) and \(\mu_\infty \) are the zero shear-rate and infinite shear-rate viscosities, set to 1 and 0.001 in this work. \(\mu \) is non-dimensional and normalized with respect to \(\mu_0 \). The second invariant of the strain-rate tensor is denoted as \(\dot{\gamma} \) and is determined by the dyadic product \(\dot{\gamma} = \frac{1}{2}(G : G)^{\frac{1}{2}} \), where \(G = \nabla \mathbf{u} + (\nabla \mathbf{u})^T \) (see Bird et al. 1987). The non-dimensional parameter \(a \) describes the transition between the zero shear-rate viscosity and the infinite-shear rate viscosity (Bird et al. 1987). The Carreau-Yasuda model can be fitted to the rheological behavior of many polymeric solutions when \(a = 2 \), also denoted the Carreau model. The power-law index \(n \) characterizes the fluid behavior: i) shear-thinning when \(n < 1 \), ii) Newtonian when \(n = 1 \) and iii) shear-thickening fluids when \(n > 1 \). Here, "\(\lambda \)" is the material time constant. Newtonian fluid is also obtained setting \(\lambda = 0 \), and for large values of \(\lambda \) the Carreau model is reduced to the power-law model

\[\mu = K(\dot{\gamma})^{n-1}, \]

where \(K \) is a consistency factor. A logarithmic plot of the viscosity versus the shear rate for the Carreau-law model provides intuition on how the viscosity of a shear-thinning fluid decreases when increasing the shear rate. In figure 1 the viscosity is shown as a function of \(\dot{\gamma} \) for different \(\lambda \)'s and a fixed value \(n = 0.5 \) of power index. The shear-thinning effects become more evident when increasing \(\lambda \) and the viscosity tends to the asymptotic value \(\mu_\infty \) for large shear rates.
Instability of shear-thinning and shear-thickening fluids past a circular cylinder

Figure 1. Viscosity μ of Carreau-law model versus shear rate $\dot{\gamma}$ for $n = 0.5$, (○): $\lambda = 0.1$, (□): $\lambda = 1$, (●): $\lambda = 10$, (■): $\lambda = 100$

2.2. Governing equation: base flow and stability problem

The continuity and Navier-Stokes equations with shear-dependent viscosity govern the flow past a stationary circular cylinder of an incompressible shear-thinning fluid. The non-dimensional form of the governing equations reads

$$\frac{\partial \tilde{u}}{\partial t} + \tilde{u} \cdot \nabla \tilde{u} = -\nabla p + \frac{1}{Re} \nabla \cdot [\mu(\tilde{u})(\nabla \tilde{u} + \nabla \tilde{u}^T)]$$

and

$$\nabla \cdot \tilde{u} = 0,$$

where $\tilde{u} = (\tilde{u}, \tilde{v}, \tilde{w})$ is a vector containing the non-dimensional velocity components, p is the non-dimensional pressure and μ the viscosity defined by the Carreau model introduced above. The Reynolds number is here defined by

$$Re = \frac{\rho U_\infty D}{\hat{\mu}_0},$$

where $\hat{\mu}_0$ is the viscosity at zero shear rate, U_∞ is the free-stream velocity, D the cylinder diameter and ρ the fluid density.

To perform a linear stability analysis, we introduce small perturbations in the flow and study their spatial and temporal evolution. The flow variables are decomposed into a two-dimensional steady base flow and a small unsteady perturbation, in general three-dimensional. For shear-thinning and thickening fluids the decomposition includes not only the velocity and the pressure but also the viscosity μ

$$\tilde{u}(x, y, z, t) = U_b(x, y) + u'(x, y, z, t)$$

$$p(x, y, z, t) = P_b(x, y) + p'(x, y, z, t)$$

$$\mu(x, y, z, t) = \mu_b(x, y) + \mu'(x, y, z, t).$$

The base flow variables U_b, P_b and μ_b are time independent and satisfy the steady Navier-Stokes equation

$$U_b \cdot \nabla U_b = -\nabla P_b + \frac{1}{Re} \nabla \cdot [\mu_b(U_b)(\nabla U_b + \nabla U_b^T)]$$

and

$$\nabla \cdot U_b = 0.$$

To derive the linearized stability equations, we first define the viscosity fluctuations by
the linear term of the Taylor expansion of the viscosity function $\mu(\dot{\gamma})$

$$\mu' = \dot{\gamma}_{ij}(u') \frac{\partial \mu}{\partial \dot{\gamma}_{ij}}(U_b),$$

(2.5)

where μ' is a scalar quantity that can be expressed as the inner product of a vector B and the velocity perturbation. For the sake of clarity, we present here the derivation only for two-dimensional perturbations which are found to be the first to become unstable; in this case the viscosity fluctuation can be written

$$\mu' = B(U_b) \cdot u' = \left[X_1 \quad X_2 \right] \cdot \begin{bmatrix} u' \\ v' \end{bmatrix},$$

with X_1 and X_2 defined as

$$X_1 = 2 \frac{\partial \mu}{\partial \dot{\gamma}_{11}}(U_b) \frac{\partial}{\partial x} + 2 \frac{\partial \mu}{\partial \dot{\gamma}_{12}}(U_b) \frac{\partial}{\partial y},$$

$$X_2 = 2 \frac{\partial \mu}{\partial \dot{\gamma}_{12}}(U_b) \frac{\partial}{\partial x} + 2 \frac{\partial \mu}{\partial \dot{\gamma}_{22}}(U_b) \frac{\partial}{\partial y}.$$

Introducing the decomposition (2.3) into equations (2.2) and neglecting higher order terms, we can write the linearized stability equations

$$\frac{\partial u'}{\partial t} + L(U_b, Re)u' + \nabla p' = 0$$

$$\nabla \cdot u' = 0,$$

(2.6)

where the operator L is

$$L(U_b, Re)u' = u' \cdot \nabla U_b + U_b \cdot \nabla u' - \frac{1}{Re} \nabla \cdot \left[\mu(U_b)(\nabla u' + (\nabla u')^T) + B(U_b) \cdot u'(\nabla U_b + \nabla U_b^T) \right].$$

Perturbations are assumed to decay far from the cylinder and vanish at the cylinder surface. Solutions of the stability problem are sought in the form

$$u'(x, y, z, t) = \hat{u}(x, y) \exp(\sigma t + i\beta z); \quad p'(x, y, z, t) = \hat{p}(x, y) \exp(\sigma t + i\beta z),$$

(2.7)

where β is the spanwise wavenumber introduced to exploit the homogeneity in the spanwise direction z.

Finally the stability problem reduces to the following eigenvalue problem,

$$\sigma \hat{u} + L(U_b, Re)\hat{u} + \nabla \hat{p} = 0$$

$$\nabla \cdot \hat{u} = 0.$$

(2.8)

The complex number σ is the eigenvalue of our stability problem and the complex field $\hat{q} = (\hat{u}, \hat{p})$ the corresponding eigenmode. The real and imaginary part of σ represent the growth rate and circular frequency of the perturbation.

2.3. Structural sensitivity and energy budget

Structural sensitivity analysis based on the idea of "wavemaker" was introduced in Giannetti & Luchini (2007) to identify the location of the core of a global instability. Wavemaker is the region in the flow where variations in the structure of the problem provide the largest drift of the eigenvalues. This will be considered in parallel to production of perturbation kinetic energy. In this section, we follow the derivation of the structural
sensitivity as presented in Pralits et al. (2010) and include viscosity perturbation in the formulation. We start with the perturbed eigenvalue problem

\[\sigma' \hat{\mathbf{u}}' + \mathbf{L}(\mathbf{U}_b, Re) \hat{\mathbf{u}}' + \nabla \hat{p}' = \delta H(\hat{\mathbf{u}}', \hat{\mathbf{p}}') \quad (2.9) \]
\[\nabla \cdot \hat{\mathbf{u}}' = 0. \]

where \(\delta H \) is the generalized structural perturbation. It is assumed to be a momentum force localized in space and proportional to the local velocity perturbation defined by a \((2\times2)\) coupling matrix \(\delta \mathbf{M}_0 \) and the delta function

\[\delta H(\hat{\mathbf{u}}', \hat{\mathbf{p}}') = \delta \mathbf{M}(x, y) \cdot \hat{\mathbf{u}}' = \delta(x - x_0, y - y_0) \delta \mathbf{M}_0 \cdot \hat{\mathbf{u}}'. \quad (2.10) \]

Neglecting the higher order terms, variations of the eigenvalue \(\delta \sigma \) and of the corresponding eigenfunction \((\delta \hat{\mathbf{u}}, \delta \hat{\mathbf{p}}) \) satisfy the following expression

\[\sigma \delta \hat{\mathbf{u}} + \mathbf{L}(\mathbf{U}_b, Re) \delta \hat{\mathbf{u}} + \nabla \delta \hat{\mathbf{p}} = -\delta \sigma \hat{\mathbf{u}} + \delta \mathbf{M} \cdot \hat{\mathbf{u}} \quad (2.11) \]
\[\nabla \cdot \delta \hat{\mathbf{u}} = 0. \]

We introduce the Lagrange identity as a function of the differentiable direct field \(\mathbf{q} = (\mathbf{u}, p) \) and its adjoint field \(\mathbf{g}^+ = (f^+, m^+) \)

\[[(\sigma \hat{\mathbf{u}} + \mathbf{L}(\mathbf{U}_b, Re) \hat{\mathbf{u}} + \nabla \hat{p}) \cdot \mathbf{f}^+ + (\nabla \cdot \hat{\mathbf{u}}) \cdot m^+] \]
\[+ [\hat{\mathbf{u}} \cdot (-\sigma \hat{\mathbf{f}}^+ + \mathbf{L}^+(\mathbf{U}_b, Re) + \nabla m^+ + \hat{p} \nabla \hat{\mathbf{f}}^+) = \nabla \cdot \mathbf{J}(\mathbf{q}, \mathbf{g}^+), \quad (2.12) \]

where \(\mathbf{J} \) is the bilinear concomitant

\[\mathbf{J}(\mathbf{q}, \mathbf{g}^+) = \mathbf{U}_b(\hat{\mathbf{u}} \cdot \mathbf{f}^+) + \frac{1}{Re} \mu(\mathbf{U}_b)(\nabla \hat{\mathbf{f}}^+ + (\nabla \hat{\mathbf{f}}^+)^T) \cdot \hat{\mathbf{u}} - \mu(\mathbf{U}_b)(\nabla \hat{\mathbf{u}} + \nabla \hat{\mathbf{u}}^T) \hat{\mathbf{f}}^+
\]
\[- (\mathbf{B}(\mathbf{U}_b) \cdot \hat{\mathbf{u}})(\nabla \mathbf{U}_b + \nabla \mathbf{U}_b^T) \hat{\mathbf{f}}^+] + m^+ \hat{\mathbf{u}} + \hat{p} \hat{\mathbf{f}}^+. \]

Using equation (2.12), the equation for the adjoint field \(\mathbf{g}^+(x, y) = (\hat{\mathbf{f}}^+, \hat{m}^+) \) is

\[-\sigma \hat{\mathbf{f}}^+ + \mathbf{L}^+(\mathbf{U}_b, Re) + \nabla \hat{m}^+ = 0 \quad (2.13) \]
\[\nabla \cdot \hat{\mathbf{f}}^+ = 0, \]

where \(\mathbf{L}^+ \) is the adjoint operator of the linearized Navier-Stokes

\[\mathbf{L}^+(\mathbf{U}_b, Re) \hat{\mathbf{f}}^+ = \mathbf{U}_b \cdot \nabla \hat{\mathbf{f}}^+ - \nabla \mathbf{U}_b \cdot \hat{\mathbf{f}}^+
\]
\[+ \frac{1}{Re} \mu(\mathbf{U}_b)(\Delta \hat{\mathbf{f}}^+ + (\Delta \hat{\mathbf{f}}^+)^T) + (\nabla \mathbf{U}_b + \nabla \mathbf{U}_b^T) \cdot \nabla \hat{\mathbf{f}}^+ \mathbf{B}(\mathbf{U}_b) \].

Considering equations (2.16), (2.12), and (2.13), taking the integral over the whole domain \(D \), we obtain the following

\[-\sigma \int_D \hat{\mathbf{f}}^+ \cdot \mathbf{u} dA + \int_D \hat{\mathbf{f}}^+ \cdot \delta \mathbf{M} \cdot \mathbf{u} dA = \int_{\partial D} \mathbf{J}(\mathbf{q}, \mathbf{g}^+) \cdot \mathbf{n} dl. \quad (2.14) \]

Note that the boundary conditions are set in such a way that the right hand side of equation (2.14) becomes zero. Introducing the sensitivity tensor

\[\mathbf{S}(x_0, y_0) = \frac{\hat{\mathbf{f}}^+(x_0, y_0) \hat{\mathbf{u}}(x_0, y_0)}{\int_D \hat{\mathbf{f}}^+ \cdot \mathbf{u} dA}, \quad (2.15) \]
the expression for the eigenvalue drift is

$$\delta \sigma (x_0, y_0) = \frac{\int_D \hat{f}^+ \cdot \delta M \cdot \hat{u} dA}{\int_D \hat{f}^+ \cdot \hat{u} dA} = \frac{\hat{f}^+ \cdot \delta M_0 \cdot \hat{u}}{\int_D \hat{f}^+ \cdot \hat{u} dA} = \mathbf{S} : \delta M_0 = S_{ij} \delta M_{0ij}.$$ \hspace{1cm} (2.16)$$

The core of instability can be identified by different norm of the tensor \mathbf{S}. Here we will show the spectral norm, the largest singular value of the tensor \mathbf{S}.

2.3.1. Structural sensitivity to base-flow modifications

To clarify the role of the base flow in the instability and gain information about the effect of passive control devices, we investigate the structural sensitivity due to base-flow modifications. Here, we briefly outline the formulation presented in Pralits et al. (2010). The expression for the eigenvalue drift is derived in two steps: first we consider the sensitivity to an arbitrary variation of the base flow and, second, we assume that such a variation is induced by a steady structural forcing to the steady Navier-Stokes equations, where the structural perturbation is of the same form as that discussed above (proportional to the local velocity). An arbitrary variation of the base-flow gives the following perturbed eigenvalue problem

$$\sigma \delta \hat{u} + \mathbf{L}(\mathbf{U}_b, \text{Re}) \delta \hat{u} + \nabla \delta \hat{p} = -[\delta \sigma \hat{u} + \delta \mathbf{U}_b \cdot \nabla \hat{u} + \hat{u} \cdot \nabla \delta \mathbf{U}_b]$$

$$\nabla \cdot \delta \mathbf{U}_b = 0,$$

which can be subject to the same analysis as in the previous section to obtain an expression for the sensitivity. A base-flow variation due to a small structural perturbation can be written as a solution of the steady linearized equations

$$\mathbf{L}(\mathbf{U}_b, \text{Re}) \delta \mathbf{U}_b + \nabla \delta \mathbf{P}_b = \delta \mathbf{M} \cdot \mathbf{U}_b$$

$$\nabla \cdot \delta \mathbf{U}_b = 0.$$ \hspace{1cm} (2.18)$$

Following the derivation in Pralits et al. (2010), the Lagrange identity is built upon the base flow $\delta \mathbf{Q}_b(x, y) = \{\delta \mathbf{U}_b, \delta \mathbf{P}_b\}$ and on its adjoint field $G^+_{\mathbf{v}}(x, y) = \{\mathbf{f}^+_b, m^+_b\}$, so that the eigenvalue drift can be expressed as

$$\delta \sigma (x_0, y_0) = \frac{\int_D \mathbf{f}^+_b \cdot \delta \mathbf{M} \cdot \hat{\mathbf{U}}_b dA}{\int_D \mathbf{f}^+_b \cdot \hat{\mathbf{U}}_b dA} = \frac{\mathbf{f}^+_b (x_0, y_0) \cdot \delta \mathbf{M}_0 \cdot \mathbf{U}_b(x_0, y_0)}{\int_D \mathbf{f}^+_b \cdot \hat{\mathbf{U}}_b dA} = \mathbf{S}_b(x_0, y_0) : \delta \mathbf{M}_0,$$

where

$$\mathbf{S}_b(x_0, y_0) = \frac{\mathbf{f}^+_b (x_0, y_0) \mathbf{U}_b(x_0, y_0)}{\int_D \mathbf{f}^+_b \cdot \hat{\mathbf{U}}_b dA}.$$

Hence different norms of the tensor \mathbf{S}_b represent the structural sensitivity to a small local force proportional to the local base-flow velocity.

2.3.2. Perturbation kinetic energy budget

Analysis of perturbation kinetic energy is a classical approach to examine instability mechanisms. The velocity fluctuations are complex functions (see 2.7), and thus the evolution equation for perturbation kinetic energy is obtained by multiplying the linearized stability equations (2.6) with the complex conjugate of the velocity fluctuation u'_i (in
the following \(^*\) denotes the complex conjugate). The kinetic energy budget reads

\[
\frac{d(E)}{dt} = \frac{\partial}{\partial x_j} [U_j u'_i u'^*_i - \frac{1}{2}(u'_{ij} p' + u'_j p'^*)] + \frac{1}{Re} \mu_b(u'_{ij} \mu' + u'_i \mu'^*)
- \frac{1}{2}(u'_{ij} u'_j + u'_{ij} u'^*_j) \frac{\partial U_i}{\partial x_j} - \frac{2}{Re} \mu_0(e_{ij} e_{ij}^*) - \frac{1}{Re} \mu'_c e_{ij} e_{ij}^* E_{ij} + \mu'_c e_{ij} E_{ij},
\]

(2.19)

where \(E_{ij}\) and \(e_{ij}\) are the shear-rate tensors corresponding to base flow and perturbations and \(E = \frac{1}{2}(u'_i u'^*_i)\) is the perturbation kinetic energy. The first term on the right hand side of the equation (2.19) is the divergence of four transport terms that do not contribute to the energy amplification once integrated across the domain (perturbations are assumed to decay to zero far away from the cylinder). The second and the third terms are the classic production and viscous dissipation. The last term is an additional term due to the non-Newtonian effects. Using the Carreau model (2.1) and the expression for the viscosity fluctuation in equation (2.5), we obtain

\[
\mu_b = \frac{\hat{\mu}_\infty}{\mu_0} + [1 - \frac{\hat{\mu}_\infty}{\mu_0}][1 + 2\lambda^2 E_{ij}^2(n-1)/2]
\]

\[
\mu' = e_{ij} \frac{\partial \mu_b}{\partial E_{ij}} = A e_{ij} E_{ij},
\]

where the coefficient

\[
A = \lambda^2 [1 - \frac{\hat{\mu}_\infty}{\mu_0}][n - 1/2][1 + \lambda^2 E_{ij}^2(n-3)/2].
\]

The last term on the right hand side of equation (2.19) therefore becomes

\[
- \frac{2}{Re} A(e_{ij} E_{ij})(e_{ij} E_{ij})^* = - \frac{2}{Re} A|e_{ij} E_{ij}|^2.
\]

For shear thinning fluids, \(n < 1\), the coefficient \(A\) is negative and the last term in equation (2.19) is always positive; it can be seen as an additional production term in the perturbation kinetic energy budget. The opposite is true for shear-thickening fluids.

3. Numerical method and validation

The numerical code used for the stability calculations presented here is a modified version of the code employed by Giannetti & Luchini (2007) and Pralits et al. (2010). As a first step, we solve the non-linear steady Navier-Stokes equations via Newton iterations and compute the base flow. Eigenvalues and eigenmodes of the linearized stability problem are computed via the Arnoldi algorithm with a shift and invert strategy. The solutions of the linear systems involved in the computations of both the base flow and the linear stability are determined by the use of a Unsymmetric MultiFrontal sparse LU decomposition (UMFPACK package). The adjoint modes are computed as left eigenvectors of the discrete systems derived from the discretization of the linearized equations. In this way, the sensitivity function can then be computed by the product of the direct and the adjoint fields.

We use a second-order finite-difference code where the Navier–Stokes equations are solved on a staggered Cartesian mesh without considering body-fitted coordinates for the cylinder. The equations are discretized starting from their conservative form. An Immersed Boundary technique is implemented to impose zero velocity on the cylinder surface: Velocities at the grid points near the cylinder surface are forced to those values.
needed to fulfill the zero velocity condition on the surface by interpolation (see Giannetti & Luchini 2007, for more details). To obtain more accurate results, stretching is implemented to cluster grid cells near the cylinder. Discretization of the viscous terms involving $\dot{\gamma}$ requires special attention: compared to the newtonian case, in fact, a larger stencil is needed to obtain second order accuracy. Generally, increasing the width of the discretization stencil is not a problem, although the resulting scheme may be more time and memory demanding. However, when an immersed boundary technique is used to impose the boundary conditions on the wall of the cylinder, care must be taken in order to coordinate the interpolation points with those of the discretization so that the solution inside and outside the cylinder do not affect each other. This is obtained by discretizing the $\dot{\gamma}$ term by one sided higher order formulae (second or third order) with stencils having at maximum one point inside the cylinder, exactly as in the interpolation scheme used for the immersed boundary. Tests performed on different geometry confirmed the second order global accuracy of the adopted scheme.

The geometry and computational domain used are shown in figure 2, where the boundary conditions at the outer boundary are also reported. The cylinder is located symmetrically between the upper and the lower boundaries of the domain and its diameter D is set equal to one. The Cartesian coordinate system has its origin in the centre of the cylinder. In most of the cases, the domain size is chosen to be $L_x = 50$ ($x \in [-15, 35]$) and $L_y = 30$ ($y \in [-15, 15]$). The domain is large enough to satisfy the assumption of unconfined flow. The number of grid points along the x and y direction is $n_x = 260$ and $n_y = 180$ respectively. The coordinates (x_i, y_j) of the grid points node in the domain are specified as in Giannetti & Luchini (2007),

$$x_i = x_c \left\{ 1 + \frac{\sinh[\tau_x(i/n_x - B_x)]}{\sinh(\tau_x B_x)} \right\}$$

and similarly for y_j. In the expression above, B_x is defined as

$$B_x = \frac{1}{2\tau_x} \left[\frac{1 + (\exp(\tau_x) - 1)(x_c/L_x)}{1 + (\exp(-\tau_x) - 1)(x_c/L_x)} \right]$$

where x_c (and analogously y_c for the discretization in the cross-stream direction) is the coordinate of the cylinder center ($x_c = 0, y_c = 0$). τ_x is the stretching parameter and can range from zero for equi-spaced grid points to large values when clustering of the
grid cells near the cylinder is desirable. Typically we use 60 stretched grid points in $x \in [-15, -1]$, 60 equi-spaced grid points in $x \in [-1, 1]$ and 140 stretched grid cells in $x \in [1, 35]$ along the streamwise x-direction. In the y-direction, we use 60 stretched grid points in both $y \in [-15, -1]$ and $y \in [1, 15]$ and 60 equi-spaced grid points in $y \in [-1, 1]$.

Boundary conditions are specified as in Giannetti & Luchini (2007) and are listed in figure 2, where U_b, V_b and P_b refer to the base flow quantities and u, v and p to the velocity perturbation. Zero velocity is imposed at the cylinder surface.

3.1. Validation

The code is initially validated against the results by Nouar et al. (2007). These authors investigate the instability of a shear-thinning fluid in the channel flow. The results from our code are in perfect agreement with the results of Nouar et al. (2007) for base flow and instability of a parallel flow. As discussed below, stability analysis of the cylinder flow is also validated against non-linear simulations performed with the spectral-element method.

A parameter study for resolution and domain size is carried out to determine the best grid in terms of accuracy and computational costs. We examine the difference in eigenvalue and critical Reynolds number when increasing resolution from 260×180 to 390×270 grid points in the $x-y$ plane at fixed domain size, and when increasing the domain from $L_x = 50$, $L_y = 30$ to $L_x = 75$, $L_y = 45$ with fixed resolution. The difference is below 1% for all cases and this motivates the choice of the grid whose details have been given above.

3.1.1. Direct numerical simulation

To further validate our results we perform direct numerical simulation of the nonlinear equations using the code Nek5000 (Fischer & Renquist 1994). This is adapted for the simulation of complex fluids by adding explicit terms that account for the shear-thinning and thickening. Nek5000 is based on the Spectral Element Method (SEM) (Patera 1984). This method shares similarities with both finite element methods (FEM) and spectral methods. The computational domain is sub-divided into a number of elements, where the governing equation is discretized and cast into variational formulation. The solution is approximated by the Galerkin method as an expansion in a finite set of Legendre basis functions, which together with the corresponding Gauss-Lobatto grid enable exact Gaussian quadrature for the evaluation of the element-wise integrals. For the results presented here we used a grid with (56×26) elements and 6th polynomial order and the same computational domain used for linear instability calculation (see figure 2).

4. Results for pseudo-plastic fluids

We investigate shear-thinning and shear-thickening effects on the instability of the cylinder flow. The shear-dependent viscosity is defined by the Carreau model where the shear-thinning effect is more pronounced for low values of power index “n” and large values of material time constant “λ”. The power index and the time constant are chosen here in the range $0.4 \leq n \leq 1.75$ and $0.1 \leq \lambda \leq 100$. In this section we will consider only shear-thinning fluids ($n < 1$) whereas shear-thickening fluids ($n > 1$) will be considered in the next section. It is relevant to note here that values of $n < 1$ can be shown to match most of experimental observation for polymer solutions (Bird et al. 1987).

First we report the critical Reynolds number, the Reynolds number at which the flow first becomes unstable. Stability calculations have been carried out for several values of
the spanwise wavenumber β and the first mode to become unstable is found to be a two-dimensional mode, as for the Newtonian fluid, for all cases considered here. We display the critical values obtained with the Carreau-law in figure 3(a), where the neutral curves are displayed versus power index n for four different values of the time constant $\lambda = 0.1, 1, 10$ and 100. The shear-thinning effect induces a monotonic decrease of the critical Reynolds number. For the strongest shear-thinning examined, $n = 0.4$ and $\lambda = 100$, the critical Reynolds number decreases from 47 for a Newtonian fluid to about 3. Figure 3(b) displays the frequency (imaginary part of the eigenvalue) of the unstable solutions just above the neutral curves. The frequency increases when increasing the shear-thinning from 0.735 for the Newtonian case to 1.04 for $\lambda = 10$ and $n = 0.2$.

The results of the finite-difference stability code have been validated by Direct Numerical Simulation (DNS) using Nek5000. As shown in figure 3(a), unstable (time-periodic) and stable solutions are obtained just above and below the neutral curves computed from linear stability for several test cases. In figure 3(b) we report the frequency of the periodic limit cycle obtained via DNS. The frequency of the oscillations is also in agreement with the results obtained with the linearized equations and a different spatial discretization. Indeed, close to the neutral point we expect linear stability to predict accurately the frequency of the limit cycle: this is no more the case further away from the neutral conditions.

4.1. Base flow characteristics

In this section we examine the effect of shear-thinning on the steady base flow solutions. First, we analyze the shear-thinning effect on the size of the recirculating bubble behind the cylinder. We plot the streamline associated to separation in figure 4(a) and, in white, the region delimited by zero velocity for a fixed value of the Reynolds number $Re = 40$, $\lambda = 10$ and different values of n. The recirculation region elongates considerably as shear-thinning becomes stronger: it extends from about 3 diameters behind the cylinder for the Newtonian case to about 10 diameters for $n = 0.4$. Figure 4(b) displays the streamlines and zero-velocity curve for $\lambda = 10$ along the neutral curve; the recirculation bubble is seen to approach a similar length at critical conditions.

To quantify this effect we report the dimensions of the recirculation bubble versus the Reynolds number for a fixed value of $\lambda = 10$ and different values of n in figure 5. The length of the steady recirculation bubble for Newtonian fluid increases linearly with

![Figure 3](image-url)
Reynolds number (Giannetti & Luchini 2007); we show in figure 5(a) that this is true also for the values of the power index examined here. In figure 5(b), we instead report the width of the recirculation region. The recirculating bubble widens with shear-thinning in all the cases.

The drag coefficient for shear-thinning Carreau cylinder flow with $\lambda = 10$ and several n is displayed in figure 6. In the Newtonian case ($n=1$), the drag coefficient reduces from about 2.7 to 1.5 when the Reynolds number increases from 10 to 40, as already known (see e.g. Kunde & Cohen 1990). Shear-thinning decreases the drag coefficients significantly for all Reynolds numbers between 10 and 40. For a fixed Reynolds number equal to 10 the drag coefficient reduces from 2.7 for Newtonian case to 1.24 when $n = 0.4$. This observation is in agreement with the results by Patnana et al. (2009) at subcritical...
Figure 5. (a) Bubble length \(l \), and (b) Bubble width \(w \) for fixed \(\lambda = 10 \), (\(\circ \)): \(n = 0.4 \), (\(\square \)): \(n = 0.6 \), (\(\bullet \)): \(n = 0.8 \), (\(\blacksquare \)): \(n = 1 \)

Figure 6. Drag coefficient, \(D \), versus the Reynolds number, \(Re \), for \(\lambda = 10 \), (\(\circ \)): \(n = 0.4 \), (\(\square \)): \(n = 0.6 \), (\(\bullet \)): \(n = 0.8 \), (\(\blacksquare \)): \(n = 1 \)

conditions; these authors show that for a fixed value of the Reynolds number the drag coefficient of power-low fluids increases with increasing value of power index \(n \).

Coelho & Pinho (2004) indicate that the reduction in the turbulent shear stresses in the wake of the cylinder is responsible for elongating the recirculation bubble. A similar reduction in drag and elongation of the recirculation bubble is observed here for laminar flows. This can be explained by considering the reduction in shear stress, associated to shear-thinning, occurring on the sides of the recirculation region where the largest shear is found. This causes an increase of the pressure behind the cylinder to keep the balance of forces within the recirculation bubble. As shown in figure 4(a), indeed separation moves closer to the top/bottom of the cylinder when decreasing the value of \(n \), which explains also the increase in wake width. The reduction of the shear stress also causes a decrease of the entrainment by the shear layers of fluid from the region behind the cylinder during the transient to the steady state. This elongates the recirculating bubble.

4.2. Global modes and sensitivity

The direct and adjoint modes indicate the location of maximum amplitude of the perturbation and the region of highest receptivity respectively. As shown among others by Giannetti & Luchini (2007) for Newtonian fluids, the maximum of the direct modes is reached far downstream of the cylinder surface, while the peak of the adjoint modes is located in the near wake. The characteristics of the direct global modes for shear-thinning
fluids are displayed in figure 7 where we show the spatial distribution of the velocity perturbation magnitude at critical Reynolds numbers for \(\lambda = 10 \) and 4 different values of \(n \). The largest fluctuations are located far downstream of the cylinder for Newtonian flow, at a distance of about 20 diameters. These peaks move gradually upstream when increasing shear-thinning and are located only 5 diameters downstream of the cylinder for \(n = 0.4 \); the region where significant fluctuations can be observed also shrinks significantly. As a consequence of this more pronounced localization, the normalized values of the maximum of \(\hat{u} \) and \(\hat{v} \) increase from 0.008 and 0.013 for \(n = 1 \) to 0.022 and 0.02 for \(n = 0.4 \) (not shown here).

The regions most receptive to momentum forcing are visualized in figure 8 by the spatial distribution of the adjoint modes at critical Reynolds number, again for \(\lambda = 10 \) and for 4 different values of the shear-thinning exponent \(n \). In all cases, the region of maximum receptivity is localized in the near wake of the cylinder, symmetrically on the upper and lower side of cylinder surface. Unlike the direct modes, the adjoint modes decay quickly both upstream and downstream of the cylinder, \(x < -2 \) and \(x > 4 \). These characteristics of the adjoint field remain almost constant over the range of values of the rheological parameters examined in this work, although one can notice an increased localization of the peak of the adjoint velocity field when increasing shear-thinning (decreasing \(n \)). The differences in the spatial localization of the maxima of the direct and adjoint modes results from the convective non-normality of the Navier-Stokes equations (Chomaz 2005; Sipp et al. 2010).

The instability mechanism however cannot be deduced from the study of either eigenfunctions separately. The onset of instability is generated by a self-exciting mechanism in the region of flow with the role of wavemaker. This region of wavemaker can be identified by structural sensitivity analysis of the unstable modes introduced above. The spatial map of the spectral norm of the sensitivity tensor \(S \) (see section 2.3, equations 2.15 and 2.16) is shown in figure 9 for \(\lambda = 10 \), again at the critical Reynolds number pertaining to different values of \(n \). Results for different values of the parameter \(\lambda \) would show a similar trend. In all cases, the core of instability consists of two lobes placed symmetrically downstream of the cylinder. Although the spatial separation between the maxima of the direct and adjoint modes decreases with shear-thinning, the main characteristics of the sensitivity field do not change considerably. This finding may be explained by the fact...
Figure 8. Spatial distribution of the magnitude of the adjoint global mode at the critical Reynolds number for a fixed $\lambda = 10$ for 4 values of n.

Figure 9. Sensitivity map for a fixed $\lambda = 10$ along the neutral curve

that the size of the recirculation bubble, clearly associated to the instability generation by the sensitivity map in figure 9, is not substantially varying at critical conditions as shown in figure 4(b). The most noticeable effect associated to shear-thinning is that the area of maximum sensitivity shrinks when decreasing n while the peak value of the sensitivity function increases (note that the sensitivity is obtained at lower nominal Reynolds number for lower values of n).

The viscosity of a shear-thinning fluid varies with the local shear rate ($\mu_{local}(\dot{\gamma}_{local})$). Therefore, a local Reynolds number can be defined as

$$Re_{\mu} = \frac{\rho U_{\infty} D}{\mu_{local}}.$$
to gain further understanding on the instability mechanism. The spatial distribution of the local Reynolds number Re_μ is depicted in figure 10 for the same parameters considered above. The color map is fixed for each plot to be in the range between 0 and 60 ($Re = 47$ being the critical value for Newtonian flow). The local Reynolds number appears to be approximately equal to or slightly larger than 47 in the region of largest sensitivity in all cases although the local Reynolds number can significantly decrease just outside of the regions of highest shear. The data in the figure therefore confirm that the same physical mechanisms is at work: shear-thinning effects act through significant modification of the base flow at given Reynolds number whereas the instability seems to appear when similar characteristics of the wake are occurring, both in terms of local viscosity and size of the recirculation bubble.

To corroborate this observation, we define an average viscosity using the square of the sensitivity function as weight

$$\bar{\mu} = \frac{\int_D \mu(x, y) S(x, y)^2 dA}{\int_D S(x, y)^2 dA},$$

where D is the computational domain, S is the sensitivity defined above. An instability Reynolds number can thus be defined as

$$Re = \frac{\rho U_\infty D}{\bar{\mu}}.$$

Table 1 shows the value of this stability Reynolds number along the neutral curves: a value close to 47 is found for all cases (this applies also to shear-thickening fluids discussed in the next section).

Sensitivity analysis to base-flow modification provides information about the effect of base flow on the instabilities and the role of passive control devices. The spatial distribution of the structural sensitivity due to base-flow modifications is presented in figure 11, for $\lambda = 10$ at 4 critical Reynolds numbers (see section 2.3.1). For all the cases, the sensitivity to base-flow modifications is considerably stronger than that to
Table 1. Stability Reynolds number Re_n along the neutral curves (note that shear-thickening results are also reported here).

<table>
<thead>
<tr>
<th>n</th>
<th>$\lambda = 1$</th>
<th>$\lambda = 10$</th>
<th>$\lambda = 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.75</td>
<td>47.17</td>
<td>48.72</td>
<td>48.7</td>
</tr>
<tr>
<td>1.5</td>
<td>47.16</td>
<td>47.84</td>
<td>47.62</td>
</tr>
<tr>
<td>1.25</td>
<td>46.85</td>
<td>47.39</td>
<td>47.15</td>
</tr>
<tr>
<td>1</td>
<td>47</td>
<td>47.98</td>
<td>47.76</td>
</tr>
<tr>
<td>0.8</td>
<td>48</td>
<td>46.98</td>
<td>47.5</td>
</tr>
<tr>
<td>0.6</td>
<td>48.6</td>
<td>46.96</td>
<td>49.375</td>
</tr>
<tr>
<td>0.4</td>
<td>50.32</td>
<td>48.63</td>
<td></td>
</tr>
</tbody>
</table>

Figure 11. Sensitivity map due to base-flow modifications for a fixed $\lambda = 10$ along the neutral curve.

structural perturbations, as shown by Giannetti & Luchini (2007) for a Newtonian fluid. For example, for a value $n = 0.4$ of the power index and $\lambda = 10$, the maximum value of the sensitivity to base-flow modification is about 4 while it is about 0.5 for time-dependent structural perturbations. The area of maximum sensitivity is localized close to the cylinder surface, on the upper and lower side. As for the wavemaker in figure 9, shear-thinning effects do not change the main features of the sensitivity map: the area of maximum sensitivity gets thinner while the magnitude increases when decreasing n.

4.3. Energy analysis

The instability mechanism is now examined by considering the perturbation kinetic energy budget. Figure 12 shows the contribution from the different terms in the energy budget (2.19) integrated over the computational domain. The data pertain to fixed Reynolds number $Re = 20$ and $\lambda = 10$. The magnitude of the production and viscous dissipation terms decreases with the power index n, whereas the additional positive contribution related to shear-thinning effects become significant only for $n \lesssim 0.5$. The sum of the two production terms and of viscous dissipation, normalized with the total kinetic energy of the mode, yields the temporal growth rate (solid line in the figure); it crosses the value of zero for $n \approx 0.6$, the value of the critical Reynolds number presented above.

The spatial distribution of the total kinetic energy production of the perturbation is reported in figure 13. Here, one can distinguish regions of positive and negative produc-
Instability of shear-thinning and shear-thickening fluids past a circular cylinder

Figure 12. Integral of production and dissipation of perturbation kinetic energy E over the domain for a fixed $\lambda = 10$ and Reynolds number=20. (−−−−−−): Dissipation, (−−−−−−): Production, (−−−−−−): shear-thinning production and (−−−−−−): sum

Figure 13. Spatial distribution of the sum of the total production and dissipation of perturbation kinetic energy, normalized by the energy of perturbation, plotted together with the contour level delimiting the area of maximum structural sensitivity at critical Reynolds number for $\lambda = 10$.

tion. We notice that the positive production is more and more localized when increasing shear-thinning and the magnitude of the peak production increases. The region of large sensitivity is also reported in the figure and related to that of largest energy production: for Newtonian flow and largest values of n, the wave-maker is clearly located upstream of the region of largest production of fluctuation energy. Only for the lowest value of n examined, the two regions partially overlap. As discussed e.g. in Pralits et al. (2010), structural sensitivity and kinetic energy budget provide different information about the instability process. The former identifies the region where the unstable perturbation is created (the pocket of absolute instability in a weakly non-parallel context) while the latter identifies where the largest amplification is attained (a region of strong convective instability in a weakly non-parallel flow).

As introduced in section 2.3.2, an additional production term, strictly positive, appears in the case of shear-thinning fluids, $-\frac{2}{Re} A|\epsilon_{ij} E_{ij}|^2$. Its spatial distribution is displayed in figure 14 for the same fluid considered in figure 13. This extra production term is
zero everywhere in the domain for \(n = 1 \) and gradually increases with the magnitude of the shear-thinning effects. The location and extension of the density of the additional production are very similar to those of the total production displayed in figure 13. The total production of the kinetic energy is largest downstream of the region of largest structural sensitivity. The perturbations originate inside the wavemaker and propagate as waves downstream. They are most amplified further downstream where the largest production is found.

4.4. Viscosity fluctuation

Nouar et al. (2007) note that to assess whether there is stabilization and by how much in the presence of shear-dependent viscosity, it is important to account for a viscosity fluctuation in the perturbation equations; failure to do so can yield qualitatively and quantitatively incorrect conclusions. This is demonstrated by these authors at least for the case of plane channel flow where the critical Reynolds numbers are about a factor 2 larger when the viscosity perturbation is not taken into account. In this section we therefore investigate in further detail the effect of viscosity fluctuation (\(\mu' \)) on the instability mechanism for the flow past a circular cylinder. The results of stability calculations performed excluding a viscosity disturbance in the perturbation equations are reported in figure 15, where both the critical Reynolds number and the frequency of the least stable mode are displayed. The flow is slightly stabilized only at the smallest small values of the power exponent \(n \) when excluding \(\mu' \) from the equations. We can therefore conclude that the viscosity fluctuation has no effect on the first bifurcation for the flow past a cylinder of a shear-thinning fluid.

5. Dilatant fluids

In this section we examine the instability of dilatant or shear-thickening fluids flowing past a circular cylinder. In contrast with the shear-thinning fluid, the viscosity of the shear-thickening fluids increases with the shear rate of the flow. This behavior is described by the Carreau model when the power index \(n > 1 \).

The critical Reynolds number versus the exponent \(n \) for a shear-thickening fluid is shown in figure 16(a), where we display data for four different values of the time constant.
Instability of shear-thinning and shear-thickening fluids past a circular cylinder

Figure 15. Effect of the viscosity disturbance in the perturbation equations. (a) Neutral stability curve and (b) frequencies of the least stable mode at critical conditions for $\lambda = 10$. (−−): including viscosity disturbance, (−−−): excluding viscosity disturbance.

Figure 16. (a) Neutral curves and (b) Frequency of the least stable mode for shear-thickening cylinder flow, (−−−−−−): $\lambda = 0.1$, (−−): $\lambda = 1$, (−•−): $\lambda = 10$ and (−−−): $\lambda = 100$. Symbols indicate results from the direct numerical simulations: (+): unstable cases & (×): stable cases.

$\lambda = 0.1, 1, 10$ and 100. The shear-thickening effect stabilizes the cylinder flow dramatically when considering the Reynolds number based on the zero shear-rate viscosity. For $n = 1.4$ and $\lambda = 10$, the critical Reynolds number increases from 47 for a Newtonian fluid to about 102. The symbols in the figure represent results obtained by direct numerical simulation of the full nonlinear Navier–Stokes equations and validate the linear stability analysis. The results are consistent with those obtained for shear-thinning fluids; in this case the increase of the local viscosity prevents the formation of a sufficiently long recirculation bubble and thus delay the onset of the unsteady flow. Figure 16(b) displays the frequencies of the solutions just above the neutral curve. The frequency of the unstable modes decreases from 0.735 for the Newtonian case to 0.65 for $\lambda = 10$ and $n = 1.4$.

The structural sensitivity and the local Reynolds number Re_μ are reported in figure 17 for different values of the exponent n. As for the case of shear-thinning fluids, the region of largest sensitivity, the wavemaker, is not varying with the magnitude of the non-Newtonian effects. One can just note an increase of the area of maximum sensitivity for increasing n. The local viscosity can decrease to yield a local value $Re_\mu \approx 50$ at the core of the instability although it may be lower (higher Re_μ) in the region further downstream.
Indeed, as reported in table 1, the stability Reynolds number \overline{Re} obtained by averaging the local Re_μ with the structural sensitivity is about 47 also for shear thickening fluids. The sensitivity of shear-thickening fluids to base-flow modifications presents the same characteristics as that of shear-thinning fluids. Further, as noted here for the wavemaker, the area of maximum sensitivity increases while the magnitude of the sensitivity decreases by increasing the power index n. In summary, the physical mechanisms associated to the reduction of the critical Reynolds number discussed for shear-thinning fluids can be applied, in the opposite direction, to the behavior of shear-thickening fluids.

6. Discussion and conclusions

We investigated the onset of the first instability for the flow past a circular cylinder of shear-thinning and shear-thickening fluids. The shear-dependent viscosity is modeled by the Carreau-law where the rheological parameters, the power-index and the material time constant, are chosen in the range $0.4 \leq n \leq 1.75$ and $0.1 \leq \lambda \leq 100$. Structural sensitivity analysis based on the idea of wavemaker is used to identify the core of the instability. Sensitivity analysis to base-flow modifications is employed to investigate the effect of a local steady forcing on the instability. Perturbation kinetic energy budget is also considered to examine the physical mechanisms responsible for the production of the instability. This work present the first global linear stability analysis of non-Newtonian fluids for the configuration examined. The main conclusions can be summarized as follow.

It is observed that the first bifurcation occurs in all cases considered for two-dimensional modes, as for the Newtonian case. Floquet analysis of the instability of the limit cycle at higher Reynolds numbers is therefore a relevant extension of the present study. The shear-thinning effect destabilizes the cylinder flow dramatically when defining the Reynolds number with the zero shear-rate viscosity. For the strongest shear-thinning effect, $n = 0.4$ and $\lambda = 100$, the critical Reynolds number decreases from 47 for a Newtonian fluid to about 3. The frequency of the unsteady solutions computed via direct numerical simulations just above the neutral curves increases with shear-thinning from 0.735 for
Instability of shear-thinning and shear-thickening fluids past a circular cylinder

the Newtonian case to 1.04. In the case of shear-thickening fluids, the critical Reynolds number increases with the time constant λ and the exponent n. For $n = 1.75$ and $\lambda = 10$, the critical Reynolds number increases from 47 for Newtonian fluids to about 193. The corresponding frequencies of the solutions just above the neutral curve decreases from 0.735 to 0.65. The numerical simulation of the full nonlinear equations also provides a validation for the results presented.

The direct and adjoint modes indicate the location of maximum amplitude of the perturbation and the region of highest receptivity in the flow field. The maxima of the direct global modes are located far downstream of the cylinder for Newtonian flow and move gradually upstream with shear-thinning when considering the flow just above critical conditions. In all the cases, the regions of maximum receptivity are localized in the near wake, close to the upper and lower side of the cylinder surface. The wavemaker, the core of the instability, is found to be in the two lobes placed symmetrically downstream of the cylinder, similarly to what found in the Newtonian case (Gianetti & Luchini 2007; Marquet et al. 2008). The area of maximum sensitivity becomes more and more localized when increasing shear-thinning effects, while it becomes more diffuse for shear-thickening fluids. The region of maximum sensitivity to base-flow modifications is found close to the cylinder surface in the upper and lower side for all the cases examined.

The total production of perturbation kinetic energy is largest downstream of the region of the wavemaker. The perturbations originate from the region of the wavemaker and are most amplified further downstream where the largest production is observed, possibly due to strong shear rate. We further examine the effect of the viscosity fluctuation (μ') on the instability of the flow past a cylinder. Indeed, analysis of the perturbation kinetic energy budget reveals that an additional production term is originating in the presence of shear dependent viscosity. This term is strictly positive for shear-thinning fluids and negative for shear-thickening fluids. We demonstrate that μ' does not affect the neutral curves nor the core of instability. However it is responsible for increased amplification of the disturbance kinetic energy downstream of the region of the wavemaker in the case of shear-thinning fluids, while the opposite applies to dilatant fluids.

As the instability mechanism is not changed significantly by shear-thinning and shear-thickening, we explain the difference in critical Reynolds number by the effects that the non-Newtonian character of the fluid has on the steady base flow. We show that the drag coefficient decreases significantly with shear-thinning for Reynolds numbers between 10 to 40. The recirculating bubble behind the body elongates considerably with the shear-thinning effect, while it shortens for shear-thickening fluids. As an example, at $Re = 40$, the bubble extends from about 3 diameters for the Newtonian case to 10 diameters for $n = 0.4$ and $\lambda = 10$. The shear-thinning effects also intensifies the magnitude of vorticity in the region close to the cylinder surface. These effects can be explained by considering the reduction in shear stress, associated to shear-thinning, occurring in the regions of largest shear on the sides of the recirculation region.

Most importantly, we show that at critical conditions the recirculation region approaches the same size for all cases considered here. Thus, there appears to be a critical configuration of the wake for the onset of the instability, which is then mainly of inviscid type. These critical conditions are determined by the local viscosity creating the separation region. Indeed we displayed the spatial distribution of a local Reynolds number based on the local value of the viscosity. Along the neutral curves, the same region around the cylinder represents Reynolds number equal or around 47 for both pseudo-plastic and dilatant fluids. This region where the local $Re_\mu \approx 50$ overlaps significantly with the area of largest structural sensitivity.

Nouar et al. (2007) discuss the importance of the choice of the viscosity used to define
the Reynolds number; the conclusions when comparing results for fluids with different rheological properties, including Newtonian fluids, can indeed depend on the choice of the viscosity scale. They argue that the tangent viscosity evaluated at the wall is a more relevant choice than the average effective viscosity for the case of plane channel flow. The extension to an open configuration like that considered here is not straightforward: an effective viscosity averaged over all the domain is certainly not useful as the core of the instability is localized in the near wake. In the same spirit, the shear stress at the wall may not be that relevant for separating flows where pressure gradient effects are more relevant. Therefore here we decide to define a stability Reynolds number obtained as a weighted average of the local Reynolds number over the whole domain where the weight function is the norm of the structural sensitivity. In this way we obtain a value of the critical Reynolds number of about 47 for all cases considered.

This study represents a first theoretical analysis of the instability mechanisms in the wake past a solid bluff body for inelastic non-Newtonian fluids. The work can therefore be extended to consider confined object (Camarri & Giannetti 2007, 2010), as well as an array of objects (Nejat et al. 2011).

F.G. acknowledges financial support from the C.M. Lerici Foundation during his visit to Stockholm. Computer time provided by SNIC (Swedish National Infrastructure Centre) is gratefully acknowledged. We would like to thank Paolo Luchini for the CPL compiler.

REFERENCES

Marquet, O., Lombardi, M., Chomaz, J.-M., Sipp, D. & Jacquin, L. 2009 Direct and

