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We study numerically the inertial migration of a single rigid sphere and an oblate
spheroid in straight square and rectangular ducts. A highly accurate interface-resolved
numerical algorithm is employed to analyse the entire migration dynamics of the
oblate particle and compare it with that of the sphere. Similarly to the inertial focusing
of spheres, the oblate particle reaches one of the four face-centred equilibrium
positions, however they are vertically aligned with the axis of symmetry in the
spanwise direction. In addition, the lateral trajectories of spheres and oblates collapse
into an equilibrium manifold before ending at the equilibrium positions, with the
equilibrium manifold tangential to lines of constant background shear for both sphere
and oblate particles. The differences between the migration of the oblate and sphere
are also presented, in particular the oblate may focus on the diagonal symmetry line
of the duct cross-section, close to one of the corners, if its diameter is larger than
a certain threshold. Moreover, we show that the final orientation and rotation of
the oblate exhibit chaotic behaviour for Reynolds numbers beyond a critical value.
Finally, we document that the lateral motion of the oblate particle is less uniform
than that of the spherical particle due to its evident tumbling motion throughout the
migration. In a square duct, the strong tumbling motion of the oblate in the first
stage of the migration results in a lower lateral velocity and consequently longer
focusing length with respect to that of the spherical particle. The opposite is true in a
rectangular duct where the higher lateral velocity of the oblate in the second stage of
the migration, with negligible tumbling, gives rise to shorter focusing lengths. These
results can help the design of microfluidic systems for bioapplications.

Key words: microfluidics, multiphase flow, particle/fluid flow

1. Introduction

Inertial focusing is an effective technique in microfluidics to control the motion of
micron-size particles transported by a fluid (Martel & Toner 2014). One advantage of
this approach is that the particle motion is governed by intrinsic hydrodynamic forces
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while non-hydrodynamic forces such as magnetic, optic and acoustic forces are often
absent (passive microfluidics as denoted by Hur et al. (2011)). From the practical
point of view, inertial focusing is therefore rather simple to use, i.e. no additional
component is needed, with the potential of high throughput. The deterministic ordering
induced by inertial particle focusing can be employed directly in many biological
applications such as large-scale filtration systems, continuous ordering, cell separation
and high throughput cytometry (Bhagat, Kuntaegowdanahalli & Papautsky 2008; Zhou
& Papautsky 2013). In this study we employ an interface-resolved numerical algorithm
based on the immersed boundary method to a provide deeper and more accurate
understanding of the physics of the particle motion in microdevices. For the first
time, the entire migration dynamics of an oblate particle is analysed and compared to
that of a sphere. This knowledge can be directly used to develop methods for highly
efficient inertial focusing, with high purity and throughput, without compromising the
operational simplicity.

In the absence of inertia, particle trajectories follow the flow streamlines to preserve
the reversibility of the Stokes flow. When inertia becomes relevant, however, particle
lateral migration is observed and is directly connected to the nonlinear dynamics of
the underlying fluid flow. In inertial flows, the ratio between the inertial to viscous
force is measured by the Reynolds number, Re = UH/v, where U and H are the
characteristics velocity and length scales of the flow and v is the fluid dynamic
viscosity. In typical microfluidic applications, when Re > 1, inertial forces govern the
lateral motion and final arrangement of the particles.

Particle lateral motion and focusing were probably first observed in the pipe
experiment by Segré & Silberberg (1961). Later on, few theoretical studies aimed
to explain the particle migration: among others Rubinow & Keller (1961) propose
a formulation for the lateral force based on the particle rotation while Saffman
(1965) suggests a lift force as function of the particle relative velocity with respect
to the undisturbed fluid velocity at the particle position. The latter is shown to
be independent of the particle rotation. During the last 20 years and owing to
the increase of inertial microfluidics for biomedical applications, the number of
theoretical, numerical and experimental investigations on inertial particle migration
has significantly increased. The slip—spin force of Rubinow & Keller (1961) and the
slip—shear force of Saffman (1965) are denoted as weak forces in the work by Matas,
Morris & Guazzelli (2004b). The dominating forces, determining the particle lateral
trajectory and the equilibrium position, are found to be shear-induced and wall-induced
lift forces resulting from the resistance of the rigid particle to deformation (see the
review by Martel & Toner (2014)). The wall-directed shear-induced lift force and the
centre-directed wall-induced lift force balance each other at the equilibrium position
observed in the experiment by Segré & Silberberg (1961).

Theoretical analyses of the lateral force on a particle in simple shear and channel
flow have also been conducted after the seminal work by Segré & Silberberg (1961).
Among others, Ho & Leal (1974) predicts the trajectory and equilibrium position
of a rigid spherical particle in a two-dimensional Poiseuille flow using analytical
calculations that compared well with the experiment. Particle lateral motion is
studied extensively in the framework of matched asymptotic theory as introduced
by Schonberg & Hinch (1989) and extended by Asmolov (1999) to account for the
flow inertia. This theory is based on the solution of the equations governing the
disturbance flow around a particle. Following the work by Asmolov (1999), many
analytical, numerical and experimental studies have tried to determine the lateral force
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on the particle including Reynolds number and particle size effects. As examples
Matas, Morris & Guazzelli (2004a, 2009) report the lift force on the particle across
the pipe as a function of the Reynolds number. Similar to the theoretical predictions,
they observe that particles form a narrow annulus which moves toward the wall as
Re increases. However, they find additional equilibrium positions closer to the pipe
centre which are not predicted by theory and are attributed to the finite-size effect.
Finally, they note that experimental results deviate from the theoretical prediction as
the ratio between the channel height and the particle diameter becomes smaller.

The majority of the studies related to microfluidics applications are conducted
in duct flow due to the simplicity of microfabrication methods with material such
as Polydimethylsiloxane (PDMS). In addition, the geometrical anisotropy (radial
asymmetry) of the duct is the key to isolate and focus the particles in specific
positions over the cross-section. It is well known that particles in square duct migrate
to four face-centred equilibrium positions for small and moderate values of the
Reynolds number (see among others Chun & Ladd 2006; Di Carlo et al. 2007). New
equilibrium positions are also reported mainly when the Reynolds number is beyond
a certain threshold (see Chun & Ladd 2006; Bhagat et al. 2008; Miura, Itano &
Sugihara-Seki 2014). The lateral forces on a particle in a duct changes in magnitude
and direction across the cross-section and also depend on the particle size and bulk
Reynolds number. Therefore, the physical mechanisms behind the particle lateral
motion in ducts is not yet fully understood as recently concluded in the experimental
work by Miura et al. (2014).

Theoretical approaches aiming to predict the particle lateral motion in a duct are
challenging due to the three-dimensionality of the driving flow. Di Carlo et al. (2009)
report that the lift force on a particle moving in a duct can collapse into a single
curve in the near-wall region or close to the duct centre depending on the choice of
scaling. In particular, they multiply the drag coefficient by the ratio between particle
diameter to duct height, D/H, or divide it by (D/H)? to get the collapsed data near
the wall or close to the centre. Recently Hood, Lee & Rope (2015) have extended the
theoretical approach of Ho & Leal (1974) to express the lateral force on a particle
in a three-dimensional Poiseuille flow as a function of the particle size. Including
terms due to the wall contribution they show how a larger particle focuses closer to
the centre, in agreement with their numerical experiments. These theoretical studies
are however limited to spherical particles because there is no asymptotic analytical
solution for non-spherical particles and in most of the cases it is assumed that the
particle does not affect the underling flow. In addition, it is challenging to measure in
an experiment the entire dynamics of the particle motion, such as trajectory, velocity,
orientation and rotation rate. Therefore, interface-resolved numerical simulations,
where the full interactions between the fluid and solid phase are taken into account,
have become a valuable way to study inertial migration of particles of different shape.
Numerical simulations may also provide information about the role of different control
parameters such as particle size, shape and Reynolds number on the particle migration.

In this study we simulate the motion of rigid particles in straight ducts of different
aspect ratios employing an immersed boundary method. To the best of our knowledge,
this is the first study on the motion of both spherical and oblate particles in a
microfluidic configuration where not only the equilibrium position but also the entire
migration dynamics of the particle from the initial to final position, including particle
trajectory, velocity, rotation and orientation, is investigated. The paper is organised
as follows. In §2 we introduce the governing equation, numerical method and flow
set-up and in §3 discuss the results of simulations of spheres and oblate spheroids
in a square and rectangular duct. The main conclusions are summarised in §4.
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FIGURE 1. (Colour online) Flow visualisation of the motion of a single spherical/oblate
particle in a square duct. The particle and duct size are shown at the actual scale.

2. Methodology

In this section we discuss the governing equations, numerical method and the flow
set-up for the simulation of a single rigid particle in a straight duct.

2.1. Governing equations

Inertial flows, unlike Stokes flow, are described by a nonlinear governing equation
such that the flow system is irreversible. Therefore, the trajectory of a particle does
not necessarily follow the streamlines and the particle experiences lateral motion. In
this study the fluid is incompressible and Newtonian and its motion is governed by
the Navier—Stokes and continuity equations,

ou 5
ol —+u-Vu)=-VP+uVu+pf,

at @2.1)

V.eu=0,

where P and pu indicate the fluid pressure and dynamic viscosity and p the fluid
density. Since we simulate the motion of a neutrally buoyant particle, p denotes also
the particle density. We use the coordinate system and velocity component X = (x, y, z)
and u = (u, v, w) corresponding to the streamwise and cross-flow directions as shown
in figure 1. A force f is added on the right-hand side of the Navier—Stokes equation
to model the presence of the finite-size particle. The motion of the rigid particle is
governed by the Newton—Euler equations,

dur T
mP = [—PI+M(Vu+Vu )]'ndS+FC’
dr av,
o (2.2)
re- :?{ rx {[—PI+u(Vu+Vu")]-n}dS+T,,
av,

where m” and [?, U? and £7 are the mass, moment inertia, centre velocity and
rotation rate of the particle p. The surface of the particles and unit normal vector
are denoted by 0V, and n whereas the vector connecting the centre to the surface of
the particles by r. The first terms on right-hand sides of these equations represents
the net force/moment on particle p resulting from hydrodynamic interactions. The
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second term, F, and T., indicates the force and torque resulting from contact
interactions. Note, however, that during the entire motion of a particle in the duct
from initial to final position, we do not observe any particle-wall contact for the
cases presented here. An interface condition is needed to enforce the fluid velocity
at each point of the particle surface to be equal to the particle velocity at that point,
u(X) =U(X) =U" + 27 x r. An immersed boundary method with direct forcing is
employed to satisfy the interface condition indirectly by applying the forcing f in
the vicinity of the particle surface.

2.2. Numerical method

The numerical approach is a combination of a flow solver with an immersed boundary
method. The fluid flow is computed by discretising the governing equations on a
staggered mesh using a second-order finite different scheme. The fluid/solid interaction
is based on the discrete forcing method, a variant of the immersed boundary method
(Mittal & Taccarino 2005), developed by Uhlmann (2005) to simulate finite-size
particle suspensions. This has been further modified by Breugem (2012) to simulate
neutrally buoyant particles with second-order spatial accuracy. Two sets of grid points
are considered: an equi-spaced fixed Eulerian mesh everywhere in the domain and
Lagrangian grid points uniformly distributed on the surface of the particle. The
Eulerian and Lagrangian grid points communicate to compute the immersed boundary
(IB) forcing which ensures the no-slip and no-penetration boundary conditions on
the particle surface. The IB force is applied on both fluid and particle phase when
the velocities and positions are updated. We note for the sake of completeness that
even though the near-field interactions between the two particles or particle-wall are
irrelevant in this work because we simulate the motion of a single particle that is
always located far from the walls, the numerical algorithm contains both lubrication
correction and soft sphere collision model for small gaps between the solid objects
(see the Appendix of Lambert er al. (2013), for more details). The accuracy of the
code has been examined in Breugem (2012) and Costa et al. (2015) where good
agreement with experimental data is obtained. In addition, the present implementation
has been employed over a wide range of Reynolds numbers and particle concentrations
in different studies on rigid particle suspension for both spherical and non-spherical
particles (see for example Lashgari et al. 2014; Picano, Breugem & Brandt 2015;
Ardekani et al. 2016, 2017; Fornari, Picano & Brandt 2016).

2.3. Flow set-up

In this study the motion of a rigid sphere and an oblate spheroid are examined in
square and rectangle cross-section straight ducts. The no-slip and no-penetration
boundary conditions are imposed on four lateral walls with periodic boundary
condition in the streamwise direction. The square duct, of height H, is 3H long and
is meshed by 480 x 160 x 160 Eulerian grid points in the streamwise and cross-flow
directions. The rectangular duct has aspect ratio 2 and is obtained doubling the length
of two parallel walls. The number of grid points is therefore 480 x 320 x 160. The
number of Eulerian grid points per particle diameter is 32 whereas 3219 and 3720
Lagrangian grid points are spread over the surface of the spherical and oblate particles
to ensure that the interactions between the fluid and particle are fully captured. We
perform the simulations with constant mass flux through the duct. The majority of
the simulations are performed at Re, = HU,/v = 100 where H is the duct height
(the same for the square and rectangular duct), U, is the bulk velocity and v is
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the kinematic viscosity of the fluid. This value of the Reynolds number is relevant
in practical applications considering the dimensions and flow rate in microchannels
(Amini, Lee & Di Carlo 2014). Note that we first simulate the flow in square and
rectangular ducts without particle to get the fully developed laminar solution, then
introduce a single particle at different initial positions and monitor its motion through
the duct. We also run a simulation where both fluid and particle velocities are started
from zero and observe that except at the very beginning of the particle motion the
entire dynamics of the particle inertial migration remains unchanged. In figure 1 we
display the evolution of a single rigid sphere and one oblate particle in a square duct
where the particle is shown at the actual size. The particle experiences rotation and
lateral displacement while traveling downstream through the duct and finally focuses
on a particular lateral position. The specification of the particles used in the different
simulations will be presented when discussing the corresponding results. Note finally
that we perform box size and resolution studies to ensure that our results are not
affected by any numerical artefacts, see appendix A. In appendix A, we also report a
validation against the data presented in Di Carlo et al. (2009). Considering the high
resolution adopted and the relatively small particle lateral velocity, one simulation
may need up to two weeks employing between 32 and 48 computational cores,
depending on the value of the focusing length needed to reach the final steady state.

3. Results

In this work we examine the lateral motion of rigid particles in both square and
rectangular straight ducts employing the numerical algorithm just introduced. We
compare the entire migration dynamics, particle trajectory and final equilibrium
position of sphere and oblate particles to shed more light onto the mechanisms
of particle lateral displacement and provide useful knowledge for the design of
microfluidic systems. In the first step, we focus on the motion of a spherical rigid
particle in square and rectangular ducts and compare our results with previous findings.
For the most part, we study the inertial migration of a single oblate particle. When
doing so, we also investigate Reynolds number and size effects on the equilibrium
position and focusing length of both types of the particles.

3.1. Migration dynamics of a spherical particle

There have been several experimental and numerical studies on the inertial migration
of a spherical particle in duct in the last years. However, few studies are devoted to
the entire migration dynamics, particle trajectories in the duct cross-section, focusing
length, Reynolds number and size effects. In this section we discuss the overall
behaviour of an inertial spherical particle in a duct and compare it with that reported
in previous works.

3.1.1. Sphere in square duct

We start with the simulation of a single spherical rigid particle in a square duct.
Most of the simulations are performed for a size ratio, the ratio between the duct
height (width) to the sphere diameter, H/D;, = 5. We define the average particle
Reynolds number by Re, =y D?/v where y =2U,/D, is the average shear rate in the
duct and D, =2WH /(W + H) is the hydrodynamic diameter of a duct with height, H,
and width, W. Note that D, = H for a square duct. With these definitions, the bulk
Reynolds number, Re, = 100, corresponds to the average particle Reynolds number,
Re, = 2Re,(D;/H)* =8 when H/D; =5. Due to the geometrical symmetry, we vary
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the initial position of the particle only over one-eighth of the duct cross-section. In
figure 2(a), top part, we show the sphere lateral trajectory for different simulations
where open circles and triangles represent the start and end positions of the particle
centre, respectively. We show as an example the initial and final position of the
particle projection onto the cross-section using dashed and solid light blue lines. We
clearly observe that all the trajectories end close to the centre of a duct wall, a
face-centred equilibrium position, independent of the initial position of the particles.
This position is one of the four equilibrium positions observed in the square duct
already in previous works, among others Chun & Ladd (2006) and Di Carlo et al.
(2007). For Re, =100 and size ratio H/D, =5 we report the equilibrium position to
be approximately 0.2H away from the wall of the duct, i.e. 0.3H from the centre.

Owing to the absence of radial symmetry in ducts, the lateral motion of the
particles cannot be simply explained by the balance between shear-induced and
wall-induced lift forces. In duct flows, the particle lateral motion, from the initial
to the final equilibrium position, can be seen as a two-step process. (i) The fast
migration towards the equilibrium wall, the wall adjacent to the equilibrium position,
resulting from the interplay between the strong shear-induced and wall-induced lift
forces. (ii) The slow migration towards the equilibrium position induced by the weak
rotation-induced lift force (see also Choi, Seo & Lee 2011; Zhou & Papautsky 2013).
Interestingly, the trajectories collapse onto a single curve, denoted the equilibrium
manifold, during the second slow lateral motion towards the equilibrium position.
The equilibrium manifold is a unique lateral path leading to the equilibrium position
regardless of their initial positions. Even though the existence of this manifold has
been reported in the recent works by Prohm & Stark (2014) and Liu et al. (2015), the
underlying physical mechanism is still not explained. We will attempt an explanation
in connection with the results of the particle migration in a rectangular duct.

We display the effect of the size ratio, H/D;, on the equilibrium position of a
sphere in a square duct in the lower part of figure 2(a). We simulate the motion
of the spheres of three different sizes at Re, = 100 starting from the same lateral
position in the duct cross-section and observe a similar behaviour: the particles focus
at closest face-centred equilibrium position. At equilibrium, the larger particles are
closer to the centre. This is mainly attributed to the steric effect as discussed by
Amini et al. (2014). The final location of spheres with size ratio H/D; =[3.5, 5, 10]
is [0.27H, 0.3H, 0.34H] from the duct centre. The distribution of different sizes at the
equilibrium position resembles the schematic diagram of Hood etr al. (2015) based on
the theoretical prediction of the lateral force on the particles.

To better understand the origins of these lateral motions, we examine the particle
lift coefficient in the duct. Following the formulation introduced by Asmolov (1999),
we express the lift coefficient of a spherical particle as

Fy

CL=—
py a*

: (3.1)

where F; is the lateral force on the particle in the opposite direction of its cross-
flow velocity, p is the density of the fluid and particle and a denotes the particle
radius. Since the particle lateral velocity, U, is low the force on the particle can be
estimated by Stokes law, F;, =6mualU;, where v is the fluid dynamic viscosity (Zhou
& Papautsky 2013). Combing with (3.1), the lift coefficient can be written as

_ 6nuH? 3n (H>3 U,

C,= = — .
L 4pUia? L 2Re, U,

(3.2)

a
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FIGURE 2. (Colour online) (a) Upper side of duct cross-section: lateral trajectory of a
spherical rigid particle in one-eighth of a square duct at Re, = 100. The ratio between
the duct height to particle diameter is H/D; = 5. Open circles and triangles show the
starting and ending points of the lateral trajectories. We show as an example the initial
and final position of a sphere with light blue dashed and solid lines. Lower side of the
cross-section: particle size effect on the lateral trajectory and the equilibrium position of
a single sphere in square duct at Re, = 100. The dashed and solid lines display the initial
and final position of the spheres. Right side of the cross-section: lift coefficient versus
downstream traveling length for some of the particle trajectories. (b) Focusing length for
different particle trajectories (symbols are displayed at a fixed time interval). The focusing
length of larger and smaller spheres is also shown by solid lines. (¢) Reynolds number
dependence of the equilibrium position of a spherical particle with size ratio H/D; =5.

This is estimated employing the particle lateral velocity from the simulation data for a
particle moving through the duct. The lift coefficients, corresponding to some particle
trajectories, are shown in figure 2(a) versus the downstream distance, right-hand side
of the cross-section. The profiles reflect the initial acceleration and final deceleration
of the particle toward the equilibrium position due to the shear-induced and wall-
induced lift forces. In particular, the particle experiences the highest lift coefficient
at the beginning of its lateral motion, especially if it is started close to a diagonal
symmetry line; i.e. red trajectory.

In figure 2(b) we show the downstream length needed for a sphere to focus, the
focusing length, as a function of the distance from the vertical duct symmetry line.
For each particle trajectory the same colour as in panel (a) is used. As regards spheres
with size ratio H/D; =5, we observe that if the particle is initially located close to
the duct centre and in particular close to the diagonal symmetry line, the focusing
length is longer. For the particular particle trajectory indicated by the red solid line,
the focusing length is approximately 250 times the channel height. Considering the
particle motion on the longest possible trajectory towards the equilibrium position,
we can predict the minimum streamwise length required for the particle focusing.
In addition, we note that if the particle starts close to the duct centre, its lateral
motion shows the classical slow and fast motion (the symbols represent the same
time intervals). The opposite is true if the particle starts close to the wall; in this
case, the lateral motion is more uniform. Considering spheres of different sizes, we
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report that small spheres require longer ducts, approximately 600 times the channel
height, to focus for the same bulk Reynolds number. This behaviour is exploited in
the design of a microfluidic system to efficiently separate small and large particles
(Zhou et al. 2013).

Next we examine the effect of Reynolds number on the equilibrium position of a
sphere in a square duct. It is known that the particle in the centre of the channel
always tends to move toward the wall regardless of Reynolds number. The final
equilibrium position however gets closer to the wall with increasing the Reynolds
number. This effect is first observed by Segre & Silberberg (1962) and then studied
theoretically by Schonberg & Hinch (1989) for Re, <75 and by Asmolov (1999) for
larger Re,. This effect is attributed to the narrowing of the wake behind the particle
so that the wake no longer feels the wall as the particle Reynolds number increases.
As a consequence, the interaction between the wall and the particle decreases and
the particle migrates towards the wall (see also Liu et al. 2015). In order to examine
the Reynolds number effects, we continue a simulation where the particle is close to
the equilibrium position and vary the bulk Reynolds number. We show the final part
of the particle trajectories (z-component versus x-component) as a function of the
Reynolds number in figure 2(c). Interestingly, we observe a non-monotonic behaviour
of the final equilibrium position of the particle. As we increase the bulk Reynolds
number up to 200, the particle ultimately focuses closer to the wall however at
Re;, > 300 the trend reverses and the particle focuses closer to the centre. Note that
we have also considered two additional cases at Re, = 200 and Re, = 300 varying
the initial position of the sphere and obtain the same result. The non-monotonic
positioning of the particle as a function of Reynolds number is also observed in
the experiment by Ciftlik, Ettori & Gijs (2013) in a rectangular duct. These authors
also report the threshold value of Re, ~ 300 for the reversing of the behaviour. This
observation is however opposite to the results of the numerical study by Chun &
Ladd (2006) and Liu et al. (2015) where the particle equilibrium position moves
monotonically toward the wall as the Reynolds number increases. The origin of this
discrepancy is still not clear and requires further investigations. The final location of
sphere at Re, = [50, 100, 200, 300, 400] are [0.287H, 0.3H, 0.307H, 0.3H, 0.281H]
from the channel centre. Finally we note that the lateral force on the particle increases
with the Reynolds number, i.e. a shorter focusing length is needed. As example the
particle focusing length, when staring from the initial position shown by dark blue
line in figure 2(a), is [150, 87, 55] in units of H at Re, =[100, 200, 300].

3.1.2. Sphere in rectangular duct

We next study the lateral motion of a single spherical particle in a duct with aspect
ratio 2. The objective is to examine the effect of the shear and lift force asymmetry on
the inertial migration of the particles. The results are summarised in figure 3(a) where
we show the initial position, trajectory and final position of particles from different
realisations exploiting the symmetry over one-quarter of the cross-section. The size
ratio between the duct height and particle diameter is H/D,; =15, indicated by the blue
circles in the figure, and the bulk Reynolds number Re, = 100 as for the results in
the previous section. Since the hydrodynamic diameter of the rectangular duct D, =
4H /3, the average particle Reynolds number Re, =y D?/v =6 for these simulations. In
the rectangular duct, the shear-induced lift force is stronger towards the longer wall.
Therefore, the general trend is that the particle first tends to move laterally toward
the long wall and then slowly along the long wall towards the equilibrium position at
the face centre (a similar behaviour is observed among others in Ciftlik et al. (2013),
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FIGURE 3. (Colour online) (a) Lateral trajectories of a spherical rigid particle over one-
quarter of a rectangular duct at Re, = 100. The particle diameter is one-fifth of the duct
height whereas open circles and triangles show the initial and final equilibrium position of
different realisations. The light blue dashed line indicates the equilibrium manifold over
the entire cross-section. The black dashed line defines the initial position leading to two
different equilibrium positions, at the face centre of the long or short wall as indicated by
the individual trajectories (only shown on one side).The dotted red and green lines indicate
isolevels of total shear rate equal to 0.75 and 0.81 and are tangential to the equilibrium
manifold (only shown on one side). (b) Focusing length for different particle trajectories.
The dashed lines represent the horizontal (z=2.5) and vertical (x=15) duct symmetry line,
as the particle focuses on either of them.

Zhou et al. (2013) and Liu et al. (2015)). The particle may also focus along the
symmetry line at the face centre of the short wall if it is initially located close enough
to that point (Bhagat er al. 2008). The final distance between the sphere centre and the
centre of the rectangular duct is approximately 0.275H and 0.82H at the equilibrium
position close to the longer and shorter wall respectively. The boundary delimiting
the initial positions leading to the two different equilibrium positions, depicted by the
dashed black line in the figure, is extrapolated from the data by fitting a parabola.

Similar to the behaviour in the square duct, we observe that all the trajectories
collapse onto an equilibrium manifold before they end at the equilibrium position.
The equilibrium manifold is obtained by connecting the different trajectories over
the entire cross-section and is shown by a dashed light blue line in the figure. Here,
we also display isocontours of constant total shear rate (dotted lines). Interestingly,
these are tangential to the manifold in the vicinity of the equilibrium positions.
This indicates that once the particle starts the secondary slow motion towards the
equilibrium, they move along lines of constant shear rate. The isolines of total shear
rate that are tangential to the manifold close to the longer and shorter wall have
values of 0.75 and 0.81 in units of U,/H.

Next, we compare the features of the particle inertial migration in square and
rectangular ducts. First, we note that if the particle is released close to the duct centre
and focuses at the equilibrium position at the centre of a longer wall, it does not
experience the initial lateral motion towards a shorter wall. This is directly connected
to the weaker shear-induced lift force toward the shorter walls. The opposite is true
if the particle starts close to the centre and focuses at the equilibrium position at
the centre of a shorter wall, see the purple line in the figure, in which case the
initial lateral motion toward the longer wall is significant. Secondly, we report that
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the focusing length is longer for particles in a rectangular duct, about three times
longer than that in square duct if the particle starts at the same lateral distance from
the equilibrium position, i.e. see figure 3(b). This is attributed to the lower average
shear rate in the rectangular duct, ;m, =2U,/Dylree =3U,/2H, with respect to that in
the square duct, ?W =2U,/Dylsqu = 2U,/H. This induces weaker lateral forces on a
particle in the former case.

3.2. Migration dynamics of an oblate particle

In this section, we vary the shape of the particle and investigate the inertial migration
of a spheroid oblate particle. Shape is an important biomarker that can be employed
in several biological and industrial applications such as cell separation, diagnosis
and food industry (Masaeli et al. 2012). Only few studies have been conducted so
far concerning the equilibrium position of non-spherical particles in microfluidic
configurations. In the experiments by Hur et al. (2011) it is reported that the
rotational diameter, D,,., of the particle, determines its final equilibrium position
in a rectangular duct. Later on, Masaeli et al. (2012) have demonstrated that the
equilibrium position of a rod-like particle is closer to the centre than that of a
spherical particle and eventually the rod exhibits a tumbling motion around its shorter
axis of symmetry. The spherical shape of the particle has been exploited in previous
studies to develop theories for the force prediction so that the inertial migration of
the non-spherical particles and the underlying relevant physical mechanisms are still
unexplored. We thus employ numerical simulations to study the motion of an oblate
particle in straight ducts. Note that here an additional degree of freedom, the particle
orientation, has to be included in the analyses.

3.2.1. Oblate particles in square ducts

As for spherical particles, we first simulate the motion of the oblate spheroid in a
square duct. The majority of the simulations have been performed for an aspect ratio
of the oblate, polar over equatorial radius, AR = 1/3 (in appendix B we report the
effect of aspect ratio on the particle inertial migration). In addition we set the ratio
between the duct height and the effective diameter of the oblate, the diameter of a
sphere with the same volume, equal to H/D¢ =35. This corresponds to a ratio between
the duct height and the diameter of the oblate, the largest dimension of the oblate,
equal to H/D,~3.466. We keep Re, =100, Re, =y (D%)>/v =38, as for the simulations
of a sphere discussed above and vary the initial position of the oblate centre over
one-eighth of the domain. The orientation of the oblate is monitored by the unit vector
n = [n,, ny, n;] parallel to the oblate symmetry axis. Similarly, the particle rotation
vector is defined by o = [w,, wy, @;]. The particle initial orientation is n = [0, 1, 0]
for all simulations, indicating that its axis of symmetry is parallel to the streamwise
direction whereas the initial velocity and rotation of the particle are zero.

By symmetry, we show in figure 4(a) the lateral trajectory of the oblate only over
one-eighth of the duct cross-section. The initial orientation and the actual size of the
oblate are depicted by the light blue dashed circle. The results of the simulations
reveal features similar to those observed for spherical particles. In particular, the oblate
particle experiences a lateral motion towards a face-centred equilibrium position so
that four face-centred equilibrium positions are obtained as for spheres. We also
observe an initial lateral motion of the oblates towards a side wall, if they are
positioned close to the centre, and the collapse of the trajectories on the equilibrium
manifold before reaching the equilibrium position. At the final equilibrium position,
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FIGURE 4. (Colour online) (a) Lateral trajectories of a rigid oblate particle over
one-eighth of a square duct at Re, = 100. The effective particle diameter is one-fifth of
the duct height (width), see definition in the text. The open circles and triangles show
the initial position and final equilibria, respectively. The initial and final orientation of the
oblate are shown for a particular case with the light blue solid line. (b) Orientation of
the oblate symmetry axis as a function of time scaled by D¢/U,. (c) Focusing length of
oblate spheroids from the different simulations: the symbols represent the particle centre
position at equal intervals of time.

the orientation vector is n=[1, 0, 0] for the face-centred equilibrium position shown in
the figure regardless of the initial position. This is in agreement with the experimental
finding by Di Carlo ef al. (2007) on inertial focusing of particles in microchannels
and can be related to energy dissipation, as this is a configuration of lowest dissipation
for oblate particles in shear flow. The oblate centre focuses approximately 0.26H from
the duct centre, slightly closer to the centre than a sphere at the same bulk Reynolds
number.

The streamwise motion of an oblate spheroid, from the initial to the final
equilibrium position, is accompanied by rotation around its main symmetry axis
(polar axis) and tumbling around an equatorial axis. Initially, particle exhibits a
Jeffery-like orbit (Jeffery 1922) with two distinct motions. First, a long-time motion
without tumbling where the main symmetry axis is positioned perpendicular to the
flow stream. Second, a tumbling motion in the form of a sudden rotation around
an equatorial axis. As particle gets closer to the equilibrium position the tumbling
motion vanishes gradually and particles just rotates around their axis of symmetry
while travelling downstream. In figure 4(b) we report the time evolution of the
x-component of the orientation vector, n,, for some of the simulated cases. In this
plot as well as the following plots, time is scaled by D¢/U,. For a particular trajectory,
indicated by the pink line, the first stage of the motion displays significant tumbling
toward the equilibrium manifold, O < ¢ < 110, while the second has negligible tumbling
along the manifold, 110 < f < f,, &~ 500. The data in the figure indicate that longer
time is needed to reach to the final orientation for particles starting close to the
centre. Finally, we note that at the equilibrium position an oblate particle rotates
around its symmetry axis. For the configuration in the figure, @ = [—0.395, 0, 0]
where the values are normalised by U,/D¢.
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FIGURE 5. (Colour online) (a) Lateral trajectories of a rigid oblate particle transported
in a rectangular duct, displayed over one-quarter of the cross-section. The bulk Reynolds
number Re, = 100 and the effective particle diameter is one-fifth of the duct height.
Open circles and triangles show the initial positions and final equilibria from different
realisations. The light blue dashed line indicates the equilibrium manifold over the entire
cross-section, that is where all the trajectories collapse before ending at an equilibrium
position. The dotted red and green lines are isolevels of the total shear rate for the values
of 0.67 and 0.74, chosen to be tangential to the equilibrium manifold (only shown on
one side). The black dashed parabola defines two regions in the cross-section according
to the final equilibrium position reached by particles released on each side of it. The two
equilibria are at the face centre of the long or short wall as indicated by the individual
particle trajectories (only shown in one side). (b) Focusing length for different particle
trajectories. The dashed lines represent the horizontal (z =2.5) and vertical (x =5) duct
symmetry line, as the particle focuses on either of them.

The focusing length of oblate particles in square ducts are displayed in figure 4(c).
Comparing to spherical particles of same size ratio, the focusing length is slightly
longer for oblate particles when both are released from the same initial lateral position.
This is mainly attributed to the tumbling motion in the cross-flow direction which
effectively reduces the lateral force on the oblate. The symbols in the plot indicate the
position of the particle centre at equal time intervals showing the two-stage particle
migration, the fast and slow motions, similar to the case of spherical particles.

3.2.2. Oblate particles in rectangular ducts

Next, we discuss the motion of an oblate spheroid in a rectangular duct of aspect
ratio 2 as for the simulations of spherical particles discussed above. We also use the
same particle size ratio and bulk Reynolds number, H/D, =5 and Re, = 100. The
lateral motion of the oblate is displayed in figure 5(a) over one-quarter of the cross-
section. As in the case of a square duct, the particle reaches a steady configuration
on the duct symmetry line at the centre of the different faces. In addition, the particle
symmetry axis, which is initially set parallel to the flow stream, n = [0, 1, 0], finds
its final orientation as n = [1, 0, 0] for all the cases if trajectories end at the face
centre of the long wall, see figure. The distance of the oblate centre from the duct
centre is 0.22H and 0.78H if it focuses at the equilibrium at centre of the long and
short wall. The rotation vector at the two equilibrium positions shown in the figure
are w =[—0.34,0, 0] and w =0, 0.31, 0] for the coordinate system adopted here.

Comparing these observations with the trajectories of a sphere in the same
rectangular duct, we conclude that it is more likely for the oblate particle to
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FIGURE 6. (Colour online) (a) Lateral trajectories of oblate rigid particles of different
sizes in a square duct at Re, = 100. The effective particle diameters are 1/10, 1/5
and 1/3.5 of the duct height (width); open circles and triangles show the initial and
final equilibrium position respectively. The initial and final orientation of the oblates are
shown with dashed and solid lines. (b) Streamwise rotation rate versus streamwise particle
displacements for the three particles in (a), indicated by lines of the same colour. (c)
Streamwise particle displacements versus the vertical distance to the target symmetry line.

focus close to the long wall, i.e. a larger portion of the cross-section will take
the particle to the symmetry line orthogonal to the duct long wall, see black dashed
line in the figure. In other words, the region of the cross-section delimiting initial
positions corresponding to the equilibrium position at the centre of the short sides
is significantly smaller for oblate particles than for spheres. We also note that, in
analogy to the case of spherical particles, the equilibrium manifolds along which
all trajectories collapse before reaching the final state are tangential to isolines of
the total shear rate for the values 0.67 and 0.74. These are slightly lower than the
corresponding values for spherical particles as the oblate spheroids focus closer to
the duct centre. Finally, we show in figure 5(b) the focusing length corresponding
to some of the particle trajectories. The focusing length of the oblate in rectangular
duct is shorter than that of a sphere in the same configuration. This is opposite to
what we have reported for the particle motion in a square duct and is attributed to
the higher lateral velocity of the oblate in the second stage of the migration, that
with negligible tumbling.

3.2.3. Size effect

As discussed in §3.1.1 particle size is an important parameter used in many
biological applications. Here we therefore investigate how the particle size affects
the particle trajectory and the ensuing equilibrium position for an oblate particle in
a square duct. Three different size ratios, H/D, = [3.5, 5, 10] are considered while
keeping the bulk Reynolds number and oblate aspect ratio constant to Re, = 100 and
AR =1/3. The lateral migration of the oblate spheroids in the square duct is depicted
in figure 6(a). Note that for each particle size, we performed several simulations,
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differing for the initial position over one-eighth of the cross-section. In the figure,
however, we only report the trajectories pertaining particles of different size released
from the same position (shown in different quadrants of the cross-section for the sake
of clarity). The initial and final configuration of the oblates are shown with dashed
and solid lines respectively.

First, we observe that the smallest oblate under consideration, H/D, = 10, exhibits a
behaviour similar to that of the reference oblate, H/D, =35, discussed in the previous
section. Regardless of the starting point, the oblate particle focuses at one of the four
face-centred equilibrium positions with the symmetry axis, n, perpendicular to the
duct symmetry line as shown in the figure. Interestingly, the behaviour is completely
different for the largest oblate studied, H/D, = 3.5. Indeed, the equilibrium position
is along the diagonal symmetry line, between the corner and the centre of the duct.
In addition, we note that the oblate particle does not focus on the diagonal closest
to its initial position but on that on the opposite side. This behaviour is consistently
observed, for any initial condition considered over the cross-section of the channel.

In order to explain the peculiar behaviour of the large oblate in square duct, we
examine the rotation rate of the oblate with respect to the streamwise direction
during the migration process, see figure 6(b). Typically, the rotation rate during the
migration is initially increasing and then decreasing. The former is associated with the
fast motion of the particle towards the equilibrium wall and the latter to the particle
slow motion towards the equilibrium position under the action of the rotation-induced
lift force. This rotation-induced lift force reduces when decreasing the rotation
rate and the particle eventually focuses at a face-centred equilibrium position. This
behaviour is however not observed for the largest oblate under investigation. In this
case, the streamwise rotation does not reduce to zero as the particle moves towards
the vertical symmetry line, at y/H ~ 100 in the figure, which accelerates the particle
motion. This behaviour might occur because the large oblate is more susceptible to
tumbling, something that we do not observe for spherical particles. As a results of
this acceleration, the particle crosses the vertical symmetry line and focuses on the
diagonal where the streamwise rotation rate becomes zero and the shear-induced and
wall-induced lift forces balance each other.

To conclude the analysis, we report the focusing length of oblate particles of
different sizes in figure 6(c). Note that here we display the streamwise length as a
function of the vertical distance to the target symmetry line for each case (vertical
symmetry line for H/D{ =[5, 7] and diagonal symmetry line for H/D{ =3.5). It is
evident from the figure that the smaller particles need longer times, and therefore
travel longer in the streamwise direction, to reach their final equilibrium, similarly to
what observed for spherical particles. It is also interesting to note that the centre of the
large oblate cuts the target symmetry line several times while focusing, a behaviour
always observed, regardless of the initial position of the particle. To summarise, we
report in table 1 the final equilibrium position, orientation and rotation rate of the
oblate particles in square duct at Re, = 100 as a function of the size ratio, H/D¢.
We note that even though the smallest oblate, of size ratio H/D¢ =7, focuses closer
to the wall, where the magnitude of the background shear is higher than that of the
larger oblate (H/D¢ = 5), its final rotation rate is lower due to the hydrodynamic
interactions with the wall.

3.2.4. Reynolds number effect
In this section we study the effect of the Reynolds number on the migration of
an oblate particle in a square duct. We first note that we have run simulations at
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H/D? Re, Distance from centre: (x,z) Orientation: n Rotation rate:
35 16.33 (0.21H, 0.21H) [-0.71,0, -0.71] [-0.33,0, —0.33]
5 8 (0, 0.26H) [1,0,0] [-0.4,0, 0]
7 4.08 (0, 0.29H) [1,0,0] [-0.32,0, 0]

TABLE 1. Final equilibrium position, orientation and rotation of an oblate rigid particle
at Re, =100 as a function of the size ratio, H/D¢.
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FIGURE 7. (Colour online) (a) Lateral trajectories of a rigid oblate particle, size ratio
H/D¢ =35, in a square duct at different bulk Reynolds numbers. Open circles and triangles
show the initial and final equilibrium position, respectively. The final orientation of the
oblate spheroid is shown with solid and dashed (for unstable cases) lines. (b) Zoom of
a particle trajectory at Re, = 200. (¢) The x-component of the orientation vector, n,, as
a function of time for the different Reynolds numbers under investigations (same colour
coding as in panel a).

Re, < 100 and observed the same behaviour as at Re, =100, with the only difference
that the final equilibrium position is closer to the centre as observed for spherical
particles, see as an example the data pertaining Re, =50 in table 2. Thus we will focus
here on the results obtained at Re, =[100, 150, 200], see figure 7. Note that we have
performed more than two simulations for each Reynolds number changing the particle
initial position, but we report in the figure only the trajectories originating from the
same initial position and pertaining the different Reynolds numbers, displaying them
over different quadrants of the cross-section for the sake of clarity.

At Re, =150, the oblate moves laterally toward a face-centred equilibrium position
and eventually focuses near (not exactly at) the duct symmetry line. In addition, at
the final configuration, the particle remains tilted, at an angle ¥ =~ 21° with respect
to the duct symmetry line, see figure 7(a). This configuration is independent of the
initial position of the oblate and mimics the inclined rolling dynamic of an oblate
in a simple shear flow, see table 2 for the particle specification. It is described by
a pitchfork bifurcation in the dynamical system analysis of the motion of an oblate
spheroid in a simple shear flow (see for more details Ding & Aidun (2000) and Rosen
et al. (2015)). We note that the same behaviour is observed when we increase the
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Re, E Distance from centre: (x, z) Orientation: n Rotation rate: w
50 4 (0, 0.257H) [1,0,0] [-0.41, 0, 0]
100 8 (0, 0.26H) [1,0,0] [—0.4,0, 0]

150 12 (0.01H, 0.261H) [0.93, —0.06, 0.36] [—0.32,0.02, —0.13]
200 16 (=0, ~0.23H) Time-dependent Time-dependent

TABLE 2. Final equilibrium position, orientation and rotation of an oblate particle of
size ratio H/D¢ =5 transported in a square duct as a function of the bulk Reynolds
number, Re,.

streamwise box length from 6A to 8h and therefore we believe that this effect is
not related to the periodicity of the domain in the streamwise direction. Finally, we
report that the focusing length of the oblate spheroid at Re, =100 and Re, = 150, for
the trajectories shown in figure 7, are 190H and 140H, respectively. Therefore, the
reduction in the focusing length by increasing the Reynolds number is also evident
for the oblate particles.

At Re, = 200 however the particle dynamics changes again. The oblate particle
exhibits time-dependent rolling and tumbling motions around an equilibrium position
at the face centre. Therefore, we cannot define a steady orientation and rotation rate
at Re, = 200. We display one of the orientations of the oblate in the lower part
of figure 7(a) using dotted line. The zoom on the particle trajectory is shown in
figure 7(b) where its chaotic dynamic is evident. A similar behaviour is obtained for
particles transported at Re, > 200, not shown here. The occurrence of a combined
rolling and tumbling motion of an oblate at particle Reynolds number above a critical
threshold is reported among others in the recent work by Rosen et al. (2015) who
considered homogeneous shear flow. Here we observe the chaotic motion of the
oblate for Re, ~ 16. This may appear in contradiction with the results of the previous
section for the large oblate, H/D¢ = 3.5 at Re, = 100, where the ITeP shares similar
value. We believe that two following reasons could possibly prevent the large oblate
from tumbling at its final configuration: (i) the geometrical confinement when the
large oblate focuses close to the corner and (ii) the weaker background shear (the
background flow shear rate is much lower at the corners) which induces a lower local
(effective) particle Reynolds number than Re, ~ 16.

Finally we show in figure 7(c) the time evolution of the x-component of the oblate
symmetry vector, n,, for each Reynolds number under consideration. It is evident that
at the final focusing n, is constant but smaller that unity for Re, = 150, whereas it
does not converge to the a particular value when Re, = 200. For the specification of
the oblate particle orientation and velocities at the final position we refer the readers
to table 2.

4, Conclusions and remarks

We study numerically the inertial migration of a single rigid particle in straight
square and rectangular ducts. An interface-resolved numerical algorithm, based on the
immersed boundary method, is employed to study, for the first time, the entire inertial
migration of an oblate particle in both square and rectangular ducts and compare it
with that of a single sphere. The influence of the particle initial position, the size ratio
and the Reynolds number on both particle lateral trajectory and its final, equilibrium,
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position are investigated and documented. The results shed some light on the physical
mechanisms behind the particle lateral motion and may suggest novel criteria to design
microfluidic devices for separation and focusing purposes.

First, we consider the inertial focusing of a sphere in both square and rectangular
duct. We show that particles finds their equilibrium position at one of the four wall-
centred symmetry lines, independently of their initial position. In the rectangular duct,
however, it is more likely for the sphere to focus at the centre of the longer wall. After
an initial faster migration, the particle lateral trajectories are found to collapse onto
a single line, denoted as equilibrium manifold, thus reaching the equilibrium position.
The manifold is found to be tangential to the isolevels of the flow total shear rate in
both square and rectangular ducts. In addition, spheres of larger size focuses closer to
the duct centre whereas changing the Reynolds number varies non-monotonically the
distance between the equilibrium position and the duct centre.

As regards the lateral motions of a single oblate particle in a square and rectangular
duct, we observe a behaviour qualitatively similar to that of a sphere in terms of final
equilibrium position and equilibrium manifold. However, oblate particles experience
tumbling motion throughout the migration process which induces non-uniform
lateral velocities and longer downstream focusing length in the square duct. At
the equilibrium, an oblate particle remains vertical with respect to the adjacent wall
with zero streamwise and wall-normal rotation rates. This behaviour is independent
of the initial position and orientation of the oblate. In the rectangular duct, it is
more likely for the oblate to focus at the face centre of the longer wall, an effect
also observed for spherical particles but more pronounced for oblates. Moreover, the
higher lateral velocity of a oblate with respect to a sphere in the second stage of the
migration results in a lower focusing length for an oblate in rectangular duct.

We also study the effect of the particle size on the inertial migration of an oblate
spheroid in a square duct. For the smallest oblate considered, of size ratio H/D¢ =
7, the dynamics is similar to that of the reference case, H/D{ =5, just discussed,
the main difference being the longer focusing length needed by smaller oblates as
observed for spheres. For the largest oblate particle examined, H/D{ = 3.5, however,
the migration dynamics is completely different. First, we observe that the particle finds
its equilibrium on the duct diagonal with its main axis of symmetry perpendicular
to the symmetry line. To reach this, the particle first moves laterally toward a face-
centred equilibrium position and then accelerates due to tumbling around a streamwise
oriented axis. This causes the oblate to pass over the duct symmetry line and focus
on the diagonal where the wall and shear-induced lift force balance each other.

Finally, we study the effect of Reynolds number on the inertial focusing of single
oblate particles in a square duct. At Re, < 100, the behaviour is similar to that
obtained for Re, =100 discussed above. The dynamics is however different at higher
Reynolds number. At Re, =150, the oblate particle still focuses close to a face-centred
equilibrium position but remains tilted with respect to the duct symmetry line. This
equilibrium position resembles the inclined rolling motion due to the pitchfork
bifurcation as reported in the dynamical system analysis of the motion of an oblate
spheroid in a simple shear flow (see for more details Ding & Aidun (2000) and
Rosen et al. (2015)). Further increasing the Reynolds number, at Re, =200, we find
that the particle approaches an equilibrium position at the duct symmetry line, but the
orientation and rotation are time dependent and chaotic; a combination of rotational
and tumbling motions. This behaviour is reminiscent of the finding of Rosen er al.
(2015) where at particle Reynolds number above a certain threshold the tumbling
motion adds to the pure rotational dynamics of an oblate in simple shear flow.
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Finally we note that the present study is among the first to investigate the entire
inertial migration of an rigid non-spherical particle in straight ducts employing a
highly accurate numerical algorithm. The numerical approach presented here can be
extended to consider different and more complicated shapes as well as deformable
particles (Berthet, Fermigier & Lindner 2013; Zhu et al. 2014; Pham et al. 2015).
These efforts may lead to new and more efficient microfluidic systems aiming to sort
and separate particles.
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Appendix A. Box size and resolution studies and validation

In this part we examine the effects of box size and resolution on the particle
dynamics. In particular, we consider as reference case a square duct where the box
size is 6h x 2h x 2h and corresponding number of grid points 480 x 160 x 160 in
the streamwise and cross-flow directions. In the next step we increase the streamwise
length from 6/ to 8h to examine the possible effect of the streamwise periodicity on
the particle migration dynamics. The case is denoted by ‘longer domain’ where the
grid spacing is kept the same as the reference case, i.e. 640 x 160 x 160 grid points.
Finally, we consider a third case where we keep the box size as the reference case
and increase the resolution to 600 x 200 x 200, denoted as ‘higher resolution’. We
examine the motion of a spherical particle, H/D; =35, at Re, =100 in the three cases
mentioned above and report the results in figure 8. Note that in the latter case, 40
Eulerian grid points are considered per particle diameter and 5036 Lagrangian grid
points cover the surface of the sphere. A very good agreement between the cases is
obtained in terms of particle lateral trajectory and the final equilibrium position and
therefore, we use the reference case throughout the study.

Finally, we compare the equilibrium position of a spherical particle in a square duct
with that reported in Di Carlo ef al. (2009). Considering Re. = U,,H/v =80 (U,, is the
maximum fluid velocity) and particle size ratio D;/H = 0.22, the equilibrium position
is reported at 0.29H from the duct centre in figure 1 of the reference which is in a
perfect agreement with our simulation.

Appendix B. Effect of particle aspect ratio

In this appendix we briefly discuss the effect of the particle aspect ratio on the
equilibrium position and the trajectories of a single particle in a channel, a duct
with infinite aspect ratio. In this case the flow is a pressure driven channel flow, i.e.
a plane Poiseuille flow. The channel dimensions and the numerical resolution are
chosen to be similar to those adopted for the rectangular duct. In this configuration,
the particle migrates only in the wall-normal direction, driven by the shear-induced
and wall-induced lift forces (Matas et al. 2004a).

We run simulations at fixed Re, =100 and H/D{ =5 and vary the particle aspect
ratio in the different simulations. In figure 9, we show the trajectories, the equilibrium
positions and the final orientation of spherical and oblate particles of aspect ratio
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FIGURE 8. (Colour online) Lateral trajectory of a spherical particle with size ratio
H/D;=5 at Re, =100 in the reference, longer domain and higher resolution flow cases.
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FIGURE 9. (Colour online) (a) Equilibrium position, (b) focusing length of spherical
and non-spherical rigid particles in a two-dimensional channel. The ratio between the
(effective) diameter of the particles to channel height is equal to one-fifth and the particle
aspect ratio 1, one-third and one-fifth.

one-third and one-fifth. The sphere and oblate spheroids focus at a distance of 0.253H,
0.225H and 0.211H from the centreline, respectively. This result suggests that the
more elongated the particles, the closer is their centre to the channel midplane at
equilibrium and that the higher the duct aspect ratio, the closer the particles focus to
the centreline. Note also that at the final equilibrium position, the oblate particles are
oriented normal to the walls, as in a duct, confirming that this configuration is not
due to the presence of the side walls but related to the state of the lowest energy
dissipation as mentioned above. We display the particle trajectories in figure 9(b)
where one can note that the oblate particles experience tumbling motion before
reaching the final equilibrium positions. Similar to the flow cases in square ducts, a
longer downstream length, or focusing length, is needed for particles of higher aspect
ratio. This is attributed to the tumbling motion which effectively reduce the particle
lateral velocity.
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