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ABSTRACT

The authors study the condensational growth of cloud droplets in homogeneous isotropic turbulence by

means of a large-eddy simulation (LES) approach. The authors investigate the role of a mean updraft velocity

and of the chemical composition of the cloud condensation nuclei (CCN) on droplet growth. The results show

that a mean constant updraft velocity superimposed onto a turbulent field reduces the broadening of the

droplet size spectra induced by the turbulent fluctuations alone. Extending the authors’ previous results re-

garding stochastic condensation, the authors introduce a new theoretical estimation of the droplet size

spectrum broadening that accounts for this updraft velocity effect. A similar reduction of the spectra

broadening is observedwhen the droplets reach their critical size, which depends on the chemical composition

of CCN. The analysis of the square of the droplet radius distribution, proportional to the droplet surface,

shows that for large particles the distribution is purely Gaussian, while it becomes strongly non-Gaussian for

smaller particles, with the left tail characterized by a peak around the haze activation radius. This kind of

distribution can significantly affect the later stages of the droplet growth involving turbulent collisions, since

the collision probability kernel depends on the droplet size, implying the need for new specific closure models

to capture this effect.

1. Introduction

Clouds play a central role in Earth’s climate both

through their interaction with radiation and through

their role in the hydrological cycle. Warm clouds—those

in which freezing does not occur—make a large contri-

bution to the planetary albedo especially in the sub-

tropics and produce 30% of the total rainfall globally

and 70% of tropical rainfall (Lau and Wu 2003). Both

cloud albedo and the rate of rain formation depend

crucially on the size distribution of cloud droplets, but

fundamental questions remain about the processes

controlling the width and shape of this distribution.

When a moist air parcel is adiabatically lifted past its

saturation level, water begins to condense around cloud

condensation nuclei (CCN). The CCN size (or mass)

distribution determines the initial size distribution for

the droplets. Further condensational growth of the

droplets is inversely proportional to their radius, and

this entails an intrinsic tendency for the distribution to

become narrower (Pruppacher and Klett 1997). How-

ever, observations have long shown that droplet size
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distributions in warm clouds are broad and often mul-

timodal (Warner 1969). High-resolution observations

show that even the narrowestmeasured distributions are

broader than predicted by a conventional adiabatic

parcel model (Brenguier and Chaumat 2001).

There is as yet no complete understanding of the pro-

cesses that counteract condensational narrowing to

broaden the distribution. This uncertainty poses a major

roadblock in understanding the formation of warm-cloud

precipitation (Devenish et al. 2012; Grabowski and Wang

2013). Growth to raindrop size requires collision and co-

alescence of droplets, which in turn requires significant

velocity differences among droplets. Droplet fall speeds—

governed by Stokes’s law—increase quadratically with

radius, and significant collision rates are only achieved

once a substantial subset of droplets has reached a size

O(10) mm while those at the lower end of the distribution

are still O(1) mm. This ‘‘condensation–coalescence bottle-

neck’’ in warm clouds remains a major unsolved problem.

Clouds are highly turbulent systems and turbulent

stirring, entrainment, and mixing are observed to drive

supersaturation and droplet density fluctuations down to

centimeter scales (Beals et al. 2015). Turbulence may

help overcome the bottleneck by facilitating droplet

collisions, both by locally increasing droplet concentra-

tion (the inertial clustering effect; Sundaram and Collins

1997) and by generating droplet velocity differences (the

sling effect; Falkovich et al. 2002). Here we focus on a

different role of turbulence, namely, the broadening of

droplet size spectra by differential condensation driven

by turbulent supersaturation fluctuations. Droplets

caught in the updraft of a turbulent eddy will experience

greater supersaturation and will therefore grow faster

than those caught in the downdraft (which may even

experience subsaturation and evaporative loss). It is

plausible that this effect will be stronger for larger

eddies with stronger updrafts, so we may expect the re-

sulting broadening to increase with increasing Reynolds

number.

Early investigations of this effect relied on simplified

stochastic models (Levin and Sedunov 1966; Mazin 1968;

Bartlett and Jonas 1972; Srivastava 1989; Cooper 1989).

A more recent approach is the so-called large-eddy

hopping, which follows the different growth histories of

many different droplets arriving at a given point inside a

cloud, each experiencing a different supersaturation his-

tory as a result of entrainment andmixing (Lasher-Trapp

et al. 2005; Cooper et al. 2011; Bewley and Lasher-Trapp

2011). Previous cloud simulations have been performed

by means of large-eddy simulations, a numerical tech-

nique consisting in modeling cloud turbulence by solving

the filtered Navier–Stokes equations. This technique

requires a subgrid-scale model for the smallest scales of

turbulence. Several LES studies describe the problems of

cloud droplet growth by condensation in the atmospheric

boundary layers such asMagaritz-Ronen et al. (2014) and

Riechelmann et al. (2015). In the last years, increased

computing power has enabled brute-force approaches in

which direct numerical simulation (DNS) of the Navier–

Stokes equations is used to generate turbulent velocity

and supersaturation fields within a cubic domain

containing a large swarm of droplets that are individually

tracked as Lagrangian particles and allowed to interact

with the supersaturation field. Such technique aims to

capture the effect of turbulence within a small subdomain

of the adiabatic (nonentraining) core of a cumulus cloud

and it does not require any subgrid model. The first study

of this type (Vaillancourt et al. 2002) used 5 3 104

droplets in a domain of about 10cm3 with a resolution

of 803 grid points. The main conclusion of this study was

that small-scale turbulence rapidly moves droplets from

regions of high and low supersaturation, without a sig-

nificant increase of the variance of the droplet size spec-

trum. On the other hand, focusing on the large-scale

turbulence fluctuations in a cloud of 100-m size, Celani

et al. (2007) found a dramatic broadening of the droplet

spectrum, although the dynamics of the small scales was

not resolved since the simulation Kolmogorov scale was

unrealistically large. The same effect was reported in

Paoli and Shariff (2009), where an artificial forcing term

was added to the supersaturation equation to mimic the

effect of the large-scale eddies.

Lanotte et al. (2009) addressed the issue of the rela-

tive roles of small- and large-scale eddies in broadening

droplet size spectra. These authors performed a series

of DNS simulations progressively increasing the range

of resolved scales, keeping the Kolmogorov scale fixed

but increasing the external scale up to 70 cm including

over 33 107 droplets with initially identical sizes. They

found that the spectra broadened as the simulation

proceeded; crucially, the broadening achieved after a

fixed time increased as the domain size (and thus the

Reynolds number) increased. They also provided scal-

ing arguments to suggest that this increase in spectral

width can be extrapolated to higher Reynolds number

as a power law. These results suggest that the broad-

ening effect of large-scale eddies becomes increasingly

dominant as Reynolds number increases. Nevertheless,

this broadening effect is limited by the value of the

quasi-equilibrium supersaturation sqs as described in

Grabowski and Wang (2013). In general, supersatura-

tion fluctuations increase with theReynolds number but

cannot be larger than sqs, which weakly depends on the

characteristic turbulent scale L of the system (sqs } yrms

} L1/3 in the turbulent inertial range, where yrms

indicates a characteristic velocity at scale L).
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In recent work (Sardina et al. 2015), we focused on the

time evolution of the droplet size spectrum. Using a mod-

eling setup similar toLanotte et al. (2009) butwith adomain

size up to 3m and longer simulation times, we found that

the width of the droplet spectrum increases continuously in

time as t1/2. Further, we found that the broadening rate is

linearly dependent on the ratio between the large and the

small turbulent scales, that is, proportional to the Reynolds

number. We also presented a simple stochastic model that

quantitatively predicts the broadening rates in the numeri-

cal simulations and can be used to extrapolate to greater

Reynolds numbers. A simplified version of our stochastic

model, involving just the time evolution of the supersatu-

ration field, was recently tested and experimentally vali-

dated in a laboratory cloud chamber (Chandrakar et al.

2016), showing excellent agreement between themodel and

experimental data. These results imply that the width of the

droplet size distribution can become realistically large at

anyReynolds number so long as one waits long enough; for

realistic cloud Reynolds numbers, the time required is

about 20min. In the same context, new stochastic ap-

proaches have been developedmore recently. Siewert et al.

(2017) extended our stochastic model to the case where

droplets are allowed to fully evaporate and also accounting

for the variation of the supersaturation relaxation time.

Grabowski and Abade (2017) formulated a new stochastic

model aimed at improving subgrid-scale modeling in LESs.

For the sake of simplicity, Sardina et al. (2015) made

several unrealistic assumptions. In particular, the cloudy

parcel was assumed to be stationary, with a domain-mean

supersaturation held fixed at zero.Also, the droplets were

assumed to be initially monodisperse with a radius of

10mm. Here, we extend our previous work by relaxing

these assumptions, including the effect of a mean updraft

velocity and examining activation of CCN of different

composition. Given the current computational resources,

studies involving CCN activation either include a com-

plete representation of cloud turbulence while using a

simple representation of cloud microphysics (Lasher-

Trapp et al. 2005; Bewley and Lasher-Trapp 2011) or rely

on simple methods for representing cloud turbulence

using a more complete representation of the cloud mi-

crophysics (Jensen and Nugent 2017). Very few studies

have addressed the question in simple homogeneous

isotropic turbulence and for computational expedience

used two-dimensional DNS (Celani et al. 2008, 2009).

Our modeling setup and assumptions are discussed in

section 2. In section 3 we briefly review the results

of Sardina et al. (2015) and elucidate the physical

mechanisms underlying the time-dependent turbulent

broadening. Section 4a considers the effect of a mean

updraft velocity on the spectrum evolution of initially

large droplets, while in section 4b we study the influence

of droplet activation and deactivation by conducting

simulations starting from cloud condensation nuclei.

Finally, Section 5 presents a discussion and conclusions.

2. Model description

We aim to model a warm-cloud parcel occupying a do-

main of order L 5 100m, large enough to produce a large

Reynolds numberbut still small enough toneglect the effects

of spatial inhomogeneity and variations of the thermody-

namic parameters within the domain so that a homoge-

neous, isotropic turbulence assumption is reasonable. Under

these conditions the turbulent kinetic energy dissipation « is

typically of order 1023m2s23 and the cloud Kolmogorov

scale is h5 (n3/«)1/4 5 1mm, where n is the kinematic vis-

cosity of air. The computational domain is assumed to as-

cend with a constant updraft speedW with the macroscopic

thermodynamic variables temperature hTi and pressure hPi
evolving according to (Vaillancourt et al. 2002):

dhTi
dt

52WG
d
1

L
c
p

hC
d
i and (1)

dhPi
dt

52rgW , (2)

with Gd the dry adiabatic lapse rate, L the latent heat of

evaporation, cp the specific heat at constant pressure,

and hCdi the condensation rate based on the mean

droplet radius hRi. Themacroscopic pressure is modeled

by the hydrostatic approximation with r as the air den-

sity g as the gravitational acceleration.

The underlying turbulence obeys the incompressible

Navier–Stokes equations in homogeneous isotropic

configurations while the supersaturation field s is trans-

ported by the fluid according to the Twomey model

(Twomey 1959). Direct numerical simulation of the

complete Navier–Stokes system from the large scales of

order 100m down to the Kolmogorov scale on the order

of 1mm is unfeasible with the current computational

resources. In the following wewill therefore focus on the

larger-scale dynamics, directly resolving the large scales

and modeling the small scales, an approach commonly

denoted as ‘‘large-eddy simulation’’ (LES). The choice

of employing LES is justified by previous work showing

that the droplet condensation–evaporation dynamics

in a turbulent flow is dominated by the large scales

(Sardina et al. 2015). The LES equations read as follows:

= � u0 5 0, (3)

›u0

›t
1u0 � =u0 52

=p0

r
1 n=2u0 2= � t

sgs
1 f

u
, and (4)

›s

›t
1 u0 � =s5k=2s1A

1
(hTi)(w0 1W)1=j

sgs
2

s

t
s

, (5)
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where u0 is the resolved turbulent fluctuating velocity, p0

the pressure fluctuations, fu an external forcing able to

maintain a statistically stationary state, k the diffusivity of

water vapor in air, s is the resolved turbulent fluctuating

scalar field for supersaturation, w0 is the component of the

fluctuating velocity field acting in the gravity direction,

A1(w
0 1W) is source/sink term of supersaturation result-

ing from the variation in temperature and pressure with

height, tsgs is the so-called subgrid stress tensor thatmodels

the effect of the small scales on the large-scale dynamics,

and jsgs is the correspondent subgrid flux for the supersat-

uration field. We choose the simplest subgrid model, the

Smagorinsky model (Smagorinsky 1963), for both tsgs and

jsgs; in this model the stress is proportional to an eddy

viscosity, tsgs 522ntE, and nt 5 (csD)
2jEj with cs the

Smagorinski constant, D the grid size, jEj the modulus of

the rate of strain tensor, and kt 5 nt/0:7 the eddy diffusivity.

The parameter ts is the relaxation time scale of the su-

persaturation field and depends on the droplet size and

concentration (Kostinski 2009); this is locally calculated in

each computational cell according to (Lanotte et al. 2009):

t21
s 5 4pr

w
A

2
(hTi, hPi)A

3
(hTi)�R/V

cell
,

where R are the radii of the droplets in the numerical cell

volume Vcell, rw is the water density, and A1(hTi),
A2(hTi, hPi), and A3(hTi) are functions of the macro-

scopic thermodynamic quantities hTi and hPi but weakly
depend on their fluctuations inside the turbulent domainT 0

and p; see supplemental material in Sardina et al. (2015).

They are calculated according to the following expressions

(Pruppacher and Klett 1997) and change in time owing to

the variation of hTi and hPi during the parcel ascent:

A
1
(hTi)5 gL

R
y
c
p
hTi2 2

g

R
d
hTi , (6)

A
2
(hTi, hPi)5 R

d
hTi

le
s
(hTi)1

lL2

hPihTic
p

, and (7)

A
3
(hTi)5

"
r
w
R

y
hTi

D
y
e
s
(hTi)1

r
w
L2

k
T
R

y
hTi2

#21

, (8)

with Ry and Rd the water vapor and dry-air gas con-

stants, l the ratio between water and dry-air molecular

weights, es(hTi) the supersaturation pressure obeying

Clausius–Clapeyron equation,Dy the thermal diffusivity

of water vapor in air, and kT the thermal diffusivity.

Buoyancy effects in the momentum equation can be ne-

glected at scales below 100m according to the scaling

arguments described in Vaillancourt and Yau (2000).

Previous simulations of CCN growth in a turbulent field

neglected the effect of the parameter ts (Celani et al. 2008),

whereas we consider the complete coupling between

droplets and supersaturation field.

In general, droplet dynamics can be described by two

different approaches: Lagrangian and Eulerian. In the

Lagrangian approach, each droplet is tracked along its

motion around the cloud. Equations for their position,

velocity, and radius must be numerically solved, and

particle–particle interactions and collisions can be de-

scribed in a natural way (Paoli and Shariff 2009; Lanotte

et al. 2009; de Lozar and Muessle 2016). The computa-

tional requirements of this approach using realistic

droplet numbers can be prohibitive, so the use of a re-

normalization method or the so-called superdroplet

approach is necessary (Shima et al. 2009). Alternatively,

the droplet dynamics can be described following the

Eulerian approach in terms of a conservation equation

for the droplet distribution f (x, r, t) and the droplet

velocity distribution vd(x, r, t). These equations need to

be discretized in the radius space r and many terms

require a closure model, especially if collisions are in-

cluded. A review and a comparison between the two

approaches can be found in the recent paper by Li

et al. (2017).

We employ a Lagrangian framework in our simula-

tions: under the hypothesis of small spheres with di-

mensions smaller than Kolmogorov scale and low mass

fraction to neglect two-way coupling effects on the car-

rier flow, the only forces acting on the droplets are

gravity and Stokes drag:

dv
d

dt
5

u x
d
, t

� �
2 v

d

t
d

2 ge
z

and (9)

dx
d

dt
5 v

d
, (10)

where xd is the droplet position, vd is the droplet ve-

locity, u(xd, t) is the fluid velocity at droplet position,

td 5 2rwR
2/(9rn) is the droplet relaxation time, gravity

is directed along the unit vector 2ez, and s(xd, t) is

the supersaturation at the droplet position. Collisions

among droplets are not considered.

Droplet activation and condensational growth is

modeled using standard Köhler theory (Köhler 1936):

dR

dt
5 A

3

s(x
d
, t)2 c/R1 h/R3

R
. (11)

The last two terms in the numerator of the right-hand side

of Eq. (11) are only important when R is well below 5mm,

during the droplet activation stage. The term c/R accounts

for the curvature or Kelvin effect: water molecules evap-

orate more readily from a large-curvature surface. The

consequence is that homogeneous nucleation requires very
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large supersaturation, so droplets preferentially form

around CCN (often ionic salt aerosols) that have affinity

with the water vapor (hygroscopicity). This solute or Raoult

effect is representedby the second term,h/R3. The curvature

coefficient is c5 2sMw/(RhTirw), while the hygroscopicity
coefficient is defined as h5 3nsmsMw/(4prwMs), where

s is the surface tension between water and air, R the

universal gas constant, ns the ion number for a specific

salt,ms themass of the hygroscopic CCN, andMw andMs

thewater and the saltmolarmasses.Adroplet is activated

and grows spontaneously by condensation when its radius

exceeds the critical value Rc 5
ffiffiffiffiffiffiffiffiffi
3h/c

p
, corresponding to

the critical supersaturation sc 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c3/(27h)

p
. This model

for droplet activation and condensation is the same of the

two-dimensional DNS study of Celani et al. (2008). No

subgrid model is assumed for the droplet Lagrangian

equations since droplet evaporation/condensation is

weakly influenced by the small-scale dynamics (under

1m); see supplemental materials in Sardina et al. (2015).

The impact of turbulence on condensational droplet

growth is small at these small scales because the rapid

rearrangement of droplet positions decorrelates the

droplet from the underlying scalar field as shown in

Vaillancourt et al. (2002) and described inGrabowski and

Wang (2013). In general, however, a subgrid-scale model

is required in LESs of real clouds with grid resolution on

the order of meters to avoid inaccuracies in the droplet

correlation with the underlying scalar field along droplet

trajectories. A new multiscale subgrid model has been

recently developed in Mazzitelli et al. (2014b) to model

tracer dispersion and applied to convective boundary

layer turbulence (Mazzitelli et al. 2014a). An alternative

approach is the novel subgrid model introduced in

Grabowski and Abade (2017).

We solve the Eulerian equations for the turbulent flow

with a pseudospectral method on a uniform grid

employing three-dimensional fast Fourier transforms.

Time integration is performed with a low-storage third-

order Runge–Kutta where the nonlinear terms are

computed via an Adam–Bashforth-like approximation

and the diffusive terms analytically integrated (Rogallo

1981). Nonlinear terms are classically computed in

physical space and dealiased with a standard 2/3 rule.

The same time integration scheme is used for the droplet

evolution and a three linear interpolation/extrapolation

scheme is used to estimate the variables from the

Eulerian to the Lagrangian reference frames and vice

versa. Droplet velocity and radius are integrated in time

with an implicit scheme (predictor–corrector) (Olivieri

et al. 2014) to avoid the use of a very small time step

associated with a low droplet relaxation time and low

values of the droplet radius. Note that, although in-

cluded, we have verified that the effect of droplet inertia

could be safely neglected for our parameter range. [The

initial Stokes numbers of the simulations are shown in

Table 2. The Stokes number is based on theKolmogorov

time scale th 5 (n/«)1/2 5 0:1 s and assumes values well

below 1 in all the cases considered in this manuscript.]

We performed 12 different simulations divided into

three groups differing in the chemical composition of

the initial salt nuclei. In particular we evolve (i) already-

activated droplets with initial radius R0 5 13mm and no

nucleus salt, (ii) (NH4)SO4 salt CCN with initial radius

R05 0.24mm, and (iii) NaCl salt CCN with initial radius

R0 5 0.022 27mm. The chemical and physical properties

of the three droplet populations are summarized in

Table 1. For each droplet family we perform four sim-

ulations differing in the updraft velocityW, spanning the

range from 0 to 1m s21. Each simulation uses a mesh of

2563 grid points with 70 million droplets. A droplet re-

normalization method is employed to achieve an

equivalent concentration of 130 droplets per cubic cen-

timeter and to keep at least 3–6 droplets per computa-

tional cell (Lanotte et al. 2009). The renormalization

procedure is necessary since we cannot evolve each

single droplet inside a 100-m cloud with the actual

computational resources (1014 droplets in our case). A

renormalization factor of 2 3 106 has been used in our

simulations. The use of a renormalization approach is

commonly used in the superdroplet method to account

the droplet–droplet collisions; the renormalization fac-

tor is also called multiplicity. Each simulation is in-

tegrated up to a final time of 20min and is characterized

by a root-mean-square turbulent velocity fluctuation of

0.7m s21, an integral time scale T0 of 33 s, and a Taylor

Reynolds number (Rel) of 5000. The time step is 0.03 s,

the initial temperature is 288K, the initial average su-

persaturation hs0i is zero while its root-mean-square is

s0rms 5 1%. This last value was obtained by running a

spinup simulation without the presence of the droplets

for 100 s. The different Eulerian and Lagrangian tur-

bulent parameters are summarized in Table 1. The

particles are assumed to be initially monodisperse, with

diameters reported in Table 2. The effects of the initial

radius size spectrum can be investigated in future

studies.

3. Broadening of the droplet size distribution

In this section, we extend the main results of our

previous study (Sardina et al. 2015). In Sardina et al.

(2015), we conducted DNSs and LESs using the same

model used here (see section 2) with updraftW5 0 and

neglecting the Kelvin and Raoult terms in Eq. (11),

initializing the simulations with droplets large enough

to ensure that they remained well above the critical
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activation radius at all times. We also derived a simple

stochastic model able to accurately reproduce the time

evolution of the droplet size spectrum. As in the present

work, we did not consider entrainment (Kumar et al.

2014), collisions, or inhomogeneity, so that the size

spectrum evolution is driven only by the supersaturation

fluctuations.

In the stochastic model of Sardina et al. (2015) the

turbulent vertical velocity and supersaturation fluctua-

tions are modeled using Langevin equations (Pope

2000). Here we will include the effect of a mean super-

saturation field following the approach by Paoli and

Shariff (2009). The modified stochastic model reads as

follows:

w0
i(t1 dt)5w0

i(t)2
w0

i(t)

T
0

dt1 y
rms

ffiffiffiffiffiffiffiffiffi
2
dt

T
0

s
j
i
(t) and (12)

s
i
(t1 dt)5 s

i
(t)2

s
i
2 hsi
T
0

dt1A
1
(W1w0

i) dt

2
4pr

w
A

2
n

3
dR3 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12C2

ws)hs02i
2dt

T
0

s
h
i
(t)

1C
ws

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs02i 2dt

T
0

s
j
i
(t) , (13)

where yrms is the standard deviation of the turbulent

velocity fluctuations, j(t) and h(t) Gaussian d correlated

in time white noise, T0 the turbulence integral time

scale, Cws 5 hw0s0i/(yrms

ffiffiffiffiffiffiffiffiffihs02ip
) the normalized velocity–

supersaturation correlation, n is the droplet concentra-

tion, hsi is the average supersaturation, and hs02i its

variance. This system is coupled with the equation for the

evolution of the droplet radius, Eq. (11).

The time evolution of the square droplet radius

standard deviation sR2 follows the exact equation:

dh(R20
i )

2i
dt

5
ds2

R2

dt
5 4A

3
hs0R20i . (14)

The previous equation highlights the role of the cor-

relation hs0R20i in modifying the droplet spectral

distribution. This quantity, derived analytically, rep-

resents the covariance between the droplet surface and

the supersaturation fluctuations. Physically, the key

parameter that accounts for the role of turbulence in

droplet condensation is this statistical observable. If

the covariance is large and positive, a large spectral

broadening is possible even in absence of collisions. In

the following we will derive a closure model for this

quantity based essentially on the values of the quasi-

equilibrium supersaturation and the turbulent integral

time scale. Another similar closure of this important

term has been proposed by Chandrakar et al. (2016)

and compared with experimental data in a cloud

chamber. By manipulating and making approxima-

tions into the stochastic equations above, we can

estimate the value of the correlation hs0R20i and con-

sequently the square droplet radius standard deviation

sR2 . The first step is to approximate the sink term

proportional to dR3 as a function of the square droplet

radius R2. We will assume that the deviation of the

single droplet squared radius R2 from its average value

hR2i is small so that we can expand R3 in Taylor’s

series:

R3 5 (R2)3/2 ’ hR2i3/2 1 3

2
hR2i1/2(R2 2 hR2i) , (15)

and differentiating,

TABLE 2. Parameters defining the CCN of the present simulations: critical radius and critical supersaturation depending on the salt

composition and initial supersaturation relaxation time.

Salt R0 (mm) St0h c (nm) h (mm3) Rc (mm) sc (%) t0s (s)

— 13 0.03 — — — — 2.3

(NH4)SO4 0.24 1023 1.2 9.8 3 1023 4.95 1.6 3 1022 124

NaCl 0.02227 1027 1.2 1.35 3 1025 0.18 0.43 1340

TABLE 1. Parameters of the numerical simulations for the turbulent gas flow: Lbox, cloud size; D, numerical resolution; Rel, Taylor

Reynolds number; «, turbulent kinetic energy dissipation; yrms, turbulent velocity fluctuations; TL, Eulerian large-eddy turn over time;

T0, Lagrangian integral time; hs0i, initial average supersaturation field; s0rms, initial supersaturation root-mean-square; Nd, number of

droplets inside the cloud; Nc, number of representative droplets evolved in the simulation.

Lbox (m) D (m) Rel « (m2 s23) yrms (m s21) TL (s) T0 (s) hs0i s0rms (%) Nd Nc

100 0.39 5000 1023 0.7 142 33 0 1 1014 7 3 107
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dR3 5 hR2i1/2
�
2
3

4
dhR2i1 3

4

R2

hR2i dhR
2i1 3

2
dR2

�
. (16)

The evolution of the square droplet radius R2 and its

average quantity hR2i can be obtained by Eq. (11) ne-

glecting the Raoult and Kelvin terms (active droplets):

dR2

dt
5 2A

3
s and (17)

dhR2i
dt

5 2A
3
hsi (18)

and substituting in Eq. (16),

dR3 5 hR2i1/2
�
2
3

2
A

3
hsi1 3

2

R2

hR2iA3
hsi1 3A

3
s

�
dt . (19)

Using Eq. (19) and defining the average droplet saturation

time as htsi5 (4prwA2A3nhR2i1/2)21, the stochastic su-

persaturationequation [Eq. (13)] assumes the following form:

s
i
(t1 dt)5 s

i
(t)2

s
i
2 hsi
T
0

dt1A
1
(W1w0

i) dt

2
dt

ht
s
i
�hsi
2

�
R2

i

hR2i2 1

�
1 s

i

�

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12C2

ws)hs02i
2dt

T
0

s
h
i
(t)

1C
ws

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs02i 2dt

T
0

s
j
i
(t) . (20)

Equation (20) can be decomposed in the evolution of

the ensemble-average supersaturation,

dhsi
dt

5A
1
W2

hsi
ht

s
i , (21)

and its fluctuating value,

s0i(t1 dt)5 s0i(t)2
s0i
T

0

dt1A
1
w0

idt2
dt

ht
s
i

 
hsi
2

R20
i

hR2i1 s0i

!

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12C2

ws)hs02i
2dt

T
0

s
h
i
(t)1C

ws

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs02i 2dt

T
0

s
j
i
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(22)

Assuming htsi � T0, the time evolution of the

fluctuation correlations become

dhs0R20i
dt

5A
1
hw0R20i1 2A

3
hs02i2 hs0R20i

ht
s
i 2

hsi
2ht

s
i
hR202i
hR2i ,

(23)

dhw0R20i
dt

5 2A
3
hw0s0i2 hw0R20i

T
0

, (24)

dhs02i
dt

5 2A
1
hw0s0i2 2

hs02i
ht

s
i2

hsi
ht

s
i
hs0R20i
hR2i , and (25)

dhw0s0i
dt

5A
1
y2rms 2

hw0s0i
ht

s
i 2

hsi
2ht

s
i
hw0R20i
hR2i . (26)

Unfortunately, the system of Eqs. (23)–(26) cannot be

analytically solved for the most general case. The

problem is simplified in the case of zero mean super-

saturation hsi5 0 and assuming a statistical quasi-steady

state (dh�i/dt5 0). Under these hypotheses we retrieve

the theoretical results of our previous paper (Sardina

et al. 2015). In particular, the correlation hs0R20i and

consequently the distribution of squared droplet radius

R2 in time evolve according to the following expressions:

hs0R20i5 2A
3
sqs2T

0
5 2A

3
A2

1y
2
rmshtsi2T0

and (27)

s
R2 5 2A1/2

3 hs0R20i1/2t1/2 5
ffiffiffi
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3
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ffiffiffi
8
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3
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1
y
rms

ht
s
i(T

0
t)1/2

’ 0:7A
3
A

1
n1/2ht

s
iRe

l
t1/2 . (28)

Equation (28) shows that sR2 monotonically increases

in time as t1/2 and that the growth rate is proportional to

the average relaxation time htsi and to the Taylor

Reynolds number Rel, which is related to the large-

to-small-scale separation. The spectral broadening

captured by sR2 is bounded at a fixed time by the

quasi-equilibrium supersaturation value sqs 5A1yrmshtsi
consistently with the arguments of Lanotte et al. (2009)

andGrabowski andWang (2013). Furthermore, Eq. (28)

extends their argument since sR2 scales with both sqs and

the turbulence integral scale T0. In the turbulent inertial

range, sqs scales with L1/3 and T1/2
0 with L1/3 and conse-

quently sR2 scales asL2/3, highlighting the importance of

the large turbulent scales on the condensational growth.

A further key implication of Eq. (28) is that in the

absence of an updraft velocity, the droplet size spectrum

will continuously broaden in time, as discussed in our

previous work (Sardina et al. 2015). The essence of this

result can be understood by rewriting Eq. (11), ne-

glecting the Kelvin and Raoult terms, as

dR2

dt
5 2A

3
s (29)

and assuming that s behaves approximately as a white-

noise process; in this case, R2 performs a random walk

and its standard deviation therefore increases as the

square root of time. To visualize this behavior, the left
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panel in Fig. 1 shows the evolution of R2 in numerical

integrations of the stochastic model for 50 individual

droplets along with the population standard deviation

(which behaves as t1/2) represented by the black line. All

droplets have an initial radius R 5 13mm but the sto-

chastic fluctuations induce a dispersion in the radii that

grows in time. The same qualitative behavior is obtained

with the full turbulent 3D numerical simulations as

shown in the right panel of Fig. 1, which again shows the

evolution of 50 individual droplets starting from the

same radius.

The analytical result above is limited by the droplet

size, especially when the droplets are small as shown

recently by Siewert et al. (2017). Our theoretical model

assumes any possible value for the variable subjected to

random walk R2; however, the droplet squared radius

cannot become negative by definition and a boundary

condition should be included in the model. The quantity

R2 can be prescribed to be always positive as in Siewert

et al. (2017) or subject to activation/deactivation (the

Kölher effect) as we do in the present manuscript. In

both cases, the particle size distribution reaches a steady

state even without updraft velocity since the continuous

broadening by condensation is limited for small values

of R2. Our stochastic model can therefore be used as a

subgrid-scale model for the unresolved supersaturation

in large-eddy simulation using a similar approach de-

veloped in Grabowski and Abade (2017).

4. Results

In this section we examine how the results described

in the previous section change when a constant mean

updraft W . 0 is introduced and when the droplet radii

are allowed to drop below the critical radius so that

droplet activation and deactivation become important.

a. Effect of mean updraft velocity

The presence of a mean updraft velocity induces sev-

eral changes in the numerical and theoretical results

shown in the previous section. The most obvious differ-

ence is that a mean updraft induces positive mean su-

persaturation inside the parcel and consequently a

growing mean droplet radius. The top row of Fig. 2 shows

the time evolution of the mean supersaturation field and

of the mean radius for the sequence of runs initialized

with a monodisperse droplet population (top row in

Table 2). In all cases withW. 0, after an initial transient

adjustment the mean supersaturation settles on a positive

steady value in which the production of supersaturation

by mean ascent [second term on the rhs of Eq. (5)] is

balanced in the mean by condensation onto cloud drop-

lets [last term on the rhs of Eq. (5)]. Droplets are on av-

erage gaining mass, and their mean radius increases

monotonically (Fig. 2, top right). TheW5 0 case is a little

more subtle. In this case, mean supersaturation settles

on a value just above zero; this is because the curvature

term in the Köhler equation [Eq. (11)] increases the

equilibrium vapor pressure slightly. There is no mean

production of supersaturation and there is no mean

change in total liquid water. Somewhat surprisingly,

however, the mean droplet radius decreases over time.

The bottom panels of Fig. 2 show the time behavior of

the supersaturation standard deviation (bottom left)

and the ratio between mean and standard deviation of

the supersaturation distribution (bottom right). For

the chosen parameters, the supersaturation standard

deviation depends weakly on the updraft velocity, de-

creasing slightly with the intensity of the updraft. This

decrease is consistent with the stochastic model. The last

term on the right-hand side of Eq. (25) is responsible

of this small difference. Nonetheless, the quasi-steady

FIG. 1. Time evolution of the squared radius for 50 different individual droplets obtained with (left) the stochastic

model and (right) LES. The black solid lines represent the evolution of the standard deviation.
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approximation sqsrms 5A1yrmshtsi obtained without up-

draft still provides a good estimate even for the larger

updraft velocity that we are analyzing. The decrease of

the supersaturation standard deviation with the updraft

velocity is linked to the decrease of the supersaturation

relaxation time htsi associated with the mean radius

growth during ascent. The ratio between the mean

and standard deviation of supersaturation oscillates

around a steady mean value ranging from 0 for the zero

updraft to 1.5 for the highest updraft velocity. These

values will be useful to quantify the different behaviors

of the droplet distributions.

The squared-radius distributions at the final simula-

tion time, corresponding to 20min, are shown in the top-

left panel of Fig. 3. The distributions are approximately

Gaussian for all the values of W, with skewness and

kurtosis close to 0 and 3, respectively (bottom row).

Note however that all distributions actually have a slight

negative skewness, especially that forW5 0; indeed, the

distributions become more symmetric as W increases.

The time evolution of the distributions’ standard de-

viation is displayed in the top-right panel of Fig. 3. As in

Sardina et al. (2015), the standard deviation grows ap-

proximately as t1/2 in the case with no updraft. As the

updraft strength increases, the growth becomes slower,

apparently reaching a steady value in the W 5 1m s21

case. The key result here, then, is that the presence of an

updraft tends to counteract turbulent broadening and

leads to a narrower droplet size distribution, in agree-

ment with other recent work (Gotoh et al. 2016). This

effect is confirmed by observing the correlation between

the squared-radius fluctuations and the supersaturation

fluctuations hs0R20 i. The time derivative of the squared-

radius variance is proportional to the value of this cor-

relation, ds2
R2 /dt} hs0R20 i, which is therefore shown in

Fig. 4. This has been shown in Sardina et al. (2015) to be

constant in the absence of updraft. This observable then

decreases by increasing the updraft velocity, being two

FIG. 2. Temporal evolution of (top left) mean cloud supersaturation, (top right) mean droplet radius, (bottom

left) supersaturation standard deviation, and (bottom right) ratio between mean and standard deviation super-

saturation for the largest droplets.
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orders of magnitude lower for the largest updraft case.

The value of hs0R20 i is almost constant in time for

moderate updraft, implying that sR2 } t1/2 while

strongly diminishes at W 5 1m s21 in the last 400 s

leading to the steady droplet spectrum distribution

shown above. Thus, a strong updraft velocity tends to

decorrelate the radius growth from the local resolved

supersaturation field at the droplet position. The same

conclusion can be reached by analyzing the time evo-

lution of the correlation hs0R20i in the stochastic model

[Eq. (23)], where again the last term on the right-hand

side (which is negative if hsi. 0) diminishes the value

of the correlation. If we assume that the correlation

hs0R20i tends to zero at large times, we can estimate an

upper limit for the squared-radius standard deviation

sR2 . In this case, the standard deviation asymptotically

approaches a constant value in time—similarly to what

observed in the simulations (Fig. 3, top right)—which

can be approximated by

s
R2 5

ffiffiffiffiffiffiffiffiffiffiffiffi
hR202i

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(A

1
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3
hs02i) 2htsihR

2i
hsi

s
.

(30)

If we assume again that the statistical steady state is

reached, and that T0 � ts, the upper limit for sR2

becomes

s
R25
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hR2i4A

3
T
0

sqs2rms
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3
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s
}

Re
l

hsi1/2
.

(31)

Equation (31) suggests that the final value of the spectral

broadening depends on both the underlying turbulence

Rel and the average supersaturation value hsi. A posi-

tive mean supersaturation tends to reduce the spectral

broadening. Again, the large turbulent scales play a

fundamental role in determining the final stage of the

FIG. 3. (top left) Squared droplet radii pdf after 20min of simulation for the largest droplets. Temporal evolution

of squared droplet radius (top right) standard deviation, (bottom left) skewness, and (bottom right) kurtosis for the

largest droplets.
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droplet size distribution. The expression above confirms

the limited droplet broadening found in the simulations

by Vaillancourt et al. (2002) where a small turbulence

level was simulated in a parcel ascending at 2.5m s21.

Substituting in (31) the values used in the simulation, we

obtain the upper limit sR2 ’ 30mm2, indeed of the same

order of magnitude of the simulation statistics at large

times, ’20mm2.

b. The role of droplet activation/deactivation

In the simulations presented in the previous section,

the particles have been assumed to have an initial radius

of 13mm and no droplets came close to the critical

activation radius in any of the simulations. Now, we

show how the condensation dynamics can change

when starting directly from CCN. We analyze two

populations: ammonium sulfate [(NH4)SO4] and so-

dium chloride (NaCl). The two populations differ in

chemical and physical properties and, consequently,

critical activation radius and critical supersaturation.

The time evolution of the mean supersaturation and

mean droplet radius are shown in the top-left and top-

right panels of Fig. 5, respectively, for the case of

(NH4)SO4. The Kölher terms induce nonlinear effects

for small radii, which prevents the droplet to evaporate

in a negative supersaturation field in the absence of up-

draft. The mean radius is almost constant in time,

around a value of 2mm. By increasing the updraft ve-

locity, the mean radius starts to grow similarly to the case

without CCN. The time evolution of the supersaturation

standard deviation is shown in the bottom-left panel for

all simulations. The values plotted in the figure can be

roughly estimated by using the quasi-equilibrium pre-

diction sqsrms 5A1yrmshtsi with the average value of htsi
calculated by means of the average radius plotted in the

top-right panel of Fig. 5. The fluctuations of the super-

saturation field decrease by more than one order of

magnitude from zero to the highest updraft considered.

The ratio between the mean and standard deviation of

the supersaturation field, displayed in the bottom-right

panel of Fig. 5, is quantitatively the same as in the case

without CCN for the two largest updraft values.

The final droplet size distribution is shown in the top-

left panel of Fig. 6. Two completely different behaviors

emerge. For the largest updrafts, the pdfs are Gaussian,

whereas the distributions depart consistently from the

Gaussian distribution for the smallest updrafts. In the

latter cases, the pdfs show a ‘‘haze peak’’ in correspon-

dence to the critical CCN radius. The pdf pertaining to

the case of zero updraft is qualitatively similar to that

found in simulations of two-dimensional turbulence

(Celani et al. 2008) and the distribution embraces a scale

interval of more than two decades even for an updraft of

0.1m s21, with long and persistent tails. For the cases of

higher updraft, we observe a saturation in time of the

distribution for the 1ms21 updraft velocity as revealed

by the time evolution of the distributionmoments shown

below. This can be of fundamental importance to esti-

mate the droplet collision dynamics. We therefore ex-

amine the moments of the pdfs and report the standard

deviation in the top-right panel of Fig. 6. Interestingly,

the case with zero updraft substantially differs from the

previous simulation with large droplets. Here, we

observe a saturation of the droplet size standard de-

viation in time rather than a monotonic increase. On the

other hand, the monotonic behavior in time can be ob-

served for the intermediate updraft velocities. Since the

cases with lower updraft velocities show highly non-

Gaussian pdfs, the standard deviation does not give

enough information on the droplet size spectrum.

Figure 6 also shows the skewness (bottom left) and

kurtosis (bottom right) of the size spectrum versus time.

The data for the higher updraft values confirm that the

droplet sizes have an almost Gaussian distribution since

their skewness and kurtosis are about 0 and 3, re-

spectively, like a pure Gaussian distribution. A posi-

tively skewed distribution is instead found for the two

smaller updrafts examined. The positive value of skew-

ness implies the presence of a right tail in the pdf and the

lack of symmetry in the spectrum distribution. After

time t ’ 500 s, the pdf has high kurtosis in the zero-

updraft case, revealing the presence of large tails and

that the droplet distribution reaches a steady state. The

high value of kurtosis is about 3 times bigger than the

one of the Gaussian distribution, implying that the pdf

FIG. 4. Correlation between the squared-radius fluctuations and

the supersaturation fluctuations hs0R20 i for the largest droplets at

different velocity updrafts.
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tails are persistent and decay slowly compared to the

Gaussian one. The presence of this long and not sym-

metric right tail could be crucial for the following grav-

itational collisional stage of rain formation.

The results for the case of the aerosol marine salt

(NaCl) are depicted in Fig. 7: the main findings are

consistent with those for the (NH4)SO4 aerosols dis-

cussed in Fig. 5. The only exceptions are found for the

zero-updraft case where the water droplets are smaller

in size and thus more dependent on the chemical

composition of their nucleus. However, although the

global supersaturation and average radius are similar

for the two aerosol populations, the droplet size dis-

tribution is completely different, as shown in Fig. 8. The

droplet size spectrum is shown in the top-left panel,

where it is possible to distinguish three different re-

gions: (i) The haze region around the droplet ac-

tivation radius shows a very clear peak for all the

updrafts considered. The peak is more pronounced and

distinguished from that in the case of (NH4)SO4 nuclei

and clearly divides the nonactive from the active par-

ticles. The pdf of the nonactive droplets decays as a

power law when decreasing the droplet dimensions; the

exponent of the power law is around 1.5. (ii) An in-

termediate zone, characterized by a plateau in the size

distribution, defines the active droplets up to 2–3mm.

(iii) For larger particles, those less influenced by their

nucleus chemical composition, the droplet distribution

recovers the behavior of the population considered

previously. It is remarkable that, in this case, there is a

difference of about six orders of magnitude between

the squared radii of the larger and smaller droplets, to

which corresponds the same variation in droplet ter-

minal velocity with obvious consequences for collision

rates. This broad spectrum appears for all the updraft

velocities under consideration, with the larger updrafts

showing a more distinct bimodal behavior. The pre-

vious observations are reflected in the high values of

FIG. 5. Temporal evolution of (top left) mean cloud supersaturation, (top right) mean droplet radius, (bottom

left) supersaturation standard deviation, and (bottom right) ratio between mean and standard deviation super-

saturation for (NH4)SO4 salt CCN.

462 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 75



the rms of R2 reported in the top-right panel of Fig. 8.

Since we consider in this case droplets of smaller ra-

dius, the zero-updraft distribution has not yet reached

the steady state and its standard deviation continues to

increase at the final simulation time; we believe the

steady state will be reached at a later time. The loss of a

quasi-Gaussian pdf at the larger updrafts is measured

by the skewness of the distribution (bottom left panel):

indeed, larger updrafts show a negatively skewed dis-

tribution in the droplet size spectra. High values of the

kurtosis are also evident in almost all cases.

For the results just presented, we initially assumed

the particle radius to be the radius of the salt conden-

sation nucleus. We did several tests only changing the

value of the initial droplet radius, from the activation

radius to 5mm and, surprisingly, obtained the same

results. These results are therefore dependent only on

the chemical composition of the condensation nuclei

and independent on the initial radius distribution. This

effect is a consequence of the initial conditions of the

supersaturation field. The initial field is generated

without the presence of the droplets and it is charac-

terized by a larger standard deviation (1%). When the

CCN are injected, many of them are activated in-

stantaneously depending only of the value of c and h

and the average radius of the droplet is on the order of

2–3mm. For these reasons, the effect of the aerosol size

is subleading. We understand that the choice of the

initial condition can be arbitrary but our initial condi-

tions are not so far from the recent experiments

measures by Siebert and Shaw (2017). These authors

found that at the early stages of cloud formation the

fluctuations of the supersaturation are observed to be

approximately normally distributed with standard de-

viations on the order of 1%. This variability is almost

one order of magnitude larger than the steady-state

value of the supersaturation as we also find in our nu-

merical results.

FIG. 6. (top left) Squared droplet radii probability density function pdf after 20min of simulation for (NH4)SO4

salt CCN. Temporal evolution of squared droplet radius (top right) standard deviation, (bottom left) skewness, and

(bottom right) kurtosis for (NH4)SO4 salt CCN.
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5. Discussion and conclusions

A series of LESs of homogeneous isotropic turbu-

lence has been analyzed to illustrate the growth of water

droplets via condensation/evaporation in turbulent

clouds. The effects of a mean-flow vertical updraft and

of the droplet nucleus chemical compositions have been

also investigated. In particular, in absence of updraft the

droplet squared radii follow a classical random walk

behavior, as already described in our previous work

(Sardina et al. 2015). The standard deviation of the

droplet size distribution increases in time as a power law,

t1/2. At fixed time, the standard deviation of the droplet

size distribution is bounded by the value of the quasi-

equilibrium supersaturation sqs (Grabowski and Wang

2013) and is proportional to the larger turbulent scales

of the cloud L2/3. This scenario is modified by the pres-

ence of a mean updraft velocity: the power law expo-

nent becomes less than 1/2, and the standard deviation

is observed to asymptote to a constant for updraft

velocities on the order of 1m s21. The overall effect is a

reduction of the droplet growth, in agreement with the

results from the simulations of Gotoh et al. (2016). We

have presented an extended stochastic model that, for

the first time, is able to analytically predict this reduction

in droplet spectral broadening. The model shows that

the steady-state value of the droplet distribution stan-

dard deviation is inversely proportional to the square

root of the average supersaturation field and directly

proportional to the turbulence Reynolds number. This

result arises from the fact that a positive average su-

persaturation field induces a decorrelation of the radius

growth from the local resolved supersaturation field.

The power-law behavior observed at zero updraft for

large droplets t1/2 is modified also in presence of small

droplets on the order of the critical radius inside the

cloud domain. When droplets reach the critical radius,

their evaporation is blocked by the chemical properties

of its salt nucleus and a deviation from a classic random

FIG. 7. Temporal evolution of (top left) mean cloud supersaturation, (top right) mean droplet radius, (bottom

left) supersaturation standard deviation, and (bottom right) ratio between mean and standard deviation super-

saturation for NaCl salt CCN.
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walk behavior is observed. This is associated to the

saturation of the droplet growth for the zero-updraft

case and reflected in the droplet squared-radius spectra.

While for large particles the distribution is purely

Gaussian, smaller particles tend to strongly deviate

from a Gaussian behavior. The right tail of the distri-

bution tends to resemble a Gaussian behavior while the

left tail is characterized by a peak in correspondence of

the haze activation radius. The strong deviations of the

droplet spectrum from a Gaussian distribution will be

crucial for the later stages of droplet growth, which are

dominated by droplet collisions. Growth by turbulent

and gravitationally induced collisions strongly depends

on both droplet size and droplet number distributions.

For the NaCl CCN we observe the existence of six or-

ders of magnitude difference between the squared radii

of the larger and smaller droplets, associated with a

similar difference in droplet terminal velocity. This huge

difference in droplet terminal velocity can enhance the

efficiency of gravitational collisions. The study of tur-

bulence induced collisions is fundamental to continue

the investigation of the size gap in warm-cloud rain

formation. Droplet collisions occur at small scales so

that an LES technique is not suitable to investigate this

phenomenology. Novel highly resolved DNSs are

needed to address this phenomenology and to be able to

derive new collision kernel and models to be in-

corporated in an LES. The simulations described in the

paper represent a unique dataset to study the effect of

CCN activation/deactivation in three-dimensional ho-

mogeneous isotropic turbulence and can be used to

improve the current microphysical models in the pres-

ence of turbulence.

Acknowledgments. This work was supported by the

Swedish e-Science Research Centre (SeRC), by the

European Research Council Grant ERC-2013-CoG-

616186, TRITOS, and by the Swedish Research Council

FIG. 8. (top left) Squared droplet radii probability density function pdf after 20min of simulation for NaCl salt

CCN. Temporal evolution of square droplet radius (top right) standard deviation, (bottom left) skewness, and

(bottom right) kurtosis for NaCl salt CCN.

FEBRUARY 2018 SARD INA ET AL . 465



(VR) Grants 621-2014-5319 and 2014-5001. Computer

time provided by SNIC (Swedish National Infrastructure

for Computing) is gratefully acknowledged. This article is

based upon work fromCOSTActionMP1305, supported

by COST (European Cooperation in Science and

Technology).

REFERENCES

Bartlett, J., and P. Jonas, 1972: On the dispersion of the sizes of

droplets growing by condensation in turbulent clouds. Quart.

J. Roy. Meteor. Soc., 98, 150–164, https://doi.org/10.1002/

qj.49709841512.

Beals, M. J., J. P. Fugal, R. A. Shaw, J. Lu, S. M. Spuler, and J. L.

Stith, 2015: Holographic measurements of inhomogeneous

cloud mixing at the centimeter scale. Science, 350, 87–90,

https://doi.org/10.1126/science.aab0751.

Bewley, J. L., and S. Lasher-Trapp, 2011: Progress on predicting

the breadth of droplet size distributions observed in small

cumuli. J. Atmos. Sci., 68, 2921–2929, https://doi.org/10.1175/

JAS-D-11-0153.1.

Brenguier, J.-L., and L. Chaumat, 2001: Droplet spectra broad-

ening in cumulus clouds. Part I: Broadening in adiabatic

cores. J. Atmos. Sci., 58, 628–641, https://doi.org/10.1175/

1520-0469(2001)058,0628:DSBICC.2.0.CO;2.

Celani, A., A. Mazzino, A. Seminara, and M. Tizzi, 2007: Drop-

let condensation in two-dimensional Bolgiano turbu-

lence. J. Turbul., 8, N17, https://doi.org/10.1080/

14685240601105716.

——, ——, and M. Tizzi, 2008: The equivalent size of cloud con-

densation nuclei. New J. Phys., 10, 075021, https://doi.org/

10.1088/1367-2630/10/7/075021.

——, ——, and ——, 2009: Droplet feedback on vapor in a warm

cloud. Int. J. Mod. Phys., 23B, 5434–5443, https://doi.org/

10.1142/S0217979209063754.

Chandrakar, K. K., W. Cantrell, K. Chang, D. Ciochetto,

D. Niedermeier, M. Ovchinnikov, R. A. Shaw, and F. Yang,

2016: Aerosol indirect effect from turbulence-induced

broadening of cloud-droplet size distributions. Proc. Natl.

Acad. Sci. USA, 113, 14 243–14 248, https://doi.org/10.1073/

pnas.1612686113.

Cooper,W.A., 1989: Effects of variable droplet growth histories on

droplet size distributions. Part I: Theory. J. Atmos. Sci., 46,

1301–1311, https://doi.org/10.1175/1520-0469(1989)046,1301:

EOVDGH.2.0.CO;2.

——, S. G. Lasher-Trapp, and A. M. Blyth, 2011: Initiation of co-

alescence in a cumulus cloud: A beneficial influence of en-

trainment and mixing. Atmos. Chem. Phys. Discuss., 11,

10 557–10 613, https://doi.org/10.5194/acpd-11-10557-2011.

de Lozar, A., and L. Muessle, 2016: Long-resident droplets at the

stratocumulus top.Atmos. Chem. Phys., 16, 6563–6576, https://

doi.org/10.5194/acp-16-6563-2016.

Devenish, B., and Coauthors, 2012: Droplet growth in warm tur-

bulent clouds. Quart. J. Roy. Meteor. Soc., 138, 1401–1429,

https://doi.org/10.1002/qj.1897.

Falkovich, G., A. Fouxon, and M. Stepanov, 2002: Acceleration of

rain initiation by cloud turbulence. Nature, 419, 151–154,

https://doi.org/10.1038/nature00983.

Gotoh, T., T. Suehiro, and I. Saito, 2016: Continuous growth of

cloud droplets in cumulus cloud. New J. Phys., 18, 043042,

https://doi.org/10.1088/1367-2630/18/4/043042.

Grabowski,W.W., and L.-P.Wang, 2013:Growth of cloud droplets

in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293–

324, https://doi.org/10.1146/annurev-fluid-011212-140750.

——, and G. C. Abade, 2017: Broadening of cloud droplet spectra

through eddy hopping: Turbulent adiabatic parcel simula-

tions. J. Atmos. Sci., 74, 1485–1493, https://doi.org/10.1175/

JAS-D-17-0043.1.

Jensen, J. B., and A. D. Nugent, 2017: Condensational growth of

drops formed on giant sea-salt aerosol particles. J. Atmos. Sci.,

74, 679–697, https://doi.org/10.1175/JAS-D-15-0370.1.

Köhler, H., 1936: The nucleus in and the growth of hygroscopic

droplets. Trans. Faraday Soc., 32, 1152–1161, https://doi.org/

10.1039/TF9363201152.

Kostinski, A., 2009: Simple approximations for condensational

growth. Environ. Res. Lett., 4, 015005, https://doi.org/10.1088/

1748-9326/4/1/015005.

Kumar, B., J. Schumacher, and R. A. Shaw, 2014: Lagrangian

mixing dynamics at the cloudy–clear air interface. J. Atmos.

Sci., 71, 2564–2580, https://doi.org/10.1175/JAS-D-13-0294.1.

Lanotte, A. S., A. Seminara, and F. Toschi, 2009: Cloud droplet

growth by condensation in homogeneous isotropic turbulence.

J. Atmos. Sci., 66, 1685–1697, https://doi.org/10.1175/

2008JAS2864.1.

Lasher-Trapp, S. G., W. A. Cooper, and A. M. Blyth, 2005:

Broadening of droplet size distributions from entrainment and

mixing in a cumulus cloud. Quart. J. Roy. Meteor. Soc., 131,

195–220, https://doi.org/10.1256/qj.03.199.

Lau, K. M., and H. T. Wu, 2003: Warm rain processes over tropical

oceans and climate implications.Geophys. Res. Lett., 30, 2290,

https://doi.org/10.1029/2003GL018567.

Levin, L., and Y. S. Sedunov, 1966: Stochastic condensation of

drops and kinetics of cloud spectrum formation. J. Rech.

Atmos., 2, 425–432.

Li, X.-Y., A. Brandenburg, N. Haugen, and G. Svensson, 2017:

Eulerian and Lagrangian approaches to multidimensional

condensation and collection. J. Adv. Model. Earth Syst., 9,

1116–1137, doi:10.1002/2017MS000930.

Magaritz-Ronen, L., M. Pinsky, and A. Khain, 2014: Effects of

turbulent mixing on the structure and macroscopic properties

of stratocumulus clouds demonstrated by a Lagrangian tra-

jectory model. J. Atmos. Sci., 71, 1843–1862, https://doi.org/

10.1175/JAS-D-12-0339.1.

Mazin, I., 1968: Stochastic condensation and its effect on formation

of cloud drop-size distribution. Bull. Amer. Meteor. Soc., 49,

595.

Mazzitelli, I. M., F. Fornarelli, A. S. Lanotte, and P. Oresta, 2014a:

Pair and multi-particle dispersion in numerical simulations of

convective boundary layer turbulence. Phys. Fluids, 26,

055110, https://doi.org/10.1063/1.4878318.

——, F. Toschi, andA. S. Lanotte, 2014b: An accurate and efficient

Lagrangian sub-grid model. Phys. Fluids, 26, 095101, https://

doi.org/10.1063/1.4894149.

Olivieri, S., F. Picano,G. Sardina,D. Iudicone, andL. Brandt, 2014:

The effect of the Basset history force on particle clustering in

homogeneous and isotropic turbulence. Phys. Fluids, 26,

041704, https://doi.org/10.1063/1.4871480.

Paoli, R., and K. Shariff, 2009: Turbulent condensation of droplets:

Direct simulation and a stochastic model. J. Atmos. Sci., 66,

723–740, https://doi.org/10.1175/2008JAS2734.1.

Pope, S. B., 2000: Turbulent Flows. Cambridge University Press,

802 pp.

Pruppacher, H., and J. Klett, 1997: Microphysics of Clouds and

Precipitation. Springer, 954 pp.

466 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 75

https://doi.org/10.1002/qj.49709841512
https://doi.org/10.1002/qj.49709841512
https://doi.org/10.1126/science.aab0751
https://doi.org/10.1175/JAS-D-11-0153.1
https://doi.org/10.1175/JAS-D-11-0153.1
https://doi.org/10.1175/1520-0469(2001)058<0628:DSBICC>2.0.CO;2
https://doi.org/10.1175/1520-0469(2001)058<0628:DSBICC>2.0.CO;2
https://doi.org/10.1080/14685240601105716
https://doi.org/10.1080/14685240601105716
https://doi.org/10.1088/1367-2630/10/7/075021
https://doi.org/10.1088/1367-2630/10/7/075021
https://doi.org/10.1142/S0217979209063754
https://doi.org/10.1142/S0217979209063754
https://doi.org/10.1073/pnas.1612686113
https://doi.org/10.1073/pnas.1612686113
https://doi.org/10.1175/1520-0469(1989)046<1301:EOVDGH>2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046<1301:EOVDGH>2.0.CO;2
https://doi.org/10.5194/acpd-11-10557-2011
https://doi.org/10.5194/acp-16-6563-2016
https://doi.org/10.5194/acp-16-6563-2016
https://doi.org/10.1002/qj.1897
https://doi.org/10.1038/nature00983
https://doi.org/10.1088/1367-2630/18/4/043042
https://doi.org/10.1146/annurev-fluid-011212-140750
https://doi.org/10.1175/JAS-D-17-0043.1
https://doi.org/10.1175/JAS-D-17-0043.1
https://doi.org/10.1175/JAS-D-15-0370.1
https://doi.org/10.1039/TF9363201152
https://doi.org/10.1039/TF9363201152
https://doi.org/10.1088/1748-9326/4/1/015005
https://doi.org/10.1088/1748-9326/4/1/015005
https://doi.org/10.1175/JAS-D-13-0294.1
https://doi.org/10.1175/2008JAS2864.1
https://doi.org/10.1175/2008JAS2864.1
https://doi.org/10.1256/qj.03.199
https://doi.org/10.1029/2003GL018567
http://dx.doi.org/10.1002/2017MS000930
https://doi.org/10.1175/JAS-D-12-0339.1
https://doi.org/10.1175/JAS-D-12-0339.1
https://doi.org/10.1063/1.4878318
https://doi.org/10.1063/1.4894149
https://doi.org/10.1063/1.4894149
https://doi.org/10.1063/1.4871480
https://doi.org/10.1175/2008JAS2734.1


Riechelmann, T., U. Wacker, K. D. Beheng, D. Etling, and

S. Raasch, 2015: Influence of turbulence on the drop

growth in warm clouds, Part II: Sensitivity studies with a

spectral bin microphysics and a Lagrangian cloud model.

Meteor. Z., 24, 293–311, https://doi.org/10.1127/metz/

2015/0608.

Rogallo, R., 1981: Numerical experiments in homogeneous turbu-

lence. NASA Tech. Memo. 81315, 91 pp., https://ntrs.nasa.gov/

archive/nasa/casi.ntrs.nasa.gov/19810022965.pdf.

Sardina, G., F. Picano, L. Brandt, and R. Caballero, 2015: Con-

tinuous growth of droplet size variance due to condensation in

turbulent clouds. Phys. Rev. Lett., 115, 184501, https://doi.org/
10.1103/PhysRevLett.115.184501.

Shima, S., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara,

2009: The super-droplet method for the numerical simulation

of clouds and precipitation: A particle-based and probabilistic

microphysics model coupled with a non-hydrostatic model.

Quart. J. Roy. Meteor. Soc., 135, 1307–1320, https://doi.org/

10.1002/qj.441.

Siebert, H., and R. A. Shaw, 2017: Supersaturation fluctuations

during the early stage of cumulus formation. J. Atmos. Sci., 74,

975–988, https://doi.org/10.1175/JAS-D-16-0115.1.

Siewert, C., J. Bec, and G. Krstulovic, 2017: Statistical steady state in

turbulent droplet condensation. J. Fluid Mech., 810, 254–280,

https://doi.org/10.1017/jfm.2016.712.

Smagorinsky, J., 1963: General circulation experiments with the

primitive equations: I. The basic experiment.Mon. Wea. Rev.,

91, 99–164, https://doi.org/10.1175/1520-0493(1963)091,0099:

GCEWTP.2.3.CO;2.

Srivastava, R., 1989: Growth of cloud drops by condensation:

A criticism of currently accepted theory and a new ap-

proach. J. Atmos. Sci., 46, 869–887, https://doi.org/

10.1175/1520-0469(1989)046,0869:GOCDBC.2.0.CO;2.

Sundaram, S., and L. R. Collins, 1997: Collision statistics in an

isotropic particle-laden turbulent suspension. Part 1. Direct

numerical simulations. J. Fluid Mech., 335, 75–109, https://

doi.org/10.1017/S0022112096004454.

Twomey, S., 1959: The nuclei of natural cloud formation part II:

The supersaturation in natural clouds and the variation of

cloud droplet concentration. Pure Appl. Geophys., 43, 243–

249, https://doi.org/10.1007/BF01993560.

Vaillancourt, P. A., and M. K. Yau, 2000: Review of particle–

turbulence interactions and consequences for cloud physics.

Bull. Amer. Meteor. Soc., 81, 285–298, https://doi.org/10.1175/

1520-0477(2000)081,0285:ROPIAC.2.3.CO;2.

——, ——, P. Bartello, and W. W. Grabowski, 2002: Micro-

scopic approach to cloud droplet growth by condensation.

Part II: Turbulence, clustering, and condensational

growth. J. Atmos. Sci., 59, 3421–3435, https://doi.org/

10.1175/1520-0469(2002)059,3421:MATCDG.2.0.CO;2.

Warner, J., 1969: The microstructure of cumulus cloud. Part I.

General features of the droplet spectrum. J. Atmos. Sci., 26,

1049–1059, https://doi.org/10.1175/1520-0469(1969)026,1049:

TMOCCP.2.0.CO;2.

FEBRUARY 2018 SARD INA ET AL . 467

https://doi.org/10.1127/metz/2015/0608
https://doi.org/10.1127/metz/2015/0608
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19810022965.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19810022965.pdf
https://doi.org/10.1103/PhysRevLett.115.184501
https://doi.org/10.1103/PhysRevLett.115.184501
https://doi.org/10.1002/qj.441
https://doi.org/10.1002/qj.441
https://doi.org/10.1175/JAS-D-16-0115.1
https://doi.org/10.1017/jfm.2016.712
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1175/1520-0469(1989)046<0869:GOCDBC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046<0869:GOCDBC>2.0.CO;2
https://doi.org/10.1017/S0022112096004454
https://doi.org/10.1017/S0022112096004454
https://doi.org/10.1007/BF01993560
https://doi.org/10.1175/1520-0477(2000)081<0285:ROPIAC>2.3.CO;2
https://doi.org/10.1175/1520-0477(2000)081<0285:ROPIAC>2.3.CO;2
https://doi.org/10.1175/1520-0469(2002)059<3421:MATCDG>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<3421:MATCDG>2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)026<1049:TMOCCP>2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)026<1049:TMOCCP>2.0.CO;2

