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a b s t r a c t 

Multiphase, compressible and viscous flows are of crucial importance in a wide range of scientific and 

engineering problems. Despite the large effort paid in the last decades to develop accurate and effi- 

cient numerical techniques to address this kind of problems, current models need to be further improved 

to address realistic applications. In this context, we propose a numerical approach to the simulation of 

multiphase, viscous flows where a compressible and an incompressible phase interact in the low-Mach 

number regime. In this frame, acoustics are neglected but large density variations of the compressible 

phase can be accounted for as well as heat transfer, convection and diffusion processes. The problem 

is addressed in a fully Eulerian framework exploiting a low-Mach number asymptotic expansion of the 

Navier-Stokes equations. A Volume of Fluid approach (VOF) is used to capture the liquid-gas interface, 

built on top of a massive parallel solver, second order accurate both in time and space. The second-order- 

pressure term is treated implicitly and the resulting pressure equation is solved with the eigenexpansion 

method employing a robust and novel formulation. We provide a detailed and complete description of 

the theoretical approach together with information about the numerical technique and implementation 

details. Results of benchmarking tests are provided for five different test cases. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Multiphase flows of two or more immiscible and viscous fluids 

re common in a large variety of engineering applications and fun- 

amental scientific problems. Each phase is segregated and gives 

rigin to complex and time-evolving free boundaries where discon- 

inuities in the flow fields exist [1] . The phases mutually interact 

xchanging mass, momentum and energy across the free bound- 

ries, the latter undergoing large and complex deformations. It is 

herefore clear how the description of the problem is extremely 

hallenging both from a theoretical and numerical point of view. 

ome of the major issues affecting the modeling of multiphase 

ows arise from the discontinuities in the flow variables and prop- 
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rties across the free boundaries, from the necessity of numerically 

racking and reconstructing the interfaces as well as from the need 

o account for the effect of the surface tension and jump condi- 

ions at the interfaces. These aspects are critical in the simula- 

ions of incompressible and isothermal multiphase flows, but ad- 

itional complexity is added when the compressibility needs to 

e taken into account. In the latter case, heat transfer between 

he fluid phases and the boundaries must be considered in addi- 

ion to mutual heat transfer between the phases and density vari- 

tions. In this paper, the emphasis is on the multiphase flows of 

wo immiscible viscous fluids, one of them being compressible, the 

ther being incompressible. The attention is paid in particular to 

he low-Mach number flows, where the effect of compressibility is 

ignificant and large density variations occur in the compressible 

hase while acoustics are negligible. This is of great interest for 

everal applications. To mention some, the simulation of bubble- 

aden flows and boiling flows [2–4] , as well as the simulation of 
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he fuel jet atomization processes in the combustion chambers of 

nternal combustion engines [5,6] . 

A great amount of literature dealing with the numerical sim- 

lations of multiphase, viscous fluids has been produced [7–14] . 

any approaches have been proposed both in the Eulerian and La- 

rangian frameworks as well as hybrid methods. Among the latter, 

he arbitrary Lagrangian Eulerian (ALE) approach [15–17] . In this 

rame, interface-conforming grids are used where boundary con- 

itions can be accurately prescribed on the free boundaries of the 

ow. The main advantage of the ALE methods is the accurate treat- 

ent of the interfaces. Nevertheless, the computational cost of this 

ind of simulations is large due to the adaptive mesh adjustment 

eeded to preserve the conformity of the grid to the time-evolving 

nterfaces. The need for re-meshing is removed in the frame of the 

xed-Eulerian-grid methods. These are hybrid Eulerian-Lagrangian 

pproaches also referred to as front-tracking methods [18] . The Im- 

ersed Boundary Method (IBM) belongs to this class of numerical 

echniques [19–21] . This approach consists in solving the govern- 

ng equations for the flow on a fixed Eulerian grid while track- 

ng the free boundaries separating the different phases of the flow 

y means of Lagrangian markers distributed over the interfaces. 

n additional forcing is imposed to the fluid, within a neighbor- 

ood of the interfaces, such that the boundary conditions are sat- 

sfied within a certain degree of accuracy. This class of methods 

ave been successfully applied to the simulation of multi-phase 

ows [22,23] . Even if fixed-Eulerian-grid methods are computa- 

ionally more efficient than conforming-grid methods, they suffer 

rom low accuracy in the reconstruction and tracking of the inter- 

ace. A popular alternative is the so-called front-capturing meth- 

ds that are based on a fully Eulerian treatment of the interface 

racking and reconstruction. These include essentially the Volume 

f Fluid (VOF) method and the Level-Set Method (LSM). The LSM 

ses a continuous level-set function, usually the signed distance 

o the interface, to distinguish between the different phases of the 

ow [24–28] . Interfaces are accurately defined by an assigned level 

f the level-set function while the advection of the level-set func- 

ion itself allows for an accurate tracking of the interfaces. In the 

SM framework the interface curvature can be computed easily 

nd accurately, nevertheless, these are not mass-preserving meth- 

ds. Indeed, the advection of the level-set function may result in 

 mass loss or gain. The Volume-of-Fluid method [1,29–31] , in- 

tead, uses a discontinuous colour function to represent each dif- 

erent phase separately, providing the potential to conserve mass at 

 discrete level and to accurately represent the interface topology. 

his is in general accomplished with an interface reconstruction 

rocedure which can be either geometrical or algebraic. The for- 

er is based on approximating each portion of the fluid interface 

ith a plane, as done in the Piecewise Linear Interface Calculation 

PLIC) [32] , while the latter consists in employing a suitable func- 

ion to approximate the phase indicator. Common and established 

hoices of the reconstructing function are the hyperbolic tangent 

rom which the THINC [33] and MTHINC [34] methods are derived 

r simpler polynomial functions designed to locally reconstruct the 

hase indicator [35] . In both cases, the chosen function is also em- 

loyed to compute the numerical fluxes of the interface advection 

quation. 

A major part of the numerical approaches to the simulation 

f multiphase flows reported by archival literature and referenced 

bove were originally developed for incompressible flows. A great 

ffort has been spent in the last decades to extend these meth- 

ds to the simulation of compressible multiphase flows [36–40] ; 

onetheless this is still a very active area of research. Among 

ompressible flows, low-Mach number flows are of great interest 

or many applications where large density variations occur at low 

peeds, low subsonic regimes. When addressing the simulation of 

his flow regime, a central issue arises from the limitation imposed 
2 
n the time step by the fastest dynamics of the flow. Indeed, in 

 compressible flow the speed of propagation of pressure waves 

cales as 1 /Ma, Ma being the Mach number. Many solutions to this 

roblem have been proposed, such as an implicit treatment of the 

coustic pressure [41,42] . Nevertheless, if the case under examina- 

ion is dominated by free or forced convection where the amount 

f energy carried by the acoustics is only a small fraction of the 

verall energy of the flow, a low-Mach number asymptotic formu- 

ation of the Navier-Stokes equations can be used to numerically 

ddress the problem. Large density variations can be accounted 

or, completely neglecting acoustics, but still describing entropy 

nd vorticity modes as well as taking into account compressibil- 

ty [43,44] . In this frame, the pressure is split into two different 

erms: a zero-order, thermodynamic pressure, p 0 , and a second- 

rder pressure, p 2 . The former is governed by the thermodynamic 

roperties of the flow while the latter enters the computation in a 

imilar fashion to that of pressure in incompressible flows [43] . 

In this context, we propose a one-fluid fully Eulerian ap- 

roach to the numerical simulation of multiphase low-Mach num- 

er flows, based on the solution of a low-Mach number asymptotic 

ormulation of the compressible Navier-Stokes equations. For the 

econstruction and subsequent advection of the interface between 

he compressible and incompressible phases, we adopt an algebraic 

olume-of-Fluid method (MTHINC [34] ). However, the mathemati- 

al and numerical framework can be extended in a straightforward 

anner to any kind of interface capturing and tracking technique 

ased on the sharp interface approach. The proposed method is 

mplemented in the frame of the pressure-correction methods, tak- 

ng advantage of a Fast-Fourier-Transform (FFT) based solver for 

he Poisson equation governing the second-order-pressure of the 

ow. The effect of the surface tension is accounted for by using 

he continuum surface force (CSF) model by Brackbill [45] . The im- 

lementation is built upon an extensively validated code for the 

imulation of incompressible flows. The solver uses second order 

nite difference schemes for space discretization on a fixed Eule- 

ian grid and a second order of accuracy Adams-Bashforth time- 

arching algorithm [12,46–48] . While providing detailed and com- 

lete description of the theoretical approach together with infor- 

ation about the numerical technique and implementation details, 

e highlight how the first order pressure p 0 should be computed 

n order to ensure mass conservation of the compressible phase 

nd how to ensure that the constrain on the velocity divergence 

s correctly imposed. Because of its numerical efficiency, we be- 

ieve that this approach is one of the most promising to efficiently 

ddress the simulation of multiphase, low-Mach number flows, in 

articular when one of the two phases can be assumed to be in- 

ompressible. 

. Governing equations 

This section provides the derivation of the monolithic system of 

artial differential equations that governs the flow of two immisci- 

le viscous fluids, one being compressible, the other being incom- 

ressible, e.g. a liquid-gas system. The regions of space occupied 

y the gas and the liquid phase, �g (t) and �l (t) , are assumed 

o be separated by a zero-thickness and time-evolving interface, 

(t) = �g (t ) 
⋂ 

�l (t ) . A phase indicator function, H( x , t) , is defined

o distinguish between the two phases, 

(x , t) = 

{
1 if x ∈ �g (t) , 
0 if x ∈ �l (t) . 

(1) 

he dynamics of the liquid phase are assumed to be governed 

y the standard, incompressible Navier-Stokes equations. Since the 

ramework is well-established [29] , details are omitted here. On 

he other hand, the compressible phase is assumed to evolve in 
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he low-Mach number regime. The governing equations for a com- 

ressible, low-Mach number flow rely on a well-established frame- 

ork too [44] . Nonetheless, the derivation of the low-Mach num- 

er model is presented in this section and in Appendix A to clarify 

he basic assumptions and range of validity of the monolithic ap- 

roach presented in this paper. 

.1. Governing equations for the compressible phase 

This subsection focuses on the compressible gas phase alone; all 

he quantities defined here refer only to the gas phase unless oth- 

rwise stated. In general, if compressibility is taken into account, a 

aseous flow can be described by the following Navier-Stokes and 

nergy equations: 

∂ρ

∂t 
+ ∇ · (ρu ) = 0 , (2) 

∂(ρu ) 

∂t 
+ ∇ · (ρu � u ) = ∇ · τ − ∇p + f σ + ρg , (3) 

∂(ρe t ) 

∂t 
+ ∇ · (ρu e t ) = ∇ · ( τ · u ) + ∇ · (k ∇T ) 

−∇ · ( pu ) + ( f σ + ρg ) · u , (4) 

p = ρR T , (5) 

here u = (u, v , w ) , ρ and p are the fluid velocity, density and

ressure, g is the gravitational acceleration and k the thermal con- 

uctivity. The specific total energy of the flow, e t = e + u · u / 2 , in-

ludes the specific internal energy, e, and the specific kinetic en- 

rgy, u · u / 2 . The Newton-Stokes constitutive relation is assumed 

o hold, such that the viscous stress tensor is 

= μ
[ 
(∇u + ∇u 

T ) − 2 

3 

(∇ · u ) I 
] 
, (6) 

ith I the identity tensor and μ the dynamic viscosity. The effect 

f the surface tension on the interfaces separating the incompress- 

ble and compressible phases is modeled by a continuum surface 

orce, (CSF) [45] : 

 σ = σκδ(x − x s ) n , (7) 

here σ is the surface tension coefficient, κ the curvature of the 

nterface and n the unit normal on the interface pointing towards 

he compressible phase. A delta function, δ(x − x s ) , is used in 

q. (7) to impose the force density, f σ , only at the interface po-

ition x s . We consider here an ideal-gas with equation of state (5) .

he parameter R is the specific gas constant, R = R/ M , where M
s the molar mass of the gas and R = 8 . 314 J / (mol · K) the uni-

ersal gas constant. Extending the model to deal with non-ideal 

quations of state, such as the Van der Waals equation or cubic 

quations of state [49] , is straightforward, as these terms will enter 

he thermodynamic derivatives. Nonetheless, for the sake of sim- 

licity, the discussion is limited to the use of Eq. (5) . Moreover, 

e assume a calorically-perfect gas, e.g. the constant-pressure and 

onstant-volume heat capacities, c p and c v , do not depend on the 

hermodynamic pressure and temperature. Eqs. (2)–(5) can be re- 

ast in non-dimensional form by setting as independent reference 

cales the density, ˜ ρ, the pressure, ˜ p , the length, ˜ L , the velocity, ˜ U , 

ogether with the following derived quantities: 

˜ 
 = 

˜ p / (R ̃  ρ) , ˜ t = 

˜ L / ̃  U , ˜ e = 

˜ p / ̃  ρ, ˜ f = ˜ ρ ˜ U 

2 / ̃ L . 

he quantities above, ˜ T , ˜ t , ˜ e and 

˜ f are the reference temperature, 

ime, specific energy and force per unit volume. In addition, the 

eference values for the thermal diffusion coefficient, heat capaci- 

ies, dynamic viscosity, surface tension coefficient and gravitational 
3 
cceleration are denoted as ˜ k , ˜ c p , ˜ c v , ˜ μ, ˜ σ and ˜ g . Under the hy- 

otheses specified above, the low-Mach number limit of Eqs. (2)–

5) can be derived by taking a single-scale asymptotic expansion 

n the limit of small Mach numbers [44] of their non-dimensional 

orm. The related procedure is reported in details in Appendix A , 

hile here we report the final form of the governing equations for 

he compressible phase: 

∂u 

∂t 
+ u · ∇u = 

1 

ρ

[
1 

Re 
∇ · τ − ∇p 2 + 

f σ

W e 

]
+ 

g 

F r 2 
, (8) 

∂T 

∂t 
+ u · ∇T = 

T 

p 0 

[
1 

ReP r 
∇ · (k ∇T ) + 

γ − 1 

γ

dp 0 
dt 

]
, (9) 

 · u = 

1 

p 0 

[
1 

ReP r 
∇ · (k ∇T ) + 

1 

γ

dp 0 
dt 

]
, (10) 

dp 0 
dt 

= 

γ

V 

[ 
1 

ReP r 

∫ 
S 

k ∇T · n dS − p 0 

∫ 
S 

u · n dS 

] 
, (11) 

p 0 = 	 ρT , (12) 

here T is the temperature, Re = ˜ ρ ˜ U ̃

 L / ̃  μ the Reynolds number, 

 r = ˜ c p ̃  μ/ ̃ k the Prandtl number, W e = ˜ ρ ˜ U 

2 ˜ L / ̃  σ the Weber number

nd F r = 

˜ U / 
√ 

g ̃ L the Froude number. The parameter γ = ˜ c p / ̃ c v is 

he specific heat ratio of the gas phase, whereas the constant 	

s, by definition, 	 = ( ̃  ρR ̃

 T ) / ̃  p . In Eq. (11) , the volume V denotes

he overall volume of the spatial region occupied by the compress- 

ble phase, whereas the surface integrals are computed along the 

oundaries of the latter. Two different pressure terms appear in 

qs. (8)–(12) : the zeroth-order pressure, p 0 , and the second-order 

ressure, p 2 . The former, which can be referred to as thermody- 

amic pressure, is determined by the thermodynamic state of the 

ow, it is uniform across the spatial field and it is a function of 

he time only. The latter, conversely, enters the computation sim- 

larly to the pressure in incompressible flows (e.g. by imposing a 

rescribed value of the velocity divergence) and it is obtained as 

he solution of a Poisson equation, discussed in the following. It 

lso worth remarking that, in the limit of small Mach number, the 

ontribution of the viscous dissipation to the overall energy bal- 

nce of the gaseous flow has been neglected. As addressed also 

n Appendix A , this holds true under the hypothesis of sufficiently 

igh Reynolds number. 

.2. Final form of the governing equations 

Eqs. (8)–(12) hold only for the compressible gas phase; these 

re coupled with those for the incompressible fluid by employing 

he phase indicator function defined in Eq. (1) . Hence, a monolithic 

ystem of equations can be obtained, describing at the same time 

he dynamics of both the compressible and incompressible phases. 

or convenience, the system is written in dimensional form, 

∂u 

∂t 
+ u · ∇u = 

1 

ρ
( ∇ · τ − ∇p 2 + f σ ) + g , (13) 

∂T 

∂t 
+ u · ∇T = 

1 

ρc p 

[
∇ · (k ∇T ) + 

dp 0 
dt 

H 

]
, (14) 

 · u = 

1 

p 0 

[
γg − 1 

γg 
∇ · (k ∇T ) − 1 

γg 

dp 0 
dt 

]
H, (15) 

dp 0 
dt 

= 

γg 

V g 

(
γg − 1 

γg 

∫ 
S 

k ∇T · n dS − p 0 

∫ 
S 

u · n dS 

)
, (16) 



F.D. Barba, N. Scapin, A.D. Demou et al. Computers and Fluids 216 (2021) 104789 

E

e  

i

d

w

o

a

u

ρ

c

k

μ

w

t

f

p  

t

i

t

f  

e

g

s

n

n

l

g

w

d

fi

i

d  

t

3

r




a

c

t

a

3

c

p

d

f

t

f

b

w

t

V

�

C

f

�  

c

d

(

a

t

n

i

d

i

t

P  

n

d

t

s

t

c

t

�

w

s

d

i

e

�

d

3

m

i

a

T

I

n  

r

h

d

R

w

(  
p 0 = ρR T . (17) 

qs. (13)–(17) are consistent with those reported in Daru 

t al. [50] . The coefficients c p , k and μ in Eqs. (13)–(17) should be

ntended as the heat capacity at constant pressure, thermal con- 

uctivity and dynamic viscosity of the bi-phase flow, respectively, 

hereas the parameter γg , which is meaningful for the gas phase 

nly, is taken as a constant, γg = c p,g /c v ,g . These quantities, k, Cp

nd μ, are computed, together with the density of the flow, ρ, by 

sing the phase indicator function, H: 

= ρg H + ρl (1 − H) , (18) 

 p = c p,g H + c p,l (1 − H) , (19) 

 = k g H + k l (1 − H) , (20) 

= μg H + μl (1 − H) , (21) 

here the subscripts “g” and “l” refer to the physical parameter of 

he gas and liquid phases, respectively. While Eqs. (13)–(15) hold 

or both the phases, Eqs. (16) and (17) are meaningful for the com- 

ressible one, only. In particular, Eq. (15) reduces to ∇ · u = 0 in

he liquid regions, where H = 0 . 

As shown in Eq. (A.11) , the zeroth-order pressure, p 0 , is uniform 

nside each region occupied by the compressible phase. In each of 

hese regions, the value of p 0 is determined by the constitutive law 

or ideal gases (17) , while its temporal rate of change is set by the

nergy balance provided by Eq. (16) . In particular, the surface inte- 

rals appearing in Eq. (16) are computed over the interface, S, that 

eparates the compressible and incompressible regions and, where 

ecessary, over the boundaries of the computational domain. For 

umerical integration purposes, it is more convenient to reformu- 

ate Eq. (16) in terms of volume integrals, by employing the diver- 

ence theorem: 

1 

p 0 

dp 0 
dt 

= 

γg 

V g 

(
1 

p 0 

γg − 1 

γg 

∫ 
�

H∇ · (k ∇T ) dV −
∫ 
�

H∇ · u dV 

)
, 

(22) 

here the integrals are computed over the entire computational 

omain, � = �g 
⋃ 

�l , and V g is the volume of the spatial region 

lled by the gas phase, �g . Eq. (22) can be derived by employ- 

ng the change of variable, V g = HV, with the related differential, 

 V g = Hd V, being d H = 0 by definition of the phase indicator func-

ion [29] . 

. Numerical methodology 

The numerical solution of Eqs. (13) –(17) is addressed on a fixed 

egular Cartesian grid (e.g. using a uniform and equal spacing, 

x = 
y = 
z), with a marker-and-cell arrangement of velocity 

nd pressure points, whereas all scalar fields are defined at the 

ell centers. Hereafter, we present the numerical discretization of 

he governing equations following the same order in which they 

re solved. 

.1. Interface representation and advection 

The first step of each iteration of the time-marching algorithm 

onsists in the reconstruction of the interface between the two 

hases and its subsequent advection. As mentioned in the intro- 

uctory section, we address both the aspects in a fully Eulerian 

ramework using the VOF method to distinguish between each of 

he flow phases [1] . By a numerical point of view the indicator 
4 
unction H, defined in Eq. (1) , is updated on the computational grid 

y the following advection equation: 

∂�

∂t 
+ ∇ · (u H) = �∇ · u , (23) 

here the volume fraction, �, is defined as the average value of 

he color function over a discrete computational cell of volume 

 c = 
x 
y 
z: 

= 

∫ 
V c 

H(x , t) dV c . (24) 

oherently with the given definition of H in Eq. (1) , the volume 

raction satisfies � = 1 in cells occupied by the gas phase only, 

= 0 in that filled only by the liquid and 0 < � < 1 in the cells

ontaining the liquid-gas interface. 

In the present work, we employ as VOF method the multi- 

imensional tangent of hyperbola for interface capturing method 

MTHINC), originally developed by Ii et al. [34] and more recently 

pplied to complex flows cases both in laminar [12,51,52] and in 

urbulent conditions [48] . The description of this VOF appraoch is 

ot reported here as the present low-Mach algorithm is not lim- 

ted to a specific interface capturing/tracking method; additional 

etails on the MTHINC are provided in literature [12,34] . Once the 

nterface is reconstructed, the advection step is performed using 

he standard directional splitting approach, originally developed by 

uckett et al. [53] and Aulisa et al. [32] . Note that since there is

o phase change, the one-fluid velocity is continuous and well- 

efined across the interface, therefore it can be employed as in- 

erface velocity in (23) . Nevertheless, due to the thermal expan- 

ion/contraction in the gas phase, u is not divergence free and, 

hus, the additional correction proposed in [54] is employed. This 

onsists in adding, after the three directional splittings, a correc- 

ion step proportional to the discrete velocity divergence: 

n +1 
i, j,k 

= �∗∗∗
i, j,k − 
t n +1 F n i, j,k + 
t n +1 �n +1 

i, j,k ( ∇ · u ) 
n 
i, j,k , (25) 

here �∗∗∗
i, j,k 

is the volume fraction resulting from the directional 

plitting procedure, F n 
i, j,k 

represents the correction used in the stan- 

ard directional-splitting method for a solenoidal advection veloc- 

ty [34] , and the last term represents a volume correction step that 

nsures that the non-zero velocity divergence is used to update 
n +1 
i, j,k 

. 

Finally, the thermodynamic properties ( ρ, μ, k and c p ) are up- 

ated using the relations (18) –(21) . 

.2. Temperature equation and thermodynamic pressure 

The next step consists of the computation of the updated ther- 

odynamic pressure p n +1 
0 

and temperature T n +1 . This last quantity 

s advanced using a second-order Adams-Bashforth time-marching 

lgorithm: 

 

n +1 = T n + 
t n +1 

[(
1 + 

1 

2 


t n +1 


t n 

)
RT n −

(
1 

2 


t n +1 


t n 

)
RT n −1 

]
. 

(26) 

n the above, 
t n +1 and 
t n represent the time step at time levels 

 + 1 and n . The time step is chosen to fulfil the temporal stability

equirements as explained in Section 3.4 . The term RT is the right- 

and side of the temperature Eq. (14) , provided below in a semi- 

iscrete notation: 

T n = −u 

n · ∇T n + 

1 

ρn +1 c n +1 
p 

[
∇ · (k n +1 ∇T n ) + 

(
dp 0 
dt 

)
n �n +1 

]
, 

(27) 

here the rate of change of the thermodynamic pressure 

d p /d t) n is computed from Eq. (22) using T n . All the spatial terms
0 
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n eq. (27) are discretized by second order central schemes, except 

or the temperature convection term. The discretization of the lat- 

er is based on the 5th-order WENO5 scheme as in reference [55] . 

Next, the thermodynamic pressure is updated. Here, different 

trategies are available. One possibility is to discretize (22) in time 

sing for example the Adams-Bashforth method. Another approach, 

roposed in [50] , is to integrate (22) in time to compute the new

p 0 , 

p n +1 
0 = p n 0 exp 

( ∫ t n +1 

t n 

1 

p 0 

dp 0 
dt 

∣∣∣∣n +1 

dt 

) 

(28) 

evertheless, both approaches are not built to satisfy as a key re- 

uirement the mass conservation of the compressible phase at a 

iscrete level. When the gas density changes, the mass conser- 

ation cannot be fulfilled by the simple color function advection, 

hich is only designed to ensure volume conservation. To over- 

ome this issue, we adapt to our multiphase configuration the 

pproach proposed by Motheau et al. [56] for combustion prob- 

ems and more recently adopted by Demou et al. [57] for non- 

oussinesq gravity currents. In this case, the calculation of p n +1 
0 

is 

erformed by integrating the gas density Eq. (17) over the entire 

as volume V g , 

p n +1 
0 = 

M g,t=0 ∫ 
V g 

n +1 

1 

RT n +1 
dV 

n +1 
g 

. (29) 

f the system is closed or periodic and no phase change occurs 

etween the two phases, the gas mass is a constant, e.g., M 

n +1 
g = 

 g,t=0 , and can be pre-computed at the beginning of the simula- 

ion. At each time-step, p 0 is computed from Eq. (29) to satisfy ex- 

ctly mass conservation of the compressible phase, and it therefore 

aries according to the global thermal expansion or contraction of 

he compressible phase. Note that the gas volume V n +1 
g over which 

q. (29) is integrated can be approximated as 

 

n +1 
g = 

N x ∑ 

i =1 

N y ∑ 

j=1 

N z ∑ 

k =1 

�n +1 
i, j,k 


x 
y 
z, (30) 

here N x , N y and N z are the number of grid points along the x, y

nd z directions. 

.3. Flow solver 

In order to impose that the velocity field u 

n +1 satisfies the di- 

ergence constraint given by Eq. (35) , a pressure-correction scheme 

ased on the Adams-Bashforth method is employed and summa- 

ized below in semi-discrete notation: 

 

∗ = u 

n + 
t n +1 

[(
1 + 

1 

2 


t n +1 


t n 

)
RU 

n −
(

1 

2 


t n +1 


t n 

)
RU 

n −1 

]
, 

(31) 

 ·
(

1 

ρn +1 
∇p n +1 

2 

)
= 

1 


t n +1 

[∇ · u 

∗ − ∇ · u 

n +1 
]
, (32) 

 

n +1 = u 

∗ − 
t n +1 

ρn +1 
∇p n +1 

2 , (33) 

here u 

∗ is the predicted velocity. The right-hand side RU 

n is com- 

uted as: 

U 

n = −u 

n · ∇u 

n + 

1 

ρn +1 

[∇ · τ(μn +1 , u 

n ) + f n +1 
σ + ρn +1 g 

]
, (34) 

here both the convection and diffusion terms are discretized by 

entral schemes. More specifically, the former is discretized in di- 

ergence form as ∇ · (uu ) − u ∇ · u whereas the latter is treated in
5 
 fully conservative form. The surface normal vector n and the cur- 

ature κ are obtained directly from the corresponding definitions, 

.g., n = ∇ �/ |∇ �| and κ = ∇ · n , where the color function gradi-

nts are estimated directly with Youngs’ method [58,59] . Finally, 

he divergence constraint in Eq. (32) is computed directly as 

 · u 

n +1 = 

[
1 

p n +1 
0 

γg − 1 

γg 
∇ · (k n +1 ∇T n +1 ) − 1 

γg 

(
1 

p 0 

dp 0 
dt 

)
n +1 

]
�n +1 . 

(35) 

ote that the evaluation of the term (d p 0 /d t) n +1 /p n +1 
0 

in (35) is

erformed directly with Eq. (22) using T n +1 , k n +1 and �n +1 . 

.3.1. Pressure equation 

A key feature of any two-fluid solver is the ability to impose 

ccurately and efficiently the divergence constraint on the veloc- 

ty field, this task being directly related to the numerical proce- 

ure used to solve the pressure equation, Eq. (32) . A possible ap- 

roach is based on the use of iterative multigrid solvers. Despite 

he success and the widespread use of these solvers, the solution 

s not exact, but satisfied up to a controlled tolerance, usually of 

he order ε = 10 −7 - 10 −8 . Moreover, since the coefficients of the 

oisson equation vary in space, the system matrix must be recom- 

uted at each time-step. Alternatively, when the pressure boundary 

onditions are homogeneous [60] , a possible solution is to trans- 

orm Eq. (32) into a constant coefficient equation and apply the 

ethod of the eigenexpansion [61,62] to solve the pressure equa- 

ion exactly with spectral accuracy. The resulting pressure equation 

s still to be solved in an iterative manner starting with an initial 

uess. Different methods based on the latter approach are available 

n literature, the main difference being how the variable coefficient 

ressure equation is recast into a constant coefficient problem. In 

he following, we review two of these methods, that have been 

ecently proposed and designed to efficiently solve in an iterative 

anner the Poisson equation with the method of eigenexpansion. 

t should be noted that, these methods have been successfully im- 

lemented in numerical codes that share with our one a similar 

arallelization strategy based on the 2DECOMP&FFT [63] library. 

inally, we will introduce a new methodology that proves to be 

ore efficient and suitable for two-phase flows with capillary ef- 

ects and sharp gradients between the two phases. 

• Method I: this method has been proposed by Motheau and 

Abraham [56] . It is designed for low-Mach number reactive 

flows, aiming at decreasing the number of iterations of the 

previously developed FFT-based solvers for combustion appli- 

cations. The methodology consists in a semi-implicit approach 

that first requires an iterative procedure to solve the following 

constant coefficient Poisson equation: 

∇ 

2 p s +1 
2 = ∇ ·

[(
1 − ˜ ρn +1 

0 

ρn +1 

)
∇p s 2 

]
+ 

˜ ρn +1 
0 


t n +1 

(∇ · u 

∗ − ∇ · u 

n +1 
)
, 

(36) 

where, p s +1 
2 

and p s 
2 

are the hydrodynamic pressure at two sub- 

sequent iterations and ˜ ρn +1 
0 

is the minimum value of ρn +1 over 

the computational domain. After the iterative loop to compute 

p n +1 
2 

, a modified correction step is applied: 

u 

n +1 = u 

∗ − 
t n +1 

[
1 

˜ ρn +1 
0 

∇p n +1 
2 + 

(
1 

ρn +1 
− 1 

˜ ρn +1 
0 

)
∇p n +1 ,q 

2 

]
, 

(37) 

where p 
n +1 ,q 
2 

is the second-to-last hydrodynamic pressure of 

the iterative procedure at the new time-level. The main advan- 

tage of this method is the ability to effectively impose the ve- 

locity divergence up to machine accuracy, by setting a resid- 

ual threshold to solve Eq. (36) to ε t = 10 −6 − 10 −8 , being the
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residual ε = || p s +1 
2 

− p s 
2 
|| ). Nevertheless, we find that using this

approach in the case of a rising bubble (see Section 4.2 ), the 

number of iterations required to achieve convergence is of the 

order of one hundred. 
• Method II: this approach, proposed by Bartholomew and 

Laizet [64] and designed for non-Boussinesq gravity currents, is 

based on the rearrangement of Eq. (32) as a constant coefficient 

Poisson equation: 

∇ 

2 p s +1 
2 = ∇ 

2 p s 2 + ˜ ρ
[ 

1 


t n +1 

(
∇ · u 

∗ − ∇ · u 

n +1 − ∇ · 1 

ρn +1 
∇p s 2 

)] 
, 

(38) 

where p s +1 
2 

and p s 
2 

are the hydrodynamic pressure at two sub- 

sequent iterations. Eq. (38) is solved in an iterative manner un- 

til convergence. After that, the correction step (33) is performed 

to obtain the new velocity field u 

n +1 . The modified density ˜ ρ is 

taken as the harmonic mean between ρl and ρg , as suggested 

by the authors to improve convergence. To satisfy the diver- 

gence constraint up to machine accuracy, the threshold resid- 

ual should be set to ε t = 10 −12 . In Section (4.2) we will show

that this approach requires a lower number of iterations than 

the previous one, but still higher than the one we are going to 

present next. 
• Method III: the basic idea behind this third approach, proposed 

here, is to rearrange the Poisson equation into a constant- 

coefficient form by employing the correction step (33) : 

1 

ρn +1 
∇ 

2 p n +1 
2 + ∇ 

(
1 

ρn +1 

)
· ∇p n +1 

2 = 

1 


t n +1 

(∇ · u 

∗ − ∇ · u 

n +1 
)
, 

∇ 

2 p n +1 
2 − 1 

ρn +1 
∇ ρn +1 · ∇ p n +1 

2 = 

ρn +1 


t n +1 

(∇ · u 

∗ − ∇ · u 

n +1 
)
. (39) 

Using the vector calculus identity ρ∇ · u = ∇ · (ρu ) − u · ∇ρ, 

we finally rewrite Eq. (39) as: 

∇ 

2 p n +1 
2 = 

1 


t n +1 

[∇ · (ρn +1 u 

∗) − ρn +1 ∇ · u 

n +1 − u 

n +1 · ∇ρn +1 
]

+ 

1 


t n +1 

[(
u 

n +1 − u 

∗ + 


t n +1 

ρn +1 
∇p n +1 

2 

)
· ∇ρn +1 

]
︸ ︷︷ ︸ 

= 0 due to Eq. (33) 

. (40) 

As p n +1 
2 

and u 

n +1 are both unknown, we solve Eq. (40) to- 

gether with Eq. (33) by an iterative loop, as reported in 

the pseudocode Algorithm 1 . Two interesting features emerge 

when using this method. First, the constant-coefficient Poisson 

Eq. (40) is an equivalent and exact formulation of its variable 

counterpart (32) , derived using the correction step (33) . This 

represents a major difference with respect to the previous two 

methods, Eq. (36) and (38) , which are only a consistent but not 
lgorithm 1 Solution of the pressure equation with Method III. 

1: s = 0 , 

2: u 

s = u 

∗, 
3: ε = aε t with a > 1 . 

4: while ε > ε t do 

5: s = s + 1 , 

6: ∇ 

2 p s +1 
2 

= 

1 

t n +1 

[∇ ·
(
ρn +1 u 

∗) − ρn +1 ∇ · u 

n +1 − u 

s · ∇ρn +1 
]
, 

7: u 

s +1 = u 

∗ − 
t n +1 

ρn +1 ∇p s +1 
2 

, 

8: ε = 

N x ∑ 

i =1 

N y ∑ 

j=1 

N z ∑ 

k =1 

||∇ · u 

s +1 
i, j,k 

− ∇ · u 

n +1 
i, j,k 

|| . 
9: end while 

0: p n +1 
2 

= p s +1 
2 

, 

11: u 

n +1 = u 

s +1 . 

t

3

o




w

s

t

s




6 
exact recast of Eq. (32) . Second, this method allows us to de- 

fine and control the residual of the iterative procedure on the 

basis of the velocity divergence, which represents the constraint 

to be imposed on the flow field. These two advantages come at 

the cost of performing a correction step for each iteration of the 

loop. Nevertheless, the additional computational cost is more 

than compensated by the lower numbers of iterations required 

to achieve convergence as the solution of the Poisson equation 

is often the most expensive part in standard two-fluid solvers. 

As we will show in the result section, this approach requires a 

significantly lower number of iterations. 

The proposed methodology is outlined in the pseudocode 

lgorithm 1 where the iterations are performed until ε ≤ ε t , is 

atisfied. The residual ε is computed with a summation over the 

hole computational domain whereas the threshold value ε t is 

hosen considering the trade-off between the number of iterations 

equired to achieve convergence and the minimization of the resid- 

al error. Unless otherwise stated, in the present work, ε t equal to 

0 −14 has been set in order to impose the divergence constraint 

n the final velocity field, u 

n +1 , with machine precision. It should 

e also noted that the first two terms of Eq. (40) do not vary over

he solution cycle and can be pre-computed just before the itera- 

ive procedure to reduce the execution time, whereas the last term, 

 

s · ∇ρn +1 needs to be updated at every iteration of the pressure- 

orrection loop. 

Note that an additional possibility to efficiently solve (32) in 

ne single iteration would be to employ the approach described 

n Method I and instead of solving iteratively Eq. (36) and (37) , 

et p s +1 
2 

= p n 
2 

and compute p s 
2 

with a linear extrapolation, i.e, p s 
2 

=
 p n 

2 
− p n −1 

2 
, as already employed for incompressible two-phase 

imulations [65] . As shown in the result Section 4.2 , we obtain 

dentical results when the ratio between the initial liquid and gas 

emperature is moderate, while we observe deviations from the ex- 

ct solution for higher temperature ratios. As also observed in [56] , 

e attribute this error to the approximation of p s 
2 

with a linear 

xtrapolation, which becomes inaccurate as the temperature gradi- 

nts between the phases increase. 

Before proceeding to the discussion of the validation cases, it 

s worth mentioning that the proposed mathematical and numer- 

cal framework can be naturally extended to any interface captur- 

ng and tracking method consistent with the sharp-interface defi- 

ition of the phase indicator function as in Eq. (1) , e.g. Volume-of- 

luid, Level-set and Front-Tracking methods. Furthermore, as also 

n different implementations of the diffuse interface approach (e.g. 

hase field models based on the Cahn-Hilliard and Cahn-Allen 

quations) the numerical procedure is typically based on the so- 

ution of a variable coefficient Poisson equation, we believe that 

he methodology proposed here can be helpful also to generalize 

he phase field theory in a low-Mach number framework. 

.4. Time step restriction 

The time step 
t n +1 is estimated from the stability constraints 

f the overall system: 

t n +1 = C 
t min (
t c , 
t σ , 
t μ, 
t e ) 
n +1 , (41) 

here 
t c , 
t σ , 
t μ and 
t e are the maximum allowable time 

teps due to convection, surface tension, momentum diffusion and 

hermal energy diffusion, respectively. These can be determined as 

uggested in reference [66] : 


t c = 

( | u x, max | 

x 

+ 

| u y, max | 

y 

+ 

| u z, max | 

z 

)
−1 , 

t μ = 

[
max 

(
μg 

˜ ρm 

g 

, 
μl 

ρl 

)(
2 


x 2 
+ 

2 


y 2 
+ 

2 


z 2 

)]
−1 , 
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t σ = 

√ 

( ̃  ρm 

g + ρl ) min (
x, 
y, 
z) 3 

4 πσ
, 


t e = 

[
max 

(
k g 

˜ ρm 

g 

, 
k l 

ρl c p,l 

)(
2 


x 2 
+ 

2 


y 2 
+ 

2 


z 2 

)]
−1 , (42) 

here | u i, max | is an estimate of the maximum value of the i th

omponent of the flow velocity and ˜ ρm 

g is the minimum gas den- 

ity computed over the computational domain to account for the 

ompressible effects. For the cases presented here, C 
t = 0 . 25 was 

ound sufficient for a stable and accurate time integration and, un- 

ess otherwise stated, this value has been employed for the valida- 

ion cases. 

. Validation and testing 

In order to validate and test the proposed numerical approach, 

ve different flow configurations are considered, denoted C1a, C1b, 

2, C3, C4 and C5 . The first two simulations, C1a and C1b , repro-

uce the two-dimensional flow originating in a fluid system made 

f alternating gaseous and liquid bands at different initial densities 

nd temperatures confined in a periodic, free-slip channel. We be- 

ieve that these test cases are particularly significant to highlight 

he capabilities of the proposed numerical methodology. The third 

imulation, C2 , reproduces a two-dimensional gas bubble rising in 

n incompressible liquid medium and is used as a quantitative val- 

dation against a reference case from archival literature. We select 

his test case in order to perform the comparison among the dif- 

erent methods analyzed in Section 3.3 . The previous setup is also 

sed to study the flow in the presence of three rising bubbles, 

ase C3 . The fourth test case, C4 , reproduces a time-evolving, plane 

ixing layer originating between two streams at different tem- 

eratures and opposite velocities. One of the streams is assumed 

o be compressible, the other being incompressible. The effect of 

he temperature gradients on the temporal evolution of the mixing 

ayer is fully described by means of the low-Mach number asymp- 

otic approach, taking into consideration thermal diffusion as well 

s density gradients in the flow. The final test case, C5 , considers a 

hree-dimensional turbulent bubble-laden flow in a vertical chan- 

el, where the flow is heated and cooled by the channel walls. 

wo simulations are carried out: one where the gas phase is in- 

ompressible and one where it is compressible. Differences in the 

ubble distribution inside the domain are documented below. 

.1. Expansion of gas bands enclosed by an incompressible medium 

The test case C1 reproduces the two-dimensional, isochoric 

 C1a ) and isobaric ( C1b ) transformation of a compressible gas band

nclosed within an incompressible liquid medium. All the quan- 

ities are provided in the non-dimensional frame, the reference 

alues and the simulation parameter being reported in Table 1 . 

he domain is rectangular and extends, in non-dimensional units, 

or L x / ̃ L = 4 and L y / ̃ L = 0 . 5 , ˜ L being the reference length scale.
Table 1 

Physical dimensionless parameters of the fluids for cases C1a

Weber number, We, the Froude number, F r, the Prandtl num

thermal conductivity ratio, k l / ̃ k g , specific heat capacity ratio at 

liquid phase and the subscript “g, r” to the reference value in th

group 	P is set equal to 1 for all the case. 

Re We Fr Pr 

Section 4.1 1 ∞ ∞ 1 

Section 4.2 35 1 1 0.7 

Section 4.3 125 0.125 1 0.7 

Section 4.4 200 ∞ ∞ 8.92 

Section 4.5 4000 889 4 1.49 

7 
he domain is discretized using N x × N y = 128 × 16 nodes. Free- 

lip boundary conditions are applied to the lower and upper edges 

f the computational domain while an adiabatic, zero-gradient 

oundary condition is prescribed to the temperature equation. A 

eriodic boundary condition is applied along the x direction. The 

sochoric case, C1a , considers a rectangular gas band of width 

/ ̃ L = 1 that splits the domain into two parts filled by an incom- 

ressible liquid. The band is initially centred around the axial po- 

ition x c / ̃ L = 3 and extends over the whole domain in the y direc-

ion. The geometrical configuration of the problem is provided in 

ig. 1 (a). The ratio of the gas to the liquid temperature is initially 

xed to (T g /T l ) i = 5 / 6 . The initial temperature and density fields

re uniform over each band, the only discontinuities being located 

n the liquid-gas interface. Fig. 1 provides also the temporal evo- 

ution of the thermodynamic pressure for the gas phase together 

ith a plot of the density, temperature and volume fraction as a 

unction of the axial position, x/ ̃ L , at four different time instants. 

s a result of the initial temperature gradient, a heat flux devel- 

ps from the liquid region towards the gas band. The temperature 

f the latter increases as shown in Fig. 1 (b), while its density de- 

reases as can be observed in Fig. 1 (c). It should be noted that, the

rescribed boundary conditions do not allow any volume change 

f the gas region. Hence, the transformation is isochoric, the vol- 

me fraction field remains unchanged and the gas band does not 

hange the position of its centroid neither its boundaries during 

he transient as can be seen in Fig. 1 (d). In these conditions, the 

nergy transfer to the gas band enforces the thermodynamic pres- 

ure to progressively increase until a uniform temperature field is 

stablished over the entire domain. At this point, the thermody- 

amic pressure settles to a constant value. 

In the second test case, C1b , we address the simulation of the 

sobaric contraction and expansion of two separated gaseous bands 

nclosed within an incompressible liquid medium. The domain 

ize, discretization and boundary conditions are unchanged and 

imilarly for the fluid parameters which are provided in Table 1 . 

he initial configuration of the fluid system is provided in Fig. 2 (a). 

nitially, the two rectangular gas bands extend over a length b/ ̃ L = 

 along the x direction, separated by an incompressible liquid. The 

eft-side band centroid is located at the axial position x c1 / ̃ L = 1 

hile the right-side band is centered around x c2 / ̃ L = 3 . The ratio 

etween the initial gas and liquid temperatures is set to (T g, 1 /T l ) i =
 / 3 for the left-side band and to (T g, 2 /T l ) i = 2 / 3 for the right-side

egion. The initial temperature and density fields are uniform over 

ach of the five different regions composing the fluid system. The 

nitial thermodynamic pressure is the same in the two gaseous 

egions. Fig. 2 (c) and (d) provide the temperature and the den- 

ity fields as a function of x/ ̃ L at four different time instants. The 

older, right-side, band absorbs energy from the surrounding liq- 

id medium while the hotter band on the left-side releases energy 

o the surrounding fluid. Hence, we observe the expansion of the 

older gas band, simultaneously with the equivalent compression 

f the hotter gas, as shown in Fig. 2 (e) providing the volume frac- 

ion as a function of x/ ̃ L at four different time instants. The vol- 
, C1b, C2, C3, C4 and C5 : the Reynolds number, Re, the 

ber Pr, the density ratio ρl / ̃ ρg,r , viscosity ratio, μl / ̃ μg , 

constant pressure, c p / ̃ c p,g . The subscript, “l”, refers to the 

e gas phase. Unless otherwise stated, the dimensionless 

ρl / ̃ ρg , r μl / ̃ μg , r c p , l / ̃ c p , r k l / ̃ k g , r 

varied 20 4.186 20 

varied 10 4.186 20 

10 10 4.186 20 

5 20 4.186 20 

10 1 4 1 
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Fig. 1. a) Schematic of the computational domain and initial conditions for the test case C1a . b) Non-dimensional thermodynamic pressure, p 0 / ̃ p , in the gas regions as a 

function of the non-dimensional time, t/ ̃ t . c) Non-dimensional temperature, T /T l,i , computed on the middle-line of the domain as a function of non-dimensional coordinate 

x/ ̃ L . d) Non-dimensional density, ρ/ρl,i , computed on the middle-line as a function of x/ ̃ L . e) Volume fraction, �, computed on the middle-line as a function of x/ ̃ L . The 

temperature, density and volume fraction curves are provided for four different time instants, t / ̃ t = 0 . 001 , t / ̃ t = 0 . 01 , t / ̃ t = 0 . 1 and t / ̃ t = 1 , ̃  t being the reference time scale. 
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me of the liquid region included between the two gaseous bands 

annot change; however, due to the periodic boundary condition 

long the x direction, the liquid fluid can move from the right to 

eft side of the domain. The two bands do not change the position 

f their center of mass during the expansion and contraction. Since 

n this case the volume of each band can vary freely, the transfor- 

ation is isobaric as can be seen in Fig. 2 (b). Even if we cannot

rovide an analytical solution for the cases C1a and C1b , we be- 

ieve that their numerical outcomes clearly show the capability of 

he method to account for heat transfer, density and temperature 

radients as well as for compressibility effects in both isobaric and 

sochoric conditions in the low-Mach number regime. 

The outcome of a spatial convergence study for test case C1b is 

rovided in Fig. 3 . The figure displays the volume fraction, �, as 

 function of x/ ̃ L at time t/ ̃ t = 15 , computed using four different

esolutions. These grid spacing are obtained scaling the base com- 

utational grid ( 128 × 16 nodes) by the factors 0.5, 1.0, 2.0 and 3.0, 

orresponding to 64 × 8 , 128 × 16 , 256 × 32 and 384 × 48 nodes

long the x and y directions. Only minor differences can be ob- 

erved between the results obtained with the highest and lowest 

rid resolutions. Hence, the base computational grid, 128 × 16 , is 
uitable for both test cases C1a and C1b . W

8 
.2. Rising bubble 

The test case C2 addresses the simulation of a two-dimensional 

ising bubble flow. A circular gaseous bubble of initial density ρg 

nd temperature T g is immersed in a liquid fluid with a higher, 

onstant density, ρl , and temperature, T l . Both the temperature and 

he density fields are initially uniform within the bubble and the 

iquid phase while a discontinuity exists across the interface. The 

nitial configuration is displayed in Fig. 4 . The rectangular com- 

utational domain extends, in non-dimensional units, for L x / ̃ L ×
 y / ̃ L = 1 × 2 . The domain is discretized using N x × N y = 128 × 256

odes. The initial bubble diameter is d i / ̃ L = 0 . 5 while the bubble

enter is initially located at X c,i / ̃ L = (0 . 5 , 0 . 5) . A no-slip and no-

enetration boundary condition is prescribed to the momentum 

quation along the lower and the upper edges of the domain while 

 zero-gradient boundary condition is applied to the temperature 

quation. A periodic boundary condition is prescribed along the 

 direction. The physical parameters of the fluids are provided in 

able 1 . We report the results of five different test cases with dif- 

erent initial temperature ratios, (T l /T g ) i = 1 , 1.2, 1.5, 2 and 3, and

orresponding density ratios, (ρl /ρg ) i = 10 , 8.33, 6.67, 5 and 3.33. 

e use as output quantities the center of mass of the bubble and 
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Fig. 2. a) Schematic of the computational domain and initial conditions for the test case C1b . b) Thermodynamic pressure, p 0 / ̃ p , in the gas regions as a function of the 

non-dimensional time, t/ ̃ t . c) Temperature, T /T l,i , as a function of x/ ̃ L . d) Density, ρ/ρl,i , as a function of x/ ̃ L . e) Volume fraction, �, as a function of x/ ̃ L . The temperature, 

density and volume fraction are provided for four different time instants, t/ ̃ t = 5 , t/ ̃ t = 10 , t/ ̃ t = 15 and t/ ̃ t = 20 . 

Fig. 3. Volume fraction, �, as a function of x/ ̃ L , evaluated at time t/ ̃ t = 15 , com- 

puted using four different grid resolutions: N/ 2 , N, 2 N and 3 N, where N refers 

generically to the number of grid nodes per direction ( x and y ). 

Fig. 4. Schematic of the computational domain and initial configuration used for 

the rising bubble simulation. 

9 
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Fig. 5. Rising bubble: vertical position of the bubble centroid, y c (t) / ̃ L , and vertical 

component of the bubble rising velocity, v c (t) / ̃ U , versus time, t/ ̃ t for a density ratio 

in the incompressible reference case equal to 10. 
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Fig. 6. Rising bubble: vertical position of the bubble centroid, y c (t) / ̃ L , and vertical 

component of the bubble rising velocity, v c (t) / ̃ U , versus time, t/ ̃ t for a density ratio 

in the incompressible reference case equal to 50. 

Fig. 7. Comparison of the proposed iterative method (Method 3) and the time- 

splitting approach to solve the Poisson equation. The density ratio of the incom- 

pressible reference case is 10 for 3 temperature ratios, (T l /T g ) i = 1 . 0 − 1 . 5 − 3 . 0 . 
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he bubble rising velocity. The bubble centroid is defined as 

 c = (x c , y c ) = 

∫ 
V g 

ρg x dV g ∫ 
V g 

ρg dV g 

. (43) 

n a similar fashion, the bubble rising velocity is defined as the 

ean velocity with which the gas phase is moving, 

 c = (u c , v c ) = 

∫ 
V g 

ρg u dV g ∫ 
V g 

ρg dV g 

. (44) 

n both expressions, the gas volume V g is approximated using 

q. (30) . Fig. 5 displays the vertical position of the bubble centroid, 

 c (t) / ̃ L , and the vertical component of the bubble rising velocity, 

 c (t) / ̃  U , versus time, t/ ̃ t , for each of the initial temperature ratios

iven above. In the isothermal case the initial temperature field is 

niform over the entire domain, (T l /T g ) i = 1 , and the density ra-

io is set to (ρl /ρg ) i = 10 . The results of the present simulation are

ompared with that obtained by Hysing et al. [67] . As the density 

atio, (ρl /ρg ) i , is decreased, the rising velocity of the bubble is ini- 

ially lower than in the isothermal case due to the lower buoy- 

ncy force exerted by the liquid on the gas bubble. Nonetheless, 

he thermal diffusion reduces progressively the temperature gra- 

ient between the two phases. The bubble heats-up and the den- 

ity ratio, ρl /ρg , increases. As a result, after an initial transient, the 

erminal bubble rising velocity tends to settle to the same regime 

elocity as that of the isothermal case, independently of the initial 

ensity ratio, (ρl /ρg ) i . Clearly, the initial differences in the rising 

elocities lead to an offset in the position of the bubble centroid. 

This case is then repeated at a density ratio equal to 50 (in the 

ncompressible cases) and for two different initial temperature ra- 

ios, (T g /T l ) i = 1 . 0 and 3.0, while keeping fixed the other dimen-

ionless parameters, see Table 1 . The results, reported in Fig. 6 , are

ualitatively similar to those at lower density ratio (same rising ve- 

ocity and offset of the bubble centroid), but given the larger initial 

ensity difference, the change of the buoyancy forces due to com- 

ressibility effects is less. 

As mentioned in Section 2.2 , an alternative and efficient way to 

olve the Poisson equation in one iteration is to employ the time- 

ressure splitting [65] . Here, we compare this with the iterative 
10 
ethod proposed in the current work for the case of the rising 

ubble considering three different initial temperature ratios. The 

esults are reported in Fig. 7 : for the incompressible case, direct 

nd iterative solvers yield to the same numerical solution. This is 

onfirmed also for intermediate (T l /T g ) i , while we observe devia- 

ions in the rising velocity v / ̃  U for the case (T l /T g ) i = 3 . As men-

ioned in Section 2.2 , we attribute this deviation to the approxi- 

ation of p s 
2 

in the time-splitting approach, which becomes less 

nd less accurate as thermal gradients become sharper, indepen- 

ently of the density ratio. In fact, when we increase (T l /T g ) i , the

elocity divergence increases due to higher thermal gradients at 

he interface, determining steep time-variation of the thermody- 

amic pressure p th . As already discussed in [56] , this results in a 

oor calculation of ρ0 in Eqs. (36) , (37) and ultimately leads to in- 

ccurate results. 

To conclude the analysis of this test case, we compare the three 

ethods presented in Section 3.3 in terms of number of iterations 

eeded to solve the Poisson equation. Since the three methods re- 
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Fig. 8. Number of iterations required to solve the pressure Poisson equation for 

the rising bubble test case as a function of time t/ ̃ t . The data are obtained using 

the methods by Bartholomew and Laizet [64] , Motheau and Abraham [56] and the 

present method. We consider the case (T l /T g ) i = 1 . 2 (e.g., (ρl /ρg ) i = 8 . 33 . The ref- 

erence time scale ̃  t = 

√ 

d 0 /g . 
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Fig. 9. Position of the three rising bubbles at t/ ̃ t = 0 (left panel) and for t/ ̃ t > 0 

(right panel). The interface position is taken from the grid points where � = 0 . 5 

and the bubble contour are plotted with at the dimensionless physical time t/ ̃ t = 

{ 0 , 1 . 5 , 3 . 0 , 4 . 5 , 6 . 0 , 7 . 5 , 9 . 0 , 10 . 5 , 12 . 0 , 13 . 5 } , with the reference time scale being 
˜ t = 

√ 

d 0 / | g | . 
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uire different tolerances to satisfy the divergence constraint with 

he same accuracy, we set ε t = 10 −8 for Method 1 and ε = 10 −11 

or Method 2 and 3 for a fair comparison. Using these different 

hresholds, ε t , leads to similar values of the residual (below 10 −14 ), 

omputed as the difference between the velocity divergence and 

ts constraint according to Eq. (35) . For what concerns Method 3 , 

nd only for this case, we compute the residual ε on the pressure 

etween two consecutive iterations and not on the velocity diver- 

ence. Once again, this choice is motivated by a fair comparison 

ith the other two methods. Indeed, for Method 1 and Method 2 , 

he residual based on the pressure p 2 is the only possible choice 

eing the correction step performed only at the end. The results 

rovided in Fig. 8 clearly show that the current approach, Method 

 , requires a number of iterations between 1.5 and 3 times lower 

han that of Method 1 and Method 2 to achieve a full convergence. 

s mentioned above, we attribute this faster convergence to the 

xact way we recast the variable-coefficient Poisson equation into 

 constant-coefficient problem using directly the correction step. 

.3. Multiple rising bubbles 

In this section, we consider the same configuration adopted in 

he previous test case to study the flow in the presence of three 

ompressible bubbles, rising in an incompressible liquid. The bub- 

les have the same initial diameter, d i and are initially at rest in 

 rectangular domain of dimensions L x / ̃ L × L y / ̃ L = 7 . 2 × 12 . 8 , being

he reference length 

˜ L = d i . The initial position of the bubble cen- 

roids are set to (X c, 1 / ̃ L ) i = (1 . 8 , 1 . 25) for Bubble n.1 , (X c, 2 / ̃ L ) i =
3 . 6 , 1 . 25) for Bubble n.2 and (X c, 3 / ̃ L ) i = (5 . 4 , 1 . 25) for Bubble n.3 .

he initial temperature and density of the liquid phase are T l and 

l , respectively. In order to highlight the compressibility effects, 

he three bubbles are initialized at three different temperatures, 

T g, 1 /T l ) i = 1 . 5 , (T g, 2 /T l ) i = 1 . 0 and (T g, 3 /T l ) i = 0 . 75 as reported on

he left panel of Fig. 9 . In order to avoid bubble coalescence and

erging, we consider a limited Weber number W e = ρm 

g, 0 
˜ U 

2 d 0 / ̃  σ = 

 . 125 and we set the Reynolds number Re = ρm 

g, 0 
˜ U d 0 /μg = 125 ,

here ˜ U = 

√ | g | d 0 and ρm 

g, 0 
is the minimum initial gas density. The 

randtl number P r = μg k g /c p,g is set to 0.7. All the other dimen-

ionless parameters are kept the same as in the previous case and 
11 
re reported in Table 1 . Since the system is closed and thermally 

solated, once the bubbles start to rise, the heat transfer exchanged 

mong each other and with the liquid medium drives them to- 

ards the thermal equilibrium. In detail, Bubble n.1 starts to cool 

own, Bubble n.2 maintains an almost constant average tempera- 

ure, whereas Bubble n.3 is heated up. As a result and owing to the 

ariation of the thermodynamic pressure, the first bubble contracts 

ncreasing its mean density, the third bubble expands decreasing 

ts mean density, whereas the second one slightly expands mainly 

ue to the variation of the thermodynamic pressure. As shown in 

ig. 10 , after t/ ̃ t ≈ 6 , being ˜ t = 

√ 

d 0 / | g | , the thermal equilibrium 

s globally reached and the mean temperature and density remain 

pproximately constant for the three bubbles. 

Fig. 11 provides the mean vertical velocity of the centroid of 

ach bubble. The initial expansion and contraction of the bubbles 

ffects the vertical component of their rising velocities computed 

s in Eq. (44) . In particular, until t/ ̃ t ≈ 1 . 8 , all the three bubbles

ove with a comparable vertical velocity. After this initial stage, 

he third bubble starts to accelerate and arrives first at the top 

all, whereas the first one starts to decelerate and moves along 

he vertical direction at an almost constant speed. On the other 

and, the second bubble accelerates towards the top wall, but at 

 lower rate than the third one. The physical explanation for this 

ehavior relies in the modification induced by the initial expansion 

nd contraction stage of the bubbles, which determines an increase 

f the buoyancy forces for Bubble n.3 and a reduction for Bubble 

.1 . 

.4. Mixing layer 

As a final test case, C4 , the numerical simulation of a two- 

imensional, temporal mixing layer is addressed. This considered 

ow configuration develops in the region between two counter- 

irectional flows, one of them being compressible, the other in- 

ompressible. The streams move with opposite velocities, U g and 

 l . In these conditions, a Kelvin-Helmholtz instability promotes the 

ormation of well-defined coherent vortices in the region separat- 

ng the two streams. The latter enhance micro-mixing and molec- 

lar diffusion promoting the exchange of momentum and energy 

etween the opposite streams. The computational domain con- 

ists of a square box of unit size, L x / ̃ L × L y / ̃ L = 1 × 1 , discretized
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Fig. 10. Averaged gas temperature (left panel) and averaged gas density of the three bubbles (right panel) versus non-dimensional time. The initial temperature and density 

of Bubble n.2 are taken as a reference temperature, T iso , and density, ρiso . The reference time scale is ̃  t = 

√ 

d 0 / | g | . 

Fig. 11. Normalized vertical velocity of the bubbles versus time. The reference ve- 

locity scale is ˜ U = 

√ | g | d 0 while the reference time scale is ̃  t = 

√ 

d 0 / | g | . 
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sing N x × N y = 512 × 512 nodes. In the lower part of the com-

utational domain, 0 < y/ ̃ L ≤ 0 . 5 , the incompressible flow moves 

rom the right to the left while in the upper part of the domain,

 . 5 < y/ ̃ L ≤ 1 , the compressible stream moves in the opposite di-

ection. A no-slip boundary condition is prescribed to the momen- 

um equation along the top and bottom sides of the domain while 

 zero-gradient, adiabatic boundary condition is assigned to the 

emperature equations along the same boundaries. Periodic bound- 

ry conditions are applied to all quantities along the flow direction, 

 . 

To better characterize the mixing-layer flow, it is worth intro- 

ucing a length-scale based on the initial vorticity thickness in 

he mixing layer, δ, and a corresponding Reynolds number Re δ = 

 c δ/νg,i with νg,i the kinematic viscosity of the gas phase (eval- 

ated at the initial condition) and U c a prescribed convective ve- 

ocity defined as U c = 1 / 2(U g − U l ) . The initial velocity field is pre-

cribed imposing a pseudo-perturbation on a mean profile accord- 

ng to the following relations [68] : 

u (x, y, 0) 

U c 
= tanh 

(
2 ̃

 L 

δ
y 

)
+ ξnoise 

∂ψ 

∂y 
, (45) 
12 
v (x, y, 0) 

U c 
= −ξnoise 

∂ψ 

∂x 
, (46) 

(x, y ) = exp 

(
−

˜ L 2 

δ2 
y 2 

)
[ cos (4 πx ) + 0 . 03 sin (10 πx ) ] , (47) 

here u (x, y, 0) and v (x, y, 0) are the horizontal and vertical com-

onents of the initial velocity field. Moreover, the factor ξnoise = 

0 −3 is chosen to ensure that the velocity perturbations remain 

 small percentage of the mean velocity, as suggested by the au- 

hors in Zayernouri et al. [68] . Prescribing the hyperbolic tangent 

elocity profile given by Eqs. (45) –(46) , the wave-length associated 

ith the initial vortex distribution results to be approximately λ � 

 δ [68,69] . Hence, given the domain size, ˜ L and the desired num- 

er of vortexes in the periodic domain, N, the initial vortex thick- 

ess is δ/ ̃ L = 1 / (7 N) . In the present case, the initial vorticity thick-

ess is fixed to δ/ ̃ L = 1 / 28 and Re δ = 200 . The non-dimensional

iscosity, thermal conductivity and the specific heat capacity ratios 

re kept equal to unity, while the density ratio based on the initial 

as density (ρl /ρg ) i is taken equal to 5. Finally, the Prandtl number 

s set to P r = μg c p,g /k g = 8 . 92 with c p,g and k g being the specific

eat capacity and thermal conductivity of the gas phase. The ini- 

ial temperature field is initialised according to the step-function, 

 (x, y ) = 

{
T l,i , if 0 ≤ y/ ̃ L ≤ 0 . 5 , 

T g,i , if 0 . 5 < y/ ̃ L ≤ 1 . 
(48) 

While keeping fixed the initial liquid temperature T l,i and the 

nitial density ratio (ρl /ρg ) i between the two phases, different ini- 

ial gas temperatures, T g,i , gas densities, ρg,i and liquid densities 

l,i , are prescribed to the compressible and incompressible fluids, 

s sketched in Fig. 12 . A first test case considers the isothermal 

ow where (T g /T l ) i = 1 , whereas three other cases address a tem-

erature ratio equal to 15 / 16 , 5 / 6 and 3 / 4 , respectively. Fig. 13

rovides the temporal evolution of the thermodynamic pressure 

uniform over the computational domain), the mean gas and liquid 

emperature, the mean gas density and the mean kinetic energy for 

he two phases. The gas and liquid temperatures are computed as 

ntegrals over the corresponding domains, whereas the mean ki- 

etic energy is estimated over the compressible and incompress- 

ble regions: 

 g (t) = 

1 

M g 

∫ 
V 

ρg (x, y, z, t) T (x, y, z, t)�(x, y, z, t) dV, (49) 



F.D. Barba, N. Scapin, A.D. Demou et al. Computers and Fluids 216 (2021) 104789 

Fig. 12. Sketch of the domain for the temporal mixing-layer simulation showing the initial velocity and temperature fields. 

Fig. 13. Temporal evolution of the thermodynamic pressure, p 0 , mean gas temperature, T g , mean gas density, ρg and mean kinetic energy, E k for the mixing layer at four 

different tem perature ratios, (T g /T l ) i ∈ [1 . 0 , 15 / 16 , 5 / 6 , 3 / 4] . All the quantities are non-dimensional using as reference values the values of the isothermal case, except for the 

mean kinetic energy where we employ the initial value of E k for each case, E k,i . The reference time-scale ̃  t = ̃

 L / ̃ U c . 
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 l (t) = 

1 

V l 

∫ 
V 

T (x, y, z, t)(1 − �(x, y, z, t)) dV, (50) 

 k (t) = 

1 

2 M T 

∫ 
V 

ρ(x, y, z, t) u (x, y, z, t) · u (x, y, z, t) dV, (51) 

here M g , V l and M T are the mass of the gas, the liquid volume

nd the total mass of the system, all of them constant during the 
13 
imulation. Note that, given the two-dimensional configuration, the 

umerical calculation of the integrals in Eq. (51) is performed in 

he two-dimensional ( x − y ) plane. Once the mean gas tempera- 

ure is known, the mean gas density is computed directly from the 

quation of state whereas the liquid density is constant and equal 

o ρl , 

¯g (t) = 

p 0 (t) 

R T g (t) 
, and ρ̄l (t) = ρl . (52) 
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Fig. 14. Contour plots of the dimensionless vorticity field ω z / ̃ ω c in the mixing layer for the isothermal case (left panels) and for the (T g /T l ) i = 3 / 4 case (right panel). The 

contour plots refer to the dimensionless physical time t/ ̃ t = 0 . 01 , 0.02, 0.03 and 0.04 in order. The reference time scale is ̃  t = ̃

 L /U c whereas the vorticity one is ˜ ω c = U c / ̃ L . 
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n the isothermal case, the thermodynamic pressure, the mean liq- 

id and gas temperature and the mean gas density do not change 

ver time as shown in Fig. 13 . Moreover with the prescribed 

oundary conditions and in absence of external forces, the mean 

inetic energy in the incompressible case (e.g. 
(
T g /T l 

)
= 1 ) mono- 

onically decreases due to the internal dissipation in the flow. On 

he other hand, as the temperature ratio is reduced below unity, 

he turbulent mixing enhances the thermal diffusion between the 

wo fluids thus rapidly reducing the temperature gradients. As a 

esult, the temperature tends to rapidly increase in the colder, 

ompressible stream until a stationary condition is established. As 

he compressible phase heats up, the thermodynamic pressure, p 0 , 

nd the mean gas density increase. These effects modify the mean 

inetic energy balance, that in the compressible cases contains not 

nly the viscous dissipation but also a pressure work term pro- 

ortional to the gas expansion. This last term modifies the vari- 

tion of E k /E k,i for all the compressible cases and is responsible 

or the initial increase in the mean kinetic energy observed for the 
14 
ase 
(
T g /T l 

)
i 
= 0 . 75 up to t/ ̃ t ≈ 1 , ˜ t = ̃

 L /U c being the reference time

cale. However, once the temperature gradients become negligible 

nd the thermodynamic pressure has reached a constant value, the 

ompressible effects expire and the mean kinetic energy variation 

s mainly governed by the viscous dissipation. 

Finally, Fig. 14 displays the contour plots of the instantaneous 

orticity field at three different physical times for isothermal case 

nd for the initial temperature ratio 
(
T g /T l 

)
i 
= 3 / 4 . Despite we 

imit the analysis at the initial times in order to avoid the loss in 

esolution induced by the formation of smaller and smaller scales, 

e observe that, in general, the presence of a temperature gradient 

nhances the mixing and the growth-rate of the vorticity thickness 

ith respect to the reference, isothermal case. 

.5. Turbulent bubble-laden upflow in a vertical channel 

In this final case, C5 , the potential of this method to sim- 

late challenging multiphase flows is demonstrated with three- 
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Fig. 15. Schematic representation of the domain used for the simulations of cases 

C5-PS and C5-LM . The dimensions of the channel are L x × L y × L z = π × 2 × π/ 2 . The 

flow is directed along the positive x direction, opposite to the gravitational field, 

and it is heated and cooled by the red and blue walls. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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imensional simulations of turbulent bubble-laden flows in a 

ifferentially heated vertical channel. An incompressible liquid 

s flowing upwards, against the gravity field, carrying highly- 

eformable gas bubbles. The bubbles develop a relative upward 

ovement compared to the surrounding liquid due to the den- 

ity difference of the two fluids. While the liquid density is con- 

tant, the gas density is allowed to vary based on the ideal gas law,

q. (17) , resulting in denser bubbles in colder regions and lighter 

ubbles in hotter regions. This characteristic adds to the complex- 

ty of the flow, with the thermal field strongly affecting the behav- 

or of the bubbles in the channel. 

To investigate the effects of the thermal field on the flow fea- 

ures, two cases were simulated: 

• Case C5-PS : The temperature field is passive and has no ef- 

fect on the gas properties or the flow in general. The flow is 

therefore incompressible in both the liquid and the gas phase, 

and the physical properties are constant within each phase. The 

mathematical model presented in Section 2.2 is modified by 

setting the right-hand side of Eqs. (15) and (16) equal to zero, 

and neglecting Eq. (17) . The numerical methodology presented 

in Section 3.3 is followed by incorporating these modifications. 
• Case C5-LM : The temperature field within the gas phase is ac- 

tive, giving rise to low-Mach effects, while the liquid phase 

is incompressible. The numerical methodology presented in 

Section 3.3 is followed in full. 

A schematic representation of the configuration is shown in 

ig. 15 . The size of the channel is L x × L y × L z = π × 2 × π/ 2 along

he streamwise, wall-normal and spanwise directions respectively. 

he same configuration was also adopted by Lu and Tryggva- 

on [70,71] to study turbulent incompressible bubble-laden flows. 

he relevant non-dimensional groups that define the flow are Re = 

0 0 0 , W e = 889 , P r = 4 . 0 and F r = 1 . 49 , based on L y and the liq-

id properties. In addition, the property ratios are set to ρl / ̃  ρg , r = 

0 , μl / ̃  μg , r = 1 , c p l / ̃  c p g , r = 4 and k l / ̃
 k g , r = 1 . The volume fraction

f the gas phase inside the whole domain is set to 5% . A different

emperature value is set on each channel wall, resulting in a tem- 

erature difference of 
T = T y =2 − T y =0 = 40 K, while the average 

emperature between the two walls is set to T 0 = 323 K. 

In both simulations, a numerical grid of N x × N y × N z = 512 ×
12 × 256 is adopted, amounting to approximately 67 million grid 

oints. The flow is maintained along the positive x direction by 

orcing the flow-rate to a constant value. Periodic boundary condi- 

ions are set along the x and z directions. The channel walls are 
ig. 16. Distribution of bubbles inside the channel for case C5-LM . ( a ) Initial condition; (

he stream-wise velocity component. 

15 
onsidered solid, impermeable and thermally active, therefore a 

o-slip boundary condition is applied for the velocity field and a 

irichlet boundary condition for the temperature field. 

To prepare the initial condition of the turbulent multiphase 

imulations, a preliminary simulation was ran for the liquid phase 

nly. This flow was initialised with a streamwise vortex pair to 

chieve a fast transition to turbulence [72] . At this stage, 60 ran- 

omly distributed gas bubbles of diameter d b = 0 . 25 are intro- 

uced inside the domain. The initial bubble distribution is shown 

n Fig. 16 (a), where the bubbles are coloured based on the local 

alues of the stream-wise velocity component. The flow is then al- 

owed to develop for a sufficiently long time. Within this time pe- 

iod, the number of bubbles increased significantly due to exten- 
 b) statistically steady state. The bubbles are coloured based on the local values of 
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Fig. 17. Temporal variation of the number of bubbles in the domain, N b , for case 

C5-PS . Initially 60 bubbles were present inside the domain, and after approximately 

60 time units the number of bubbles stabilised at around 1300. 
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ive break-up, before approximately reaching a plateau. The num- 

er of bubbles as a function of time for case C5-PS is shown in

ig. 17 , revealing the dynamic balance between break-up and co- 

lescence events after 60 time units. This is an indication that a 

tatistically stationary state has been reached and statistical sam- 

ling can start. To ensure that no significant residual transient ef- 

ects are present to contaminate the statistics, the flow is allowed 

o develop for additional 60 time units before sampling started. 

ig. 16 (b) shows the instantaneous bubble distribution inside the 

omain for case C5-LM , after the flow reached a statistically sta- 

ionary state. 

The averaged gas volume fraction 〈 �〉 x,z,t and the liquid stream- 

ise velocity component 〈 u x 〉 x,z,t are shown as a function of the 

all-normal coordinate in Fig. 18 , for both C5-PS and C5-LM . As the

otation suggests, these quantities are averaged both in time and 

n wall parallel ( x − z) planes, along which the flow is assumed pe-

iodic. In both cases, the bubbles move away from the walls and 

igrate towards the interior of the channel. This effect was first 

bserved by Lu and Tryggvason [71] for highly-deformable bubbles 

hat are not affected by the temperature field, such as those con- 

idered in C5-PS . The new finding emerging from C5-LM is the shift 

f the location of the maximum value of 〈 �〉 x,z,t and 〈 u x 〉 x,z,t to-

ards the cooled channel wall. At this location, the bubbles are 

lightly colder and therefore heavier, contributing to the weaken- 

ng of the buoyancy effect. In addition, the maximum value of 

 �〉 x,z,t is smaller for C5-LM , suggesting that the gas phase is more 

ispersed around the location of the maximum value when com- 

ared to C5-PS . Even though the characterisation of the physical 
echanism that causes this shift towards the cooled channel wall s

ig. 18. ( a ) Averaged gas volume fraction 〈 �〉 x,z,t and ( b) liquid stream-wise velocity comp

ine, C5-LM . In both plots, the location of the maximum value moves towards the colder w

16 
s not within the scope of the present study, it is clear that the 

hysically appropriate coupling of the temperature and momen- 

um fields has a big impact on the accurate representation of time- 

veraged fields, even for this relatively small temperature differ- 

nce. 

. Final remarks 

Multiphase, compressible flows are of great interest in a wide 

ange of scientific fields and engineering problems. In this con- 

ext, we propose a novel approach to the numerical simulation of 

ultiphase, viscous flows where a compressible gas phase and an 

ncompressible liquid mutually interact in the low-Mach number 

egime. The problem is addressed in the framework of a low-Mach 

umber asymptotic expansion of the compressible formulation of 

he Navier-Stokes equations. In this limit, acoustics are neglected 

ut large density variations of the gas phase can be accounted for 

s well as heat transfer between the phases and with the domain 

oundaries. A Volume of Fluid approach is used to deal with the 

resence of different phases in the flow as well as for interface 

racking. In this specific implementation, the interface reconstruc- 

ion is based on the MTHINC method [34] while the effect of the 

urface tension is accounted for using the continuum surface force 

CSF) model [45] . The same set of equations is used for both the 

as and the liquid phase, the zero-divergence condition being ex- 

ctly imposed to the latter. To numerically solve this set of equa- 

ions, we have developed a massive parallel solver, second order 

ccurate both in time and space. The Poisson pressure equation is 

anaged by a FFT-based solver that allows for a numerically ef- 

cient and very fast solution procedure. In addition, this choice is 

uited for code optimization and adaptation of incompressible GPU 

odes that benefits of FFT-based solvers (e.g. see [73] ). The pro- 

osed iterative procedure shows to be more efficient in terms of 

umber of iterations than the two approaches available in litera- 

ure in the context of low-Mach number flows [56,64] . The solver 

as been build upon a code for incompressible flows which has 

ndergone an extensive validation campaign [46,47] . A detailed 

nd complete description of the theoretical approach is provided, 

ogether with information about the numerical techniques em- 

loyed. Emphasis is given on ensuring the mass conservation of 

he compressible phase and on correctly imposing the velocity di- 

ergence at the pressure-correction step. In addition, we apply the 

escribed numerical approach to the simulation of five different 

ow configurations. The outcomes of two simulations reproduc- 

ng the two-dimensional expansion and contraction of rectangular 

aseous bands enclosed in an incompressible fluid and confined 

n a free-slip, periodic channel are provided. Next, we address the 

imulation of two-dimensional rising bubbles. First, we consider a 
onent 〈 u x 〉 x,z,t as a function of the wall-normal coodinate. Dashed line, C5-PS ; Solid 

all for C5-LM . 
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ingle bubble and compare the results of our simulation with the 

eference data by Hysing et al. [67] using as benchmark quantities 

he bubble centroid and the bubble rising velocity. Second, we sim- 

late the evolution of three bubbles of the same size but with dif- 

erent initial temperatures. Furthermore, we discuss the outcome 

f a numerical simulation reproducing a plane, temporal mixing 

ayer and show how the compressibility of the gas phase alters 

he development of the instability. Finally, the potential of the de- 

eloped methodology to solve complex three-dimensional flows 

s demonstrated by simulating a turbulent bubble-laden channel 

ow, where the two channel walls are heated and cooled. The cou- 

ling of the temperature and momentum fields causes the migra- 

ion of the bubbles closer to the cold wall, revealing the signifi- 

ance of the accurate representation of the buoyancy effects, even 

or a moderate temperature differences within the domain. 

As the proposed mathematical and numerical framework is in- 

ependent of the capturing/tracking technique used to describe the 

nterface topology, the proposed methodology can be directly ex- 

ended to other existing numerical codes. We believe that the re- 

ults presented here demonstrate that it is possible to accurately 

ddress the numerical simulation of multiphase, viscous flows in 

he low-Mach number regime, also when one of the phases can 

e treated as incompressible. Further extensions of the present 

ethodology may concern the addition of more complex physical 

henomena like phase change and complex interfacial thermody- 

amics, as absorption-desorption processes. 
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ppendix A. Low Mach number expansion of the Navier-Stokes 

quations 

This appendix provides the derivation of the low-Mach number 

symptotic expansion of the governing equations for the compress- 

ble gas phase, Eqs. (2) –(5) , provided in Section 2.1 . All the quan-

ities employed here refer only to the gas phase unless otherwise 

tated. Under the hypotheses of ideal and calorically perfect gases, 

he energy equation, Eq. (4) , can be re-written in terms of the sen-

ible internal energy or enthalpy only: 

 = 
h 

0 
T re f 

+ c v (T − T re f ) = 
h 

0 
T re f 

+ c v T , (A.1) 

 = 
h 

0 
T re f 

+ c p (T − T re f ) = 
h 

0 
T re f 

+ c p T , (A.2) 
17 
ith h = e + p/ρ the enthalpy, T the temperature and 
h 0 
T re f 

the 

nthalpy of formation of the chemical specie involved, evaluated 

t the reference temperature T re f = 0 K . Assuming the reference 

cales provided in Section 2.1 , after some manipulations Eqs. (2) –

5) can be recast in non-dimensional form: 

∂ρ

∂t 
+ ∇ · (ρu ) = 0 , (A.3) 

∂(ρu ) 

∂t 
+ ∇ · (ρu � u ) = 

1 

Re 
∇ · τ − 1 

Ma 2 
∇p + 

f σ

W e 
+ 

ρg 

F r 2 
, (A.4) 

∂(ρe ) 

∂t 
+ ∇ · (ρu e ) + Ma 2 

[
∂ 

∂t 

(
ρ

u · u 

2 

)
+ ∇ ·

(
ρ

u · u 

2 

)]
= 

(A.5) 

γ

γ − 1 

1 

ReP r 
∇ · (k ∇T ) − ∇ · ( u p ) 

+ Ma 2 
[

1 

Re 
∇ · ( τ · u ) + 

f σ

W e 
+ 

ρg 

F r 2 

]
· u , 

p = 	 ρT . (A.6) 

here Ma = 

˜ U / 
√ 

˜ p / ̃  ρ is a pseudo-Mach number, whereas the defi- 

ition of all the other parameters can be found in Section 2.1 . The

ow-Mach number limit of Eqs. (A .3) –(A .6) can be derived from a 

ingle-scale asymptotic expansion in the limit of small Mach num- 

ers [44] . Since the pseudo Mach number, Ma, appears in all the 

quations only with the power of two, each generic vectorial and 

calar quantity, f , can be expanded in the following way: 

 (x , t) = f 0 (x , t) + f 2 (x , t) Ma 2 + O (Ma 3 ) . (A.7) 

t is also possible to prove that the following relations hold for the 

roduct of two scalar quantities: 

 

f (x , t) g(x , t) ] 0 = f 0 (x , t) g 0 (x , t) , (A.8) 

 

f (x , t) g(x , t) ] 2 = f 2 (x , t) g 0 (x , t) + f 0 (x , t) g 2 (x , t) . (A.9) 

o obtain the low-Mach number limit of the momentum equa- 

ion, Eq. (A.4) , we use the asymptotic expansion provided by 

q. (A.7) into Eq. (A.4) : 

∂ 

∂t 

[
(ρu ) 0 + (ρu ) 2 Ma 2 + O (Ma 3 ) 

]
+ ∇ ·

[
(ρu � u ) 0 + (ρu � u ) 2 Ma 2 + O (Ma 3 ) 

]
= 

1 

Re 
∇ ·

[
τ0 + τ2 M a 2 + O (M a 3 ) 

]
− 1 

Ma 2 
∇ 

[
p 0 + p 2 Ma 2 + O (Ma 3 ) 

]
+ 

+ 

1 

W e 

[
f σ0 + f σ0 Ma 2 + O (Ma 3 ) 

]
+ 

1 

F r 

[
(ρg ) 0 + (ρg ) 2 Ma 2 + O (Ma 3 ) 

]
. (A.10) 

ultiplying by Ma 2 and collecting all terms of same order in Ma 

n Eq. (A.10) , leads, after some manipulation, to the zeroth-order 

quation, 

p 0 = 0 , (A.11) 

nd to the second-order relation, 

∂u 0 

∂t 
+ u 0 · ∇u 0 = 

1 

ρ0 

[
1 

Re 
∇ · τ0 − ∇p 2 + 

f σ0 

W e 

]
+ 

g 

F r 2 
. (A.12) 
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[  
he algebraic manipulations for the continuity and energy equa- 

ions are completely omitted due to their similarity with the pro- 

edure described above for the momentum equation. The reader 

s referred to the following references [43,44,74] for additional de- 

ails. The final low-Mach number equations can be written as: 

∂ρ0 

∂t 
+ ∇ · (ρ0 u 0 ) = 0 , (A.13) 

∂u 0 

∂t 
+ u 0 · ∇u 0 = 

1 

ρ0 

[
1 

Re 
∇ · τ0 − ∇p 2 + 

f σ0 

W e 

]
+ 

g 

F r 2 
, (A.14) 

∂(ρ0 e 0 ) 

∂t 
+ ∇ · (ρ0 u 0 e 0 ) = 

γ

γ − 1 

1 

ReP r 
∇ · (k ∇T 0 ) − ∇ · ( p 0 u ) , 

(A.15) 

p 0 = 	 ρ0 T 0 . (A.16) 

t should be noted that, in the limit of small Mach number, the 

ontribution of the viscous dissipation to the overall energy bal- 

nce of the gaseous flow does not appear in Eq. (A.15) . This hold

rue under the hypothesis of sufficiently high Reynolds number. In 

act, the term ∇ · ( τ · u ) in Eq. (A.5) , which is pre-multiplied by

he factor Ma 2 /Re, may become significant in the limit of Mach 

ending to zero for sufficiently low Reynolds number. The effect 

f the viscous dissipation could be easily included in the equa- 

ions above; however we consider here high Reynolds number 

ows for the gas phase, for which Eq. (A.15) is an accurate ap- 

roximation. The subscript referring to the order of quantities are 

mitted in this manuscript, except for the pressure terms. It is 

seful to remind that, for the chosen set of reference scales, the 

on-dimensional sensible energy reads: e = 1 / (γ − 1)	 T . Consid- 

ring the latter and Eq. (A.16) , after some additional manipula- 

ions, Eqs. (A .13) –(A .16) can be recast as Eqs. (8) –(12) provided in

ection 2.1 . 
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