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Turbulent flow of finite-size spherical particles
in channels with viscous hyper-elastic walls
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SE-100 44 Stockholm, Sweden

(Received 12 December 2018; revised 14 May 2019; accepted 15 May 2019)

We study single-phase and particle-laden turbulent channel flows bounded by two
incompressible hyper-elastic walls with different deformability at bulk Reynolds
number 5600. The solid volume fraction of finite-size neutrally buoyant rigid spherical
particles considered is 10 %. The elastic walls are assumed to be of a neo-Hookean
material. A fully Eulerian formulation is employed to model the elastic walls together
with a direct-forcing immersed boundary method for the coupling between the fluid
and the particles. The data show a significant drag increase and the enhancement
of the turbulence activity with growing wall elasticity for both the single-phase and
particle-laden flows when compared with the single-phase flow over rigid walls. Drag
reduction and turbulence attenuation is obtained, on the other hand, with highly elastic
walls when comparing the particle-laden flow with the single-phase flow for the same
wall properties; the opposite effect, drag increase, is observed upon adding particles
to the flow over less elastic walls. This is explained by investigating the near-wall
turbulence, where the strong asymmetry in the magnitude of the wall-normal velocity
fluctuations (favouring positive v′), is found to push the particles towards the channel
centre. The particle layer close to the wall contributes to turbulence production by
increasing the wall-normal velocity fluctuations, so that in the absence of this layer,
smaller wall deformations and in turn turbulence attenuation is observed. For a
moderate wall elasticity, we increase the particle volume fraction up to 20 % and find
that particle migration away from the wall is the cause of turbulence attenuation with
respect to the flow over rigid walls. However, for this higher volume fractions, the
particle induced stress compensates for the decreasing Reynolds shear stress, resulting
in a higher overall drag for the case with elastic walls. The effect of the wall elasticity
on the overall drag reduces significantly with increasing particle volume fraction.

Key words: multiphase flow, particle/fluid flows

1. Introduction
Interaction of elastic structures with multiphase flows is of utmost importance

in different fields of science and technology, ranging from biological applications
(Freund 2014) to energy harvesting (McKinney & DeLaurier 1981). Materials for
which the constitutive behaviour is only a function of the current state of deformation

† Email address for correspondence: mehd@mech.kth.se
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Turbulent channel flow of spherical particles with elastic walls 411

are generally known as elastic. When the work done by the stresses during the object
deformation is function only of the initial and final configurations, the behaviour of
the material is path independent and a stored strain energy function or elastic potential
can be defined (Bonet & Wood 1997). These so-called hyper-elastic materials show
nonlinear stress–strain curves and are generally used to describe rubber-like materials.
The aim of this work is to gain fundamental understanding of the interaction between
the particle-laden turbulent flow and hyper-elastic walls.

1.1. Turbulent channel flow of finite-size particles
Suspensions of solid particles are relevant in many environmental and industrial
processes (Guazzelli & Morris 2011) such as sediment transport in estuaries (Mehta
2014), blood flow in the human body, pyroclastic flows and pulp fibres in the paper
making industry (Lundell, Söderberg & Alfredsson 2011).

The first simulations of finite-size particles in a turbulent channel flow were
performed by Pan & Banerjee (1996). These authors revealed that turbulent
fluctuations and stresses increase in the presence of the solid phase. Matas, Morris
& Guazzelli (2003), Loisel et al. (2013), Yu et al. (2013) reported a decrease of
the critical Reynolds number for transition to turbulence in the semi-dilute regime
with neutrally buoyant spherical particles. The simulations by Shao, Wu & Yu (2012)
revealed a decrease of the fluid streamwise velocity fluctuations due to an attenuation
of the large-scale streamwise vortices in a turbulent channel flow. Indeed, when the
Reynolds number is sufficiently high, the flow becomes turbulent, with chaotic and
multi-scale dynamics. In this regime, the presence of particles in the flow can alter
the turbulent structures (Naso & Prosperetti 2010; Vreman 2015; Gualtieri, Battista
& Casciola 2017), leading to turbulence modulation at large enough volume fractions
(Lucci, Ferrante & Elghobashi 2010; Tanaka & Teramoto 2015). Lashgari et al.
(2014, 2016) documented the existence of three different regimes when changing
the volume fraction φ of neutrally buoyant spherical particles and the Reynolds
number Re: a laminar-like regime at low Re and low to intermediate φ where the
viscous stress dominates the total dissipation, a turbulent-like regime at high Reynolds
number and low to intermediate φ where the turbulent Reynolds stress plays the main
role in the momentum transfer across the channel and a third regime at higher φ,
denoted as inertial shear thickening, characterized by a significant enhancement of
the wall shear stress due to particle-induced stresses. Picano, Breugem & Brandt
(2015) investigated dense suspensions in turbulent channel flow up to a volume
fraction of 20 %. Their study revealed that the overall drag increase is due to the
enhancement of the turbulence activity up to a certain volume fraction (φ6 10 %) and
to significant particle-induced stresses at higher concentrations. Costa et al. (2016)
explained that the turbulent drag of sphere suspensions is always higher than what
predicted by only accounting for the effective suspension viscosity. They attributed
this increase to the formation of a particle-wall layer, a layer of spheres forming near
the wall in turbulent suspensions. Based on the thickness of the particle-wall layer,
they proposed a relation able to predict the friction Reynolds number as a function
of the bulk Reynolds number. Indeed, the particle-wall layer has been found to have
a significant effect on the modulation of the near-wall turbulence, as confirmed in
the case of non-spherical particles (Ardekani et al. 2017; Eshghinejadfard, Hosseini
& Thévenin 2017; Ardekani & Brandt 2019) where the absence of this layer leads
to attenuation of the turbulence activity, resulting in drag reduction. Picano et al.
(2015) attribute the formation of the near-wall layer of spherical particles to the
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strong wall–particle lubrication interaction that stabilizes the particle wall-normal
position, forcing it to roll on the wall. As a consequence, a complex wall might
change the particle dynamics in this region, affecting the formation of this layer.
Motivated by this, we study here the effect of hyper-elastic walls on the formation
of the particle-wall layer and on the near-wall multi-phase turbulence.

1.2. Flow over deformable compliant surfaces
Many applications involve flow over complex walls that cannot be assumed to be
smooth flat surfaces. The study of the flow over these complex walls can be dated
back to the pioneering work of Nikuradse (1933, 1950), who presented a large
number of experimental measurements in pipes with walls covered by sand grains.
Many studies have been performed since then on the turbulent flow over rough
surfaces (Antonia & Krogstad 2001; Cabal, Szumbarski & Floryan 2002; Belcher,
Jerram & Hunt 2003; Leonardi et al. 2003, 2004) as well as over porous walls
(Beavers, Sparrow & Magnuson 1970; Breugem, Boersma & Uittenbogaard 2006;
Tilton & Cortelezzi 2006; Suga et al. 2010; Rosti, Cortelezzi & Quadrio 2015).
These have shown the destabilizing effect of the wall on the flow, the disruption of
the high- and low-speed streaks close to the wall and increased wall-normal velocity
fluctuations at the interface.

The two-way coupling between the flow and the dynamics of a deformable wall
distinguishes these types of walls from the above-mentioned complex rigid surfaces
(e.g. rough and permeable walls). This coupling allows for non-zero wall-normal
velocities at the interface, due to the wall movement. The early experimental studies
of Lahav, Eliezer & Silberberg (1973), Krindel & Silberberg (1979) showed a
significant decrease of the critical Reynolds number for transition to turbulence of
the flow in gel-coated tubes. Several studies have been then devoted to the linear
stability of the fluid flow through channels and pipes with elastic and hyper-elastic
walls (Kumaran 1995; Srivatsan & Kumaran 1997; Kumaran 1998a,b; Kumaran &
Muralikrishnan 2000), reporting the possibility of the flow being unstable even in the
absence of fluid inertia. These authors attribute the instabilities to the energy transfer
from the mean flow to the fluctuations due to the deformation work at the interface
(Shankar & Kumaran 1999).

The effect of elastic surfaces on a fully developed turbulent flow has been more
seldom considered in the literature. Luo & Bewley (2003, 2005) considered a new
class of compliant surfaces, called tensegrity fabrics: a pre-tensioned network of
compressive members interconnected by tensile ones. These authors reported a large
drag increase and a turbulence activity enhancement, following a resonating condition
between the wall deformation and the turbulent flow. Recently, Rosti & Brandt (2017)
performed the first direct numerical simulations of turbulent channel flow, bounded
by an incompressible hyper-elastic wall. Their study revealed that the skin friction
increases monotonically with the material elastic modulus, while the turbulent flow is
affected by the moving wall even at low values of elasticity. These authors show how
the elasticity is the key parameter determining the turbulent flow modulation and the
wall deformation.

As concerns multiphase flows, several recent studies consider a single object
interacting with a soft wall (Skotheim & Mahadevan 2004; Salez & Mahadevan
2015; Saintyves et al. 2016; Rallabandi et al. 2017), while there is no study in the
literature on the suspensions of rigid particles in a channel flow with elastic walls.
Therefore, in this study, we investigate the effect of wall elasticity on the particles
dynamics and document the resulting alterations in the transport properties of the
suspension.
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Turbulent channel flow of spherical particles with elastic walls 413

1.3. Outline
In this work, we present the first direct numerical simulations of turbulent channel
flow with hyper-elastic walls laden with finite-size rigid spherical particles. The
governing equations and the flow geometry are introduced in § 2, followed by the
results of the numerical simulations in section § 3. The main conclusions are finally
drawn in § 4.

2. Methodology
In this work we study the turbulent flow of an incompressible viscous fluid through

a channel with incompressible hyper-elastic walls, laden with non-Brownian neutrally
buoyant finite-size rigid spherical particles. To this purpose, the numerical method in
Sugiyama et al. (2011), Rosti & Brandt (2017) based on a fully Eulerian formulation
is employed to account for the fluid–structure interaction at the interfaces ; this is
combined with a direct-forcing immersed boundary method (IBM) (Uhlmann 2005;
Breugem 2012) to model the coupling between the fluid and the particles. The IBM
is complemented by lubrication, friction and collision models for short-range particle–
particle interactions (Costa et al. 2015; Ardekani et al. 2016), while a sub-grid force
(Bolotnov et al. 2011; De Vita et al. 2019) is used to model the particle–interface
interactions (interactions between the solid spheres and the elastic walls). A brief
description of the numerical method is given below in § 2.1.

2.1. Governing equations & the numerical scheme
For the fluid–structure interaction at the interface, we use the so called one-continuum
formulation (Tryggvason, Sussman & Hussaini 2007), solving only one set of
equations for the conservation of momentum and the incompressibility constraint
in the fluid phase and the elastic layer,

∂tui + ∂juiuj =
1
ρ
∂jσij, (2.1)

∂iui = 0. (2.2)

Here, ui is a monolithic velocity vector field, volume averaged (Quintard & Whitaker
1994) between the fluid phase and the elastic layer across the interface and ρ is
the density, assumed to be the same in both phases. Using a volume of fluid (VoF)
approach (Hirt & Nichols 1981; Rosti & Brandt 2017), the Cauchy stress tensor σσσ
can be written as

σij = (1− ξ)σ
f
ij + ξσ

e
ij , (2.3)

where the superscripts f and e denote the fluid and the elastic material, respectively;
ξ is the local solid volume fraction, changing smoothly from 0 in the fluid phase
to 1 in the elastic layer within a few Eulerian grid cells. In particular, the isoline at
ξ = 0.5 represents the interface. The scalar ξ is transported by the local velocity via
an advection equation

∂tξ + ui∂iξ = 0. (2.4)

The Cauchy stress tensor σσσ for a Newtonian fluid and an incompressible viscous
hyper-elastic material can be written, respectively, as

σ
f
ij =−pδij +µ

f (∂jui + ∂iuj), (2.5)
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414 M. N. Ardekani, M. E. Rosti and L. Brandt

σ e
ij =−pδij +µ

e(∂jui + ∂iuj)+GBij, (2.6)

where p is the pressure, δij the Kronecker delta and µ the dynamic viscosity; GB is the
hyper-elastic contribution for a neo-Hookean material, satisfying the incompressible
Mooney–Rivlin law, with G the modulus of transverse elasticity and B the left
Cauchy–Green deformation tensor. The tensor B is updated by the following transport
equation

∂tBij + uk∂kBij = Bkj∂kui + Bik∂kuj, (2.7)

where the right-hand side of the equation describes the stretching of the elastic
material due to the straining action of the flow.

Following the formulations above and taking into account the IBM force, exerted
on the fluid phase by the particles, equation (2.1) can be rewritten in its final non-
dimensional form,

∂tui + ∂juiuj =−∂ipe − ∂ip+
(1− ξ)+ ξµe/f

Reb
∂j∂jui + ξG∗∂jBij + fi, (2.8)

where ∂ipe is the external uniform pressure gradient that drives the flow with a
constant bulk velocity Ub, p is the modified pressure (the total pressure minus pe),
Reb is the bulk Reynolds number, µe/f denotes the dynamic viscosity ratio and G∗
is the non-dimensional elastic modulus, normalized by ρU2

b . The additional term, f ,
on the right-hand side of equation (2.8), is the IBM acceleration field, active in the
immediate vicinity of a particle surface to enforce the no-slip and no-penetration
boundary conditions.

The flow field is resolved numerically on a uniform (cubic), staggered, Cartesian
grid while particles are represented by a set of Lagrangian points, uniformly
distributed on the surface of each particle. The governing differential equations
are discretized using a second-order central finite-difference scheme, except for the
advection terms in equations (2.4) and (2.7) where the fifth-order weighted essentially
non-oscillatory (WENO) scheme is applied (Sugiyama et al. 2011; Rosti & Brandt
2017; Izbassarov et al. 2018). An explicit third-order Runge–Kutta scheme (Breugem
2012) is used for the time integration of all terms in equations (2.4), (2.7) and (2.8)
without considering the IBM acceleration field f , except for the solid hyper-elastic
contribution, which is advanced in time with the Crank–Nicolson method (Min, Yoo
& Choi 2001). The first prediction velocity obtained after the time integration step
is then used to compute the point forces Fl (normalized by ρ1Vl, with 1Vl being
the volume of each Lagrangian grid point, equal to the volume of an Eulerian grid
cell) at each Lagrangian point on the surface of the particles, based on the difference
between the particle surface velocity and the interpolated first prediction velocity at
that point. The singular forces Fl are then spread into the IBM acceleration field
f using the regularized Dirac delta function δd of Roma, Peskin & Berger (1999);
f is then added to the first prediction velocity followed by the pressure-correction
scheme used in Breugem (2012) to project the velocity field in the divergence-free
space. More details and validations of the numerical scheme can be found in Breugem
(2012), Ardekani et al. (2016), Rosti & Brandt (2017), Izbassarov et al. (2018), Rosti,
Brandt & Mitra (2018a).

Taking into account the inertia of the fictitious fluid phase trapped inside the
particle volumes, the motion of the rigid particles is described by the Newton–Euler
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Lagrangian equations,

ρpVp
dup

dt
=−ρ

NL∑
l=1

Fl1Vl + ρ
d
dt

(∫
Vp

u dV

)
+ (ρp − ρ)Vpg+Fc, (2.9)

Ip
dΩΩΩp

dt
=−ρ

NL∑
l=1

rl ×Fl1Vl + ρ
d
dt

(∫
Vp

r× u dV

)
+ Tc, (2.10)

with up and ΩΩΩp being the translational and the angular velocity of the particle; ρp, Vp
and Ip are the particle mass density, volume and moment-of-inertia tensor; and g the
gravity vector. The first term on the right-hand side of the equations above describes
the IBM force and torque as the summation of all the point forces Fl on the surface
of the particle, the second term accounts for the inertia of the fictitious fluid phase
trapped inside the particle and Fc and Tc are the force and the torque due to the
particle–particle interactions.

When the distance between the particles is smaller than one Eulerian grid cell, the
lubrication force is under-predicted by the IBM. To compensate for this inaccuracy
and to avoid computationally expensive grid refinements, a lubrication correction
model based on the asymptotic analytical expression for the normal lubrication force
between spheres (Jeffrey 1982) is used. A soft-sphere collision model with Coulomb
friction takes over the interaction when the particles touch. The restitution coefficients
used for normal and tangential collisions are 0.97 and 0.1, with the Coulomb friction
coefficient set to 0.15. More details about these models can be found in Costa et al.
(2015), Ardekani et al. (2016).

A sub-grid repulsive lubrication-like force Fr (Clift, Grace & Weber 2005; Bolotnov
et al. 2011; De Vita et al. 2019) is employed to model the particle–interface
interactions when the distance between a particle and the interface is less than
1.5 Eulerian grids. This sub-grid repulsive force is written as

Fr =
1
2
µf UbDp

(
a1

dw
+

a2

d2
w

)
nw, (2.11)

with a1 and a2 being two coefficients, set to 550 and 55 in this study, nw is the unit
vector normal to the wall and dw is the distance from the interface; µf is the fluid
viscosity in this formulation (De Vita et al. 2019).

2.2. Flow geometry
We perform direct numerical simulations of pressure-driven, particulate turbulent
channel flow, bounded by two incompressible hyper-elastic walls at y= 0 and y= 2h,
with h being half of the distance between the two interfaces. A computational
domain of size Lx = 6h, Ly = 2(h+ he) and Lz = 3h is considered in the streamwise,
wall-normal and spanwise directions, where he = 0.25h is the height of the elastic
walls in the flat unstressed condition. Two impermeable walls are located at y=−he
and y= 2h+ he with no-slip and no-penetration (n.s./n.p.) boundary conditions, while
the flow is considered periodic in the two wall-parallel directions. The bulk velocity
Ub is fixed to guarantee a constant bulk Reynolds number Reb ≡ 2hUb/νf = 5600.
This corresponds to an average friction Reynolds number of Reτ ≡ uτh/νf ≈ 180 in
the case of unladen flow over flat rigid walls (Kim, Moin & Moser 1987) with νf
and uτ being the fluid kinematic viscosity and the friction velocity, respectively. The
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416 M. N. Ardekani, M. E. Rosti and L. Brandt

Case Reb ≡Ubh/νf G∗ ≡G/(ρU2
b) he/h φ(%) Np h/Dp Reτ ≡ uτh/νf

G1 5600 0.25 0.25 0 0 — 388.4
G2 5600 0.5 0.25 0 0 — 281.1
G3 5600 1 0.25 0 0 — 197.2
G4 5600 2 0.25 0 0 — 184.8
G110 % 5600 0.25 0.25 10 5000 9 351.4
G210 % 5600 0.5 0.25 10 5000 9 262.8
G310 % 5600 1 0.25 10 5000 9 225.1
G410 % 5600 2 0.25 10 5000 9 212.7
G25 % 5600 0.5 0.25 5 2500 9 273.1
G220 % 5600 0.5 0.25 20 10 000 9 231.5
G1FW 5600 — — 0 0 — 280.2
G4NPWL 5600 2 0.25 10 5000 9 166.8

TABLE 1. Summary of the simulations performed in this study, all for a bulk Reynolds
number Reb = 5600. Here, he is the height of the elastic walls in the flat unstressed
condition, G∗ is the non-dimesionalized modulus of transverse elasticity, φ denotes the
particle volume fraction and Np the number of the particles inside the domain with
diameter Dp = h/9. All simulations are performed on a computational domain of size
6h × 2(h + he) × 3h in the streamwise, wall-normal and spanwise directions, discretized
with 1296 × 540 × 648 grid cells. Reτ is the resulting mean friction Reynolds number,
reported here for all the simulated cases.

same viscosity is considered in this study for the elastic layer and the fluid phase
(ν f
= νe), as it was shown before that the elasticity modulus G is the key parameter

affecting the interface and the flow dynamics (Rosti & Brandt 2017).
Four different moduli of transverse elasticity G are studied here, ranging from an

almost rigid interface, G∗ = 2, to a highly elastic case of G∗ = 0.25. Particulate cases
are simulated at each G∗ with a particle volume fraction φ = 10 % and the results
are compared to the unladen flow with the same wall elasticity. We consider non-
Brownian neutrally buoyant rigid spherical particles with diameter Dp = h/9. This
corresponds to 5000 particles inside the computational domain at φ=10 %, see Picano
et al. (2015). The effect of volume fraction is further studied at a moderate wall
elasticity of G∗ = 0.5, by decreasing and increasing the particle volume fraction to
φ = 5 % and 20 %.

Two additional numerical experiments are performed to gain a better understanding
of the flow: (i) a simulation, denoted G1FW (fixed wall), where an instantaneous
configuration of the deformed interface, extracted from the case with the highest wall
elasticity, is frozen so as to distinguish the effect on the near-wall turbulence of wall
elasticity from the modulation caused by random roughness and (ii) case G4NPWL
(no particle-wall layer), where particles are forced to bounce back towards the core
region of the channel before approaching the deformable walls; this is achieved by
numerical collisions with the two virtual walls located at a distance of h/10 from the
two undeformed interfaces. A summary to the simulated cases is given in table 1.

The simulations are performed on a uniform Cartesian grid of size 1296 × 540 ×
648, corresponding to a resolution of 24 grid points per particle diameter Dp in the
particulate cases. The number of Lagrangian points NL on the surface of each particle
is set to NL = 1721. All cases are started from a fully developed turbulent channel
flow in the fluid region (y = 0 to 2h) with a perfectly flat interface (initially) and
a random distribution of the particles. The statistics are collected for approximately
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FIGURE 1. (Colour online) Instantaneous snapshots of the streamwise velocity u on x–y
and y–z planes for (a) G∗ = 0.25 (case G1), (b) G∗ = 0.25 at φ = 10 % (case G110 %),
(c) G∗ = 1 (case G3) and (d) G∗ = 1 at φ = 10 % (case G310 %). For clarity, only the
particles cutting the selected x–y plane are displayed. The colour scale for the streamwise
velocity ranges from 0 (dark green) to 1.5u/Ub (white). The elastic walls are represented
by the isosurfaces of ξ = 0.5, coloured by the wall-normal distance, ranging from −0.15h
(white) to 0.15h (black).

600h/Ub after the flow has reached a statistical steady state. The pressure gradient,
required to maintain the constant bulk velocity Ub, is monitored in time and used as a
criterion for deciding a statistically steady state condition. A Courant–Friedrichs–Lewy
number of 0.2 is used to guarantee the numerical stability of the method. It should
be noted here that the simulations with the most elastic walls (G∗= 0.25) are slightly
under-resolved due to the considerably smaller viscous length scale for these cases,
however the results are reported here to show the trend against the wall elasticity.

3. Results
3.1. Drag & deformation

We first display snapshots of the flow and particles in figure 1, where the instantaneous
streamwise velocity u is depicted on x–y and y–z planes for the cases with G∗= 0.25
and 1 at φ= 0 and 10 %. For clarity, just a fraction of the particles (those cutting the
visualized x–y plane) are displayed. Comparing with respect to the single-phase flow
at the same wall elasticity (figure 1a), particles are observed to decrease the wall
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FIGURE 2. (Colour online) VoF function ξ versus the normalized distance from the
interface y/h, showing the wall deformation for the different cases under investigation:
(a) mean values and (b) root-mean-square (r.m.s.) of the fluctuations in ξ . The blue, red,
green and magenta solid lines are used for the cases G1 to G4, respectively, while the
particulate cases G110 % to G410 % are indicated with dashed lines of the same colour. The
insets in (a) show the maximum and minimum position of the interface for different wall
elasticities.

deformation and turbulence activity in G110 % (figure 1b). However, the opposite effect
is observed in G310 % (figure 1c,d), where the wall deformation is slightly increased
in the presence of the particles. Also interesting to note is the spanwise coherency
of the wall deformation in figure 1(a), which is broken into a less correlated pattern
in the particulate case G110 % (see figure 7 for a quantitative comparison).

To provide a quantitative measure of the wall deformation, the mean (ξ ) and
root-mean-square (ξ ′) profiles of the VoF function ξ representing the elastic walls
are depicted in figure 2 versus the normalized distance from the interface y/h. The
maximum and minimum of the interface position, corresponding to the highest crests
and the lowest troughs of the wavy interface, defined by the locations where ξ attains
the values 0.999 and 0.001, are reported in the insets of figure 2(a) for the different
wall elasticities considered.

The results show an expected decrease of wall deformation with increasing G∗ for
both single-phase and particulate cases. However, the effect of the particles on the
wall deformation is non-monotonic: we find a slight decrease with respect to the
single-phase flow in the cases with highly elastic walls (G110 % and G210 %), and a
larger interface deformation for the cases with less wall elasticity in the presence of
particles (G310 % and G410 %). Although the particles do not significantly change the
maximum amplitude of the deformation, the approach of ξ to zero and one (insets
of figure 2a) is considerably modified: the data reveal the less frequent occurrence
of large deformations in the particulate case at low G∗ and the opposite behaviour
at high G∗. The profiles of ξ ′, depicted in figure 2(b), The peak value at y = 0
indicates the degree of waviness at the interface. Given that ξ = 0.5 at the y = 0
plane, the peak of ξ ′ is bounded between ξ ′ = 0.5, where all the grid points in the
y = 0 plane are located inside the fluid region or in the elastic layer, and ξ ′ = 0,
where the interface is undeformed everywhere. The results show a decrease of the
interface waviness by the presence of the particles in highly elastic walls, while the
opposite is evident in the less deformable cases. This behaviour is attributed to the
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FIGURE 3. (Colour online) (a) Mean velocity profiles, normalized by the bulk velocity
Ub. The colour scheme is the same as figure 2 with two extra black lines, pertaining
to the results for rigid walls (Ardekani et al. 2017): a solid line for single-phase flow
and a dashed line for particulate flow at φ = 10 %. The inset displays the increase of the
mean velocity in the core of the channel. (b) The friction Reynolds number Reτ versus
the modulus of transverse elasticity G∗. The black and red dashed horizontal lines in
(b) represent Reτ for the single-phase and the particulate flow over smooth rigid walls.

particle migration towards the centre of the channels with highly elastic walls and its
resulting turbulence attenuation (see the next sections for the details).

The mean velocity profiles, obtained by averaging in the fluid phase, are presented
in figure 3(a), together with two extra lines, pertaining to the results for rigid walls
(Ardekani et al. 2017). Note that the mean velocity inside the elastic walls is equal
to zero. The results show that the mean velocity increases with the wall elasticity
at the channel centreline for both particulate and single-phase cases, whereas it
decreases close to the interface. Similarly to the flow over rigid walls (Picano et al.
2015; Ardekani et al. 2017), particles are observed to increase the core velocity,
except for the cases with highly elastic walls (G110 % and G210 %), where the core
velocity is reduced in their presence. We note here that unlike the single-phase
flows over rigid walls, the mean velocity reduction close to the interface should not
be interpreted as a sign of drag reduction. In fact, the friction Reynolds number
Reτ , depicted in figure 3(b), indicates a significant drag increase with growing wall
elasticity. Note that, Reτ is calculated using the mean pressure gradient needed to
keep Ub constant. Therefore, we find drag reduction with respect to the single-phase
flow for same wall elasticity only for the particulate cases with highly elastic walls.
Results concerning the case G4NPWL with artificially removed particle-wall layer and
the cases with different volume fractions, G25 % and G220 %, will be discussed in § 3.3
and § 3.4. A comparison is made in appendix A between the results, pertaining to the
single-phase flow and the case G1FW to distinguish the main effects of wall elasticity
on the near-wall turbulence from the modulation caused by the roughness.

To better understand the overall drag, we perform a momentum budget analysis. In
particulate turbulent flows with rigid walls, the particle-induced stress contributes to
the mean momentum transfer, in addition to the viscous and Reynolds shear stresses.
Here, we extend the formulation proposed by Zhang & Prosperetti (2010), Picano
et al. (2015) for the momentum balance in particulate flows, by taking the hyper-
elastic contribution into account (Rosti & Brandt 2018). The mean momentum balance
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in the channel then reads

ρu2
τ

(
1−

y
h

)
=µ(1−Φ)

dU
dy
− ρ[Φ〈u′pv

′

p〉 + (1−Φ)〈u
′v′〉] + 〈ξGBxy〉 +Φ〈σ

p
xy〉, (3.1)

where the first term on the right-hand side is the viscous shear stress, denoted τV ,
the second and the third terms indicate the turbulent Reynolds shear stress of the
combined phases, τT , the fourth term is the contribution of the hyper-elastic wall, τE
and the fifth term is the particle-induced stress τP; σ p

xy in the equation above indicates
the stress in the particle phase, normal to the streamwise plane and pointing in the
wall-normal direction, Φ is the mean local particle volume fraction as a function of
the wall-normal distance and u′ and v′ are the velocity fluctuations in the streamwise
and wall-normal directions with the subscript p denoting the particle phase. Here,
ρ and µ are the density and viscosity, assumed equal in the fluid and the elastic
layer. Note that in the absence of particles (Φ = 0) and the elastic layer (ξ = 0), this
equation reduces to the classic momentum balance for single-phase turbulent channel
flow (Pope 2000).

The wall-normal profiles of each term in the momentum transfer, normalized by
ρu2

τ , are displayed in figure 4(a–d) for the cases G1, G110 %, G4 and G410 %. Note
that the particle stress τP is computed by subtracting the three other stresses from
the total stress. Close to the interface, the contribution from the viscous stress τV is
reduced significantly with increasing wall elasticity, as the mean velocity is shown to
decrease in this region (figure 3a). The hyper-elastic stress, τE, instead, takes over the
momentum transfer, growing linearly within the elastic layer, where all other terms
in equation (3.1) tend to zero. Note that, this line can be extrapolated to calculate
the exact wall drag at y = 0, obtaining a drag which is consistent with the ones
reported above based on the mean pressure gradient. Far from the interface region,
the Reynolds stress, τT , plays the main role in momentum transfer. The relative
importance of the particle stress τP is observed to increase with the wall elasticity,
while the peak close to the interface disappears.

Integrating equation (3.1) from 0 to h leads to the contribution of each stress to the
total τw, which can be written as

τw =
2
h
[ΣτV +ΣτT +ΣτE +ΣτP]. (3.2)

Each contribution, multiplied by 2/h and normalized with the wall shear stress of
the single-phase flow over rigid walls (τRW), is reported in figure 4(e, f ) for the
single-phase and the particulate cases with different wall elasticities; RW and RW10 %
are obtained from the simulations with rigid walls presented in Ardekani et al. (2017).
Overall, we observe that the increase in drag with wall deformability can be attributed
to an increase of the turbulence activity, as also discussed in Rosti & Brandt (2017).
In other words, the turbulence activity increases with respect to the reference RW for
all cases. The contribution of the viscous shear stress to the total drag is in general
reduced with increasing wall elasticity, whereas the particle stress ΣτP monotonically
increases with decreasing G∗. This can be explained by the rigid particles opposing
any deformation, while experiencing stronger forces on their surfaces due to the
growing turbulence activity with decreasing G∗. We also note a non-monotonic
variation of ΣτT and ΣτE in the particle-laden cases when comparing the results
with the single-phase flows of the same wall elasticity: turbulence attenuation for
highly elastic walls, while increasing the turbulence activity in the cases of less
deformable walls.
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FIGURE 4. (Colour online) Momentum budget, normalized with ρu2
τ , for (a) G1,

(b) G110 %, (c) G4 and (d) G410 %. Here, τ is the total stress, τV the viscous shear
stress, τT the turbulent Reynolds shear stress of the combined phases, τE the hyper-elastic
contribution and τP the particle induced stress. Panels (e) and ( f ) show the total
contribution of each stress to the drag, normalized by the wall shear stress of the
single-phase flow with rigid walls, τRW (the dashed line in the figure). RW and RW10 %
are the cases with rigid walls taken by Ardekani et al. (2017).

3.2. Turbulence modulation
In this section we take a closer look at the turbulence modulation caused by the
simultaneous presence of the particles and deformable walls. We first examine the
root-mean-square velocity fluctuations and the Reynolds shear stress profiles, depicted
in figure 5. The velocity fluctuations are strongly affected by the elastic layer,
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FIGURE 5. (Colour online) Root-mean-square velocity fluctuations and Reynolds shear
stress: (a) streamwise 〈|u′|〉; (b) wall normal 〈|v′|〉; (c) spanwise 〈|w′|〉 and (d) Reynolds
shear stress. Panels (e) and ( f ) show 〈|u′|〉 and 〈|v′|〉, scaled in internal units. The colour
scheme is the same as in figures 2 and 3(a).

lingering inside as the wall elasticity increases. The wall-normal velocity fluctuation
v′ is the most affected by the wall elasticity, owing to the weakening of the wall
blocking and wall-induced viscous effects (Perot & Moin 1995a,b). The same effect
is also observed in turbulent boundary-layer flows over rough (Krogstadt & Antonia
1999) and porous walls (Rosti, Brandt & Pinelli 2018b). In addition, we note that
〈|v′|〉 attains a secondary peak in the vicinity of the interface, associated with the
oscillatory interface motion. As the wall elasticity increases, this secondary peak
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moves farther from the interface, becomes stronger than the classical turbulent peak
and the fluctuations are larger at the interface. In addition, we note that the peak
of the streamwise velocity fluctuations, u′, increases with increasing wall elasticity
considerably less than in the other two directions, which we attribute to the quenching
of the near-wall streaky structures close to the deformable interface (Breugem et al.
2006; Rosti & Brandt 2017; Rosti et al. 2018b). This behaviour is particularly evident
in figure 5(e, f ), where the profiles of 〈|u′|〉 and 〈|v′|〉 are depicted in internal units.

The magnitude of the velocity fluctuations increases in the presence of particles for
low wall deformabilities while it decreases for high elasticity, except for the peaks of
〈|u′|〉 which are always reduced with respect to their single-phase counterparts. Despite
the strong velocity fluctuations also inside the highly elastic walls, the Reynolds shear
stress (see figure 5d) is zero within these layers, indicating a decorrelation of u′ and v′.
The Reynolds shear stress increases in the particulate cases, except in the presence
of highly elastic walls, as observed for the r.m.s. velocities, where a significant
attenuation is instead observed (also shown in figure 4f ).

Next, we take a closer look at the turbulent flow near the deformable walls,
see figure 6 where we report instantaneous snapshots of the streamwise velocity
fluctuations, u′, in the wall-parallel plane at y/h= 0.1. The so-called high- and low-
speed streaks, characteristic of wall-bounded turbulence, can be directly recognized
near the less elastic walls. As the wall elasticity increases (from bottom to top),
these streamwise streaky structures appear as less elongated and more fragmented,
broken into smaller pieces by the interface motion. Further increasing the wall
elasticity results in the formation of relatively large structures, now correlated in the
spanwise direction (a), similar to those observed by Rosti & Brandt (2017). These
spanwise structures have been observed before in the turbulent flow over porous walls
(Breugem et al. 2006; Rosti et al. 2015, 2018b), rough surfaces (Raupach, Antonia &
Rajagopalan 1991; Jiménez et al. 2001) and plant canopies (Finnigan 2000). Breugem
et al. (2006) relates these elongated structures to a Kelvin–Helmholtz-type instability
that is triggered by the inflection point of the mean velocity profiles (Rayleigh’s
criterion, see Drazin & Reid 2004), creating spanwise vortices or rollers. Snapshots
of u′ in the flow laden with particles are shown in figure 6(b,d, f,h). Particles can be
observed to break both the streamwise and the spanwise structures into less elongated
and more fragmented patches.

To gain a better understanding of the turbulence structures and in order to quantify
the observations in figure 6, we compute the two-point spatial correlation of the
streamwise and the wall-normal velocity fluctuations as a function of the spanwise
and streamwise spacing, respectively as

Rz
uu(y, 1z)=

〈u′(x, y, z, t)u′(x, y, z+1z, t)〉
u′2

, (3.3)

Rx
vv(y, 1x)=

〈v′(x, y, z, t)v′(x+1x, y, z, t)〉
v′2

. (3.4)

Line and colour contours of Rz
uu(y, 1z) and Rx

vv(y, 1x) are presented in figure 7(a,b)
for the different cases under investigation. It is known that in a single-phase turbulent
flow the spanwise correlation of the streamwise velocity fluctuations exhibits a
negative local minimum in the near-wall region at around 1z+ ≈ 50–60 (Pope 2000),
which indicates half of the spacing between two neighbouring streaks. A similar
spacing is obtained in figure 7(a) for the cases with less elastic walls G3 and G4 (top
right), as these display a local minimum at 1Z+ ≈ 55 and 1Z+ ≈ 58, respectively.
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(g) (h)

-0.50 -0.25 0 0.25 0.50

x → x →

FIGURE 6. (Colour online) Instantaneous contours of the streamwise velocity fluctuations
u′ in the wall-parallel plane x− z at y/h= 0.1. The colour scale goes from −0.5Ub (blue)
to 0.5Ub (yellow). (a,c,e,g) indicates the single-phase flow cases (G1 to G4) and (b,d, f,h),
the particulate ones (G110 % to G410 %), with G∗ increasing from (a–h).

The figure shows clearly the disruption of the high- and low-speed streaks, when
increasing the wall elasticity, and how they shift away from the interface region. The
absence of high- and low-speed streaks, close to the highly elastic walls, can be
attributed to (i) a strong reduction of the mean shear (see figure 3a), an important
ingredient in the streaks formation mechanism (Lee, Kim & Moin 1990; Brandt
2014) and (ii) strong wall-normal velocity fluctuations preventing the development
of elongated structures. A region of positive values of Rz

uu can be observed instead,
at y/h ≈ 0.1 and 0.07 for the highly elastic cases, G1 and G2: this indicates the
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FIGURE 7. (Colour online) Line and colour contours of the one-dimensional
autocorrelation of (a) the streamwise velocity fluctuations as a function of the spanwise
spacing (Rz

uu(y, 1z)) and (b) the wall-normal velocity fluctuations as a function of the
streamwise spacing for different y/h (Rx

vv(y, 1x)). The solid lines correspond to positive
values, ranging from 0 to 0.8 with a step of 0.2 between two neighbouring lines, whereas
dashed and dotted lines indicate the isolines at −0.1 and −0.2, respectively. Results,
pertaining to the single-phase flow (cases G1 to G4), are shown in the first row of each
panel, while the autocorrelations for the particulate cases (cases G110 % to G410 %) are
depicted in the second row. G∗ increases from left to right. Internal units are indicated
on the top and on the right side of each panel.

emergence of structures elongated in the spanwise direction (as expected from the
visualizations in figure 6) with an approximate length of 0.7–0.8h.

The correlation Rz
uu pertaining to the particulate cases is given in the second row of

figure 7(a). The addition of particles shortens the spanwise length of the structures in
the cases G110 % and G210 %; the wall elasticity disrupts and displaces the high- and
low-speed streaks towards the channel centre. The disruption of the near-wall streaks
has been reported before for turbulent channel flows of finite-size spherical particles
(Picano et al. 2015; Costa et al. 2018; Wang, Abbas & Climent 2018; Ardekani &
Brandt 2019).

Next, we show the autocorrelations of the wall-normal velocity fluctuations along
the streamwise direction Rx

vv(y, 1x), see figure 7(b). The results clearly reveal that
the long quasi-streamwise vortices, associated with the presence of streaks, vanish
when increasing the wall elasticity and are replaced by roller-type vortices, elongated
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FIGURE 8. (Colour online) Contours of the weighted Reynolds shear stress at y/h =
0.05, given by multiplying the absolute value of the Reynolds shear stress by the joint
probability density of its occurrence in the u′–v′ plane for: (a) the single-phase flow cases
G1 to G4, (b) the particulate cases G110 % to G410 % and (c) spherical shells 5 % larger than
the particles in G110 % to G410 %. G∗ increases from left to right and the colours go from
yellow to black (maximum).

in the spanwise direction. The active range of these vortical structures grows with
the wall elasticity, reaching a size of approximately 140+ in the most elastic case G1.
In the particle-laden flows, the height of these vortices reduces in the highly elastic
cases, whereas the quasi-streamwise vortices characteristic of the less deformable
cases become shorter and more irregular. Breaking the large spanwise vortices near
highly elastic walls results in less wall deformation and thus, an overall attenuation
of the turbulent activity (see also figure 1b); however, it should be also noted that
breaking the quasi-streamwise vortices does not necessarily decrease the turbulent
activity. Indeed, it has been shown before that spherical particles with the same size
and volume fraction as considered here induce an increase of the turbulent activity
near rigid walls (Picano et al. 2015; Ardekani et al. 2017), similarly to what observed
in this study for the less elastic cases (see figure 5d).

So far we have presented a picture of the turbulence coherent structures near elastic
walls, including the presence of finite-size particles; however, the way these structures
contribute to the enhancement or attenuation of the Reynolds shear stress is yet to be
understood. To this purpose, we compute the weighted Reynolds shear stress, obtained
by multiplying the absolute value of Reynolds shear stress with the joint probability
density of its occurrence in the u′–v′ plane (Zhou et al. 1999). This analysis indicates
the turbulent events that contribute the most to the Reynolds shear stress, dividing
them into the four quadrants of the u′–v′ plane, denoted Q1 to Q4. In particular, Q2
(ejections: u′ < 0, v′ > 0) and Q4 (sweeps: u′ > 0, v′ < 0) events result in turbulence
production, while Q1 and Q3 are responsible for damping.
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Turbulent channel flow of spherical particles with elastic walls 427

Contours of the weighted Reynolds shear stress are depicted in figure 8 for a
wall-parallel plane slightly above the elastic wall y/h= 0.05; y/h= 0.05 approximately
matches the particle radius and is chosen to indicate the effect of the particles close to
the wall on the near-wall turbulence. Panel (a) shows the results for the single-phase
cases with elasticity decreasing from left to right. The major contribution to the
turbulence production near the highly elastic walls comes from ejection events with
significantly large values of v′ and small negative u′; the contribution of sweeps
comes from the events with an opposite combination, i.e. small negative v′ and
a relatively large positive u′. This observation reveals the mechanism by which
the spanwise vortices, forming close to the highly elastic walls, contribute to the
turbulence production: these vortices bring down the high momentum flow towards
the elastic wall with a weak wall-normal velocity due to the decreased wall-blocking
effect of the elastic layer, thus deforming the interface. The interface then releases
this elastic energy by pushing the flow with a strong wall-normal velocity towards
the centre of the channel, contributing to the turbulence production and regeneration
of new spanwise vortical structures. The low magnitude of u′ in the ejection events
is believed to be due to the blocking effect from the upstream deformed interface.
This is consistent with the asymmetric shape of the deformed wall (steeper slope
for wall retraction), previously shown in figure 1(a). As the wall elasticity decreases,
the distribution of the strong ejection events over the u′–v′ plane appears to become
less elongated in the vertical direction (v′ axis), while stretching along the u′ axis.
The relative contribution of sweep events increases when lowering the wall elasticity,
although with smaller magnitudes of u′v′. The distribution for the least elastic case
(b) is similar to what found in turbulent flows in the vicinity of rigid walls (Kim
et al. 1987), where the sweep events are slightly more powerful than the ejections.

The results pertaining to the particulate cases are depicted in figure 8(b). The shapes
of the distribution are similar to the ones of the single-phase flow cases, except for an
increase (G310 % and G410 %) or a reduction (G110 % and G210 %) in the magnitude of
v′. To gain a better understanding of the particles role, we repeat the same analysis
in figure 8(c), now sampling only the fluid inside a spherical shell which is 5 %
larger than the particles (particles cutting the wall-normal plane y/h = 0.05). For
the cases with highly elastic walls, the particles approach the interface region and
are trapped inside strong sweep events with a relatively large streamwise velocity.
The asymmetry in the magnitude of the wall-normal fluctuations (larger magnitudes
for positive v′) causes the particles to move away from the wall considerably faster
than when approaching it. Therefore, it is more likely to sample particles which
are slowly approaching the wall, surrounded by Q4 events. It should be noted here
that the particle concentration is low in the vicinity of highly elastic walls as we
will discuss later in § 3.3 and thus, the strong sweep events around the particles do
not contribute significantly to the turbulent production. Indeed, particles reduce the
active range of the large spanwise vortices, causing smaller wall deformation and
in turn a turbulence attenuation. In addition to sweeps, stronger Q1 events appear
in the flow surrounding the particles when the wall elasticity decreases. This is due
to particles with large streamwise velocity bouncing back from the less deformable
walls. Even though Q1 events damp the turbulence activity, the increase in the
wall-normal velocity fluctuations and also stronger sweeps close to the wall result
in an overall enhancement of the turbulent activity. The same conclusion can be
drawn from figure 9, where the Reynolds shear stress is conditionally averaged and
depicted for the second (Q2) and the fourth (Q4) quadrants of the u′–v′ plane against
y/h. Interestingly, both ejection and sweep events are damped in the presence of the
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FIGURE 9. (Colour online) Reynolds shear stress, conditionally averaged for (a) the
second (Q2) and (b) the fourth (Q4) quadrant of u′–v′ plane.

particles for the highly elastic walls; while for the less elastic cases, turbulence is
enhanced through sweep events and ejections are almost unchanged with respect to
the single-phase cases.

3.3. Particle dynamics
The mean local volume fraction Φ is depicted in figure 10(a). Spherical particles
in the turbulent flow with rigid walls (case RW10 %) display a local maximum at a
distance slightly larger than one particle radius from the wall. Picano et al. (2015)
attributed this local maximum to the formation of a particle layer at the wall due to
the wall–particle interactions that stabilize the particle position. Costa et al. (2016)
further explained that the presence of this particle layer always results in drag
increase with respect to the single-phase flow. Interestingly, the local maximum for
Φ is observed to reduce and move farther away from the wall when increasing
the wall elasticity. The migration of the particles from the interface region can be
explained by the presence of the strong ejection events with large v′ in the flow
in the case of highly elastic walls (see figure 8). Indeed, the strong asymmetry
in the magnitude of the wall-normal velocity fluctuations, which favours positive
v′, pushes the inertial particles towards the channel centre. However, as the wall
elasticity decreases, a more symmetric distribution of v′ allows the particles to form
a layer close to the interface, similarly to the rigid wall cases. This particle-wall
layer contributes to the turbulent production by increasing the cross-flow velocity
fluctuations, as shown in the previous subsection.

To study the particle dynamics, we display in figure 10(b) the ratio between the
turbulent kinetic energy of the fluid and that of the particle phase, K ′f /K

′

p=〈u
′2
+ v′

2
+

w′2〉/〈u′p
2
+ v′p

2
+w′p

2
〉. For the particle statistics presented in this figure the rigid body

motion of the particles is taken into account. The local velocity of the particle phase
is computed at each point by up+ΩΩΩp× (x− xc), with x and xc denoting an arbitrary
point inside the particle and the particle centre, respectively. Particle velocities are
observed to fluctuate less than the fluid at the same wall-normal distance, except for
a tiny region close to the wall (y/h / 0.05), where the ratio is below 1 for all the
cases. The high particle fluctuation level in this region suggests that this is the cause
of the near-wall enhancement of the fluid velocity fluctuations, observed in the cases
with less elastic walls. The ratio between the two energies increases with the wall
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FIGURE 10. (Colour online) Profiles of particle-phase averaged data versus y/h: (a) mean
local volume fraction, (b) the ratio between the turbulent kinetic energy of the fluid and of
the particle phase and (c) mean particle velocity profiles, normalized by the bulk velocity
Ub. RW10 % refers to the case with rigid walls from the study of Ardekani et al. (2017).
(d) Overall average particle velocity versus the modulus of transverse elasticity G∗. The
average of the particle velocity for RW10 % is indicated with a dotted line.

elasticity at y= 0, reaching 0.6 in the most elastic case, when fewer particles can be
found in this region. Particle–wall/particle collisions are observed to play an important
role in increasing the fluctuations near the wall. Indeed, the particles in this region
have a mean velocity larger than the surrounding fluid, due to their size and the fact
that they can have a relative tangential motion at the wall. Therefore, any collision
between the particles can result in strong velocity fluctuations. Figure 10(c) depicts
the mean particle velocity profiles, normalized by the bulk velocity Ub. Comparing the
profiles with the mean velocity in figure 3(a) reveals that the particle and fluid phase
have the same mean velocity throughout the channel, except for a small layer close
to the wall with the width of approximately one particle diameter D, where particles
experience a larger mean velocity. The slip velocity at y= 0 is observed to increase
as the wall elasticity decreases.

The overall average particle velocity is displayed in figure 10(d) versus the modulus
of transverse elasticity G∗. It can be observed in this figure that increasing the wall
elasticity results in a faster transport of the solid phase as the averaged velocity
increases from approximately 1.06Ub in the case of rigid walls (shown with a dotted
horizontal line) to 1.14 in the flow over the most elastic walls. This increase in the
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FIGURE 11. (Colour online) (a) Root-mean-square velocity fluctuations u′, v′ and w′ in
the streamwise, ——, wall-normal, - - - and spanwise, . . . , directions and (b) Reynolds
shear stress, scaled in outer units for the cases G4, G410 % and G4NPWL.

averaged velocity is due to the migration of the particles away from the interface
region.

To show the importance of the particle-wall layer in the enhancement of the velocity
fluctuations in this region, we perform a numerical experiment where we artificially
remove this layer. In this simulation, denoted G4NPWL (no particle-wall layer), particles
bounce back towards the core region of the channel before approaching the elastic
walls, colliding with two virtual walls located at a distance h/10 from the two
real interfaces (y/h = 0.1). The elasticity of the wall is set to G∗ = 2, i.e. the
less deformable elastic wall previously considered, the case where the effect of the
particle-wall layer is more pronounced. The velocity fluctuations and the Reynolds
shear stress pertaining to this additional case are compared with the results for G4 and
G410 % in figure 11. The increase in the cross-flow fluctuations previously observed for
the case G410 % disappears when removing the particle-wall layer (G4NPWL), and as a
consequence, a strong turbulence attenuation is obtained (see figure 11b), with v′ the
most reduced fluctuation component. With particles not contributing to the turbulent
production in the near-wall region, the attenuation of the turbulence activity can
be associated with the increased effective viscosity of the suspension (Picano et al.
2015; Ardekani et al. 2017). The effective viscosity of a rigid particle suspension
is always higher than that of the single-phase flow, which cause a reduction in the
turbulent activity; however, this effect is usually compensated by the formation of
a particle-wall layer and its contribution to the turbulence production, thus resulting
in an overall enhancement of the turbulent activity (G4). Hence, a strong turbulence
attenuation and thus drag reduction (Reτ ≈ 167) even with respect to the single-phase
flow over rigid walls (Reτ ≈ 180) can be obtained by removing the particle-wall layer
(see figure 3b).

3.4. Effect of the particle volume fraction
Picano et al. (2015) investigated dense suspensions of spherical particles in a turbulent
channel flow with rigid walls up to a volume fraction equal to 20 %. Their study
revealed that the overall drag increase is mainly due to the enhancement of the
turbulence activity up to φ = 10 % and to the particle-induced stress at higher
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(c) (d)

FIGURE 12. (Colour online) Instantaneous snapshots of the streamwise velocity u on the
x–y and y–z planes for walls with elastic modulus G∗= 0.5 and different volume fractions
(a) φ = 0 % (case G2), (b) φ = 5 % (case G25 %), (c) φ = 10 % (case G210 %) and (d) φ =
20 % (case G220 %). For clarity, only the particles lying within the selected x–y plane are
displayed. The colour scale for the streamwise velocity ranges from 0 (dark green) to
1.5u/Ub (white). The elastic walls are represented by the isosurface ξ = 0.5, coloured by
the wall-normal distance, ranging from −0.15h (white) to 0.15h (black).

concentrations (φ = 20 %), where the turbulence is instead attenuated. In this section
we investigate the effect of the particle volume fraction in a channel with elastic
walls. The case G2, with elasticity G∗= 0.5, is simulated with two additional volume
fractions, φ = 5 % and 20 %, so to compare the change in drag with respect to the
cases with rigid walls.

Snapshots of the flow and particles are displayed in figure 12, where the
instantaneous streamwise velocity u is depicted on x–y and y–z planes for the
cases with G∗ = 0.5 and φ = 0, 5 %, 10 % and 20 %. For clarity, just a fraction of
the particles (those lying within the visualized x–y plane) are displayed. The wall
deformation and the turbulent activity appear to decrease when increasing the particle
volume fraction, especially in the case with φ = 20 %. Note also the absence of a
particle-wall layer close to the interface, even at highest volume fraction considered
here, φ = 20 %.

The root-mean-square velocity fluctuations 〈|u′|〉, 〈|v′|〉 and 〈|w′|〉 are depicted in
figure 13(a), versus the wall-normal distance y/h. The results show a progressive
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FIGURE 13. (Colour online) (a) Root-mean-square velocity fluctuations u′, v′ and w′ in
the streamwise, ——, wall-normal, - - -, and spanwise, . . . , directions. (b) Mean local
volume fraction profiles against the results for rigid walls (Picano et al. 2015). (c) The
total contribution of each stress to the drag at the interface, normalized by the drag of
the single-phase flow with rigid walls, τRW (the dashed line with Reτ = 180). The case
RW20 % (rigid walls at φ=20 %) is extracted from the reported data in Picano et al. (2015).
(d) The friction Reynolds number Reτ , versus the volume fraction φ.

reduction in the velocity fluctuations with increasing solid volume fraction. The
decrease with respect to G2 is moderate for G25 % and G210 %, while for a volume
fraction of 20 % a significant attenuation of all the velocity fluctuations is evident,
especially in the core of the channel where the turbulent flow is almost relaminarized
(see also figure 12d). Differently from the results with rigid walls (Picano et al.
2015), the particles are observed here to attenuate the turbulence activity for all the
volume fractions, with a reduction larger than that with rigid walls for the case at
φ = 20 %. We explain this by examining the mean local volume fraction profiles in
figure 13(b), where data for rigid walls are also displayed (Picano et al. 2015). The
particle-wall layer disappears for φ 6 10 % and the near-wall peak is significantly
reduced and displaced farther away from the wall (y/h≈ 0.1) also for the case G220 %.
The particle migration away from the interface region causes a stronger attenuation
of turbulence than in the presence of rigid walls at φ = 20 %.

Following the analysis in equation (3.2), the contribution of each shear stress
(viscous, τV , Reynolds, τT , hyper-elastic, τE and particle-induced τP), normalized by
the drag of the single-phase flow over rigid walls (τRW), is reported in figure 13(c) for
different volume fractions at G∗= 0.5. The case RW20 % denotes the flow at φ = 20 %
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over rigid walls from Picano et al. (2015). In spite of a reduced turbulent activity
over an elastic wall, case G220 % in comparison to RW20 %, the particle stress τP more
than compensates for the decrease of Reynolds shear stress, resulting in an overall
higher drag for the flow over the elastic wall. The friction Reynolds number, Reτ ,
is finally compared with the results for rigid walls in figure 13(d), where the effect
of wall elasticity is observed to reduce significantly when the volume fraction of the
particles is increased.

4. Final remarks
We have reported results from direct numerical simulations of single-phase and

particulate turbulent channel flows, bounded by two incompressible hyper-elastic walls
at bulk Reynolds number 5600 (Reτ ≈ [180–380]). Four different wall elasticities are
studied, ranging from an almost rigid to a highly elastic wall. Both single-phase and
particulate cases are simulated at each wall elasticity, considering a 10 % volume
fraction of finite-size neutrally buoyant rigid spherical particles with a diameter of
D= h/9 with h the half-channel width.

Our data show a significant drag increase and an enhancement of the turbulent
activity with growing wall elasticity for both the single-phase and particle-laden flows.
Upon addition of particles, drag reduction and a turbulent attenuation are documented
for the flows over highly elastic walls; the opposite is observed for the flow over less
elastic walls in which case the drag increases in the presence of the particles.

The strong asymmetry in the magnitude of the wall-normal velocity fluctuations
(favouring positive v′) is found to push the particles towards the channel centre.
However, as the wall elasticity decreases, a more symmetric distribution of v′ allows
the particles to form a layer close to the interface, similar to the suspension flow over
rigid walls. The particle layer close to the wall is shown to contribute to increasing
the wall-normal velocity fluctuations, while in the absence of this layer, smaller
wall deformation and in turn turbulence attenuation is observed. We further address
the importance of the particle-wall layer in turbulence production by performing a
numerical experiment where we prevent the formation of this layer for the case with
the least elastic walls. In this simulation the particles bounce back towards the core
of the channel by colliding with two virtual walls located at a distance h/10 from the
two real interfaces. The results of this simulation show a strong turbulence attenuation
and thus drag reduction (Reτ ≈ 167), even with respect to the single-phase flow over
rigid walls (Reτ ≈ 180).

The effect of the volume fraction is further studied at a moderate wall elasticity, by
increasing the particle volume fraction up to 20 %. Migration of the particles from the
interface region is found to be the cause of an increased turbulence attenuation, when
comparing to the flow with same solid volume fraction over rigid walls. However,
the particle-induced stress compensates for the decrease of the Reynolds shear stress,
resulting in an overall drag increase in the case of elastic walls. The effect of the
wall-elasticity on the drag is significantly reduced when the volume fraction of the
particles increases.

We finally perform an extra simulation to distinguish the effect of wall elasticity on
the near-wall turbulence from the modulation caused by a rough wall (see appendix A).
In this simulation, an instantaneous configuration of the deformed interface, obtained
in the single-phase case with the highest wall elasticity, is frozen in time. For the flow
over this rough wall, the drag is strongly reduced, mostly due to the lower turbulence
activity than in the flow over elastic walls. The strong and dominant ejection events,
observed in the near-wall turbulence of highly elastic walls, are indeed significantly
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reduced near the rough walls. Therefore, we expect that migration of the spherical
particles towards the channel centre would be reduced in the case of rough surfaces;
this would however require a detailed analysis, left for future studies.
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Appendix A. Roughness & elasticity
The single-phase turbulent flow over highly elastic walls shows similarities to what

has been reported in the literature for turbulent flows over porous walls (Breugem
et al. 2006; Rosti et al. 2015; Samanta et al. 2015; Rosti et al. 2018b), rough
surfaces (Raupach et al. 1991; Jiménez et al. 2001) and plant canopies (Finnigan
2000). In this section, we wish to distinguish the main effects of wall elasticity
on the near-wall turbulence from the modulation caused by the roughness. For this
purpose, an additional simulation is performed where an instantaneous configuration
of the deformed interface, obtained in the case with the largest wall elasticity (G1),
is chosen and frozen in time (G∗ → ∞). A volume penalization IBM (Kajishima
et al. 2001; Breugem, Van Dijk & Delfos 2014; Ardekani et al. 2018) is employed
to impose the no-slip/no-penetration boundary conditions on the surfaces, with the
local solid fraction at each grid cell extracted from the instantaneous field ξ in the
simulation with deformable walls.

We start by comparing the mean velocity of the single-phase elastic cases with
the results obtained for G1FW . The mean velocity profiles, scaled in inner units,
are depicted in figure 14(a), versus (y+ d)+. Here, d is a shift of the origin (zero
plane) (Jackson 1981; Breugem et al. 2006; Suga et al. 2010; Rosti & Brandt 2017),
following the modified log law

U+ =
1

k+1k
log (y+ d)+ + B−1U+. (A 1)

Here, k+1k and B are the modified von Kármán and the additive constants (k= 0.4
and B= 5.5) and 1U+ is the velocity shift; d is calculated similarly to Breugem et al.
(2006), Rosti & Brandt (2017) by iterating between several values until a region of
constant (y+ d)+dU+/dy+ = 1/(k + 1k) is obtained. The mean flow profiles show
a significant reduction in the length of the logarithmic layer with increasing wall
elasticity, which is not observed for G1FW . The values of the fitting parameters,
reported in table 2, indicate a downward shift of the inertial range and an increase
of its slope with increasing wall elasticities. The mean flow profile for G1FW shows
a more pronounced downward shift than the change in slope of the logarithmic layer.
Rosti & Brandt (2017) found a linear relation between the wall-normal velocity
fluctuations at y= 0, 1k and the velocity shift 1U+,

1U+ ≈
〈|v′|〉(0)
1k

, (A 2)

thus modifying the correlation proposed by Orlandi & Leonardi (2008) for turbulent
channel flows over rough walls. This linear correlation is shown in figure 14(b) for the
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FIGURE 14. (Colour online) (a) Mean velocity profiles U+, scaled in inner units, versus
(y+ d)+, where d is a shift of the origin. The blue, red, green and magenta solid lines
are used for the cases G1 to G4, respectively, while the profile for G1FW is indicated with
a brown solid line. (b) Root mean square of the wall-normal velocity fluctuation at y= 0,
divided by |1k|Ub, versus the velocity shift 1U+. The data for G1FW indicated with a
brown square.

Case d/h k+1k 1U+ 〈|v′|〉(0)/Ub

G1 0.211 0.23 22.01 0.108
G2 0.143 0.27 15.37 0.064
G3 0.075 0.31 5.42 0.023
G4 0.028 0.38 1.05 0.004
G1FW 0.041 0.35 9.12 0.021

TABLE 2. Summary of the log-law fitting parameters with d the origin shift, k+1k the
modified von Kármán constant and 1U+ the shift of the mean velocity profile in inner
scales. Here, v′(0) denotes the wall-normal velocity fluctuation at y= 0.

single-phase cases, and interestingly the correlation is also valid for the rough case,
depicted with a brown square in this figure. This indicates that the scaling can also be
used for rough walls in addition to the elastic walls and the permeable walls, shown
to match the correlation in the work of Rosti & Brandt (2017).

The contribution of the different stresses to the global momentum transfer for cases
G1 and G1FW is reported in figure 15(a). Note that τE does not indicate the elastic
stress for the fixed wall, G1FW , but the shear stress from the solid roughness elements
acting in the streamwise direction. This is computed with the difference between the
total drag (calculated by the imposed pressure gradient) and the sum of the viscous
and Reynolds shear stresses inside the channel and is significantly smaller than the
contribution of the elastic stress in G1. The total drag is reduced from 4.65τRW to
2.42τRW in G1FW , mostly due to the lower turbulent activity in the flow over the rough
walls.

To better understand the cause of this reduction, we display contours of the
weighted Reynolds shear stress for the case G1FW at y/h = 0.05 in figure 15(b) (as
previously done in figure 8). Interestingly, the strong and dominant ejection events,
previously observed for highly elastic walls, are nearly absent close to the rough

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

41
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 K

TH
 K

un
gl

ig
a 

Te
kn

is
ka

 H
og

sk
ol

an
, o

n 
24

 Ju
n 

20
19

 a
t 1

8:
01

:1
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.413
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


436 M. N. Ardekani, M. E. Rosti and L. Brandt

y/h

1.00

0.75

0.50

0.25

0
0 0.5 1.0

Îz/h
1.5

1.00

0.75

0.50

0.25

0
0 0.5 1.0

Îx/h
1.5

0.50

0.25

0

-0.25

-0.50 -0.25 0 0.25 0.50
u�/Ub

√� /U
b

2Σ
† i/

h†
RW

5

4

3

2

1

0
G1 G1FW

Σ†V Σ†T Σ†E
(a) (b)

(c) (d)

FIGURE 15. (Colour online) (a) The contribution of each stress to the total drag,
normalized by the drag of the single-phase flow with rigid walls, τRW (the dashed line
with Reτ = 180). (b) Contours of the weighted Reynolds shear stress for G1FW at y/h=
0.05, given by multiplying the absolute value of the Reynolds shear stress with the joint
probability density of its occurrence in the u′–v′ plane. (c) One-dimensional autocorrelation
of u′ as a function of the spanwise spacing (Rz

uu(y, 1z)) and (d) one-dimensional
autocorrelation of v′ as a function of the streamwise spacing for different y/h (Rx

vv(y,1x)).
The colour scheme in (c) and (d) is the same reported for figure 7.

walls. This further proves that these energetic events are indeed associated with the
elastic potential energy of the deformable walls. Sweep events can be observed to be
the dominant contribution to the turbulent production near the rough walls, similarly
to turbulent flows over permeable walls (Breugem et al. 2006; Suga et al. 2010)
or plant canopies (Zhu, Van Hout & Katz 2007). Finally, line and colour contours
of Rz

uu(y, 1z) and Rx
vv(y, 1x) are presented in figure 15(c,d) for the flow over the

rigid rough wall. The high- and low-speed streaks are observed to move upwards,
with a larger spacing between them. Moreover, the spanwise vortices, previously
observed near highly elastic walls, are absent in this case of rough walls. Note
that, the two correlated regions (just below and above y= 0) in the contours of Rz

uu

are a consequence of the geometry of the rough surface, which has the spanwise
deformations typical of the flow over highly elastic wall, case G1.
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