
J. Fluid Mech. (2022), vol. 940, A19, doi:10.1017/jfm.2022.179

Modulation of homogeneous and isotropic
turbulence in emulsions

Marco Crialesi-Esposito1,†, Marco Edoardo Rosti2, Sergio Chibbaro3 and
Luca Brandt1,4

1FLOW Centre, KTH Royal Institute of Technology, Stockholm, Sweden
2Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University,
1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
3Institute Jean le Rond ∂’Alembert, Sorbonne Universite, Paris, France
4Department of Energy and Process Engineering, Norwegian University of Science and Technology
(NTNU), Trondheim, Norway

(Received 16 August 2021; revised 22 December 2021; accepted 21 February 2022)

We present a numerical study of emulsions in homogeneous and isotropic turbulence
(HIT) at Reλ = 137. The problem is addressed via direct numerical simulations, where
the volume of fluid is used to represent the complex features of the liquid–liquid interface.
We consider a mixture of two iso-density fluids, where fluid properties are varied with
the goal of understanding their role in turbulence modulation, in particular the volume
fraction (0.03 < α < 0.5), viscosity ratio (0.01 < μd/μc < 100) and large-scale Weber
number (10.6 < WeL < 106.5). The analysis, performed by studying integral quantities
and spectral scale-by-scale analysis, reveals that energy is transported consistently from
large to small scales by the interface, and no inverse cascade is observed. Furthermore,
the total surface is found to be directly proportional to the amount of energy transported,
while viscosity and surface tension alter the dynamic that regulates energy transport. We
also observe the −10/3 and −3/2 scaling on droplet size distributions, suggesting that the
dimensional arguments that led to their derivation are verified in HIT conditions.

Key words: multiphase flow, isotropic turbulence, emulsions

1. Introduction

Emulsions are multiphase flows of two immiscible (totally or partially) liquid phases
with similar densities. Such flows are extremely common in industrial applications
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such as pharmaceuticals (Nielloud 2000; Spernath & Aserin 2006), food processing
(McClements 2015), oil production (Kokal 2005; Mandal et al. 2010; Kilpatrick 2012)
and waste treatment. Emulsions are also relevant for environmental flows such as oil
spilling in oceans, when the oil droplets distribution becomes fundamental for quantifying
environmental damage (Li & Garrett 1998; French-McCay 2004; Gopalan & Katz 2010).
Many studies have been performed on the rheological behaviour of emulsions in the past
(Einstein 1906, 1911; Jansen, Agterof & Mellema 2001; Pal 2000, 2001; De Vita et al.
2019), while the current knowledge on their behaviour in turbulent flows is limited (Yi,
Toschi & Sun 2021).

The two fluids are usually referred to as continuous phase (or carrier phase in case
of strong advection) and dispersed phase (or droplet phase) depending on whether the
volume fraction α is respectively greater or lower than 0.5; the system is denoted as binary
flow when α = 0.5. As the density ratio is usually considered to be close to 1, gravity
effects are negligible with respect to the stirring and advection needed to sustain turbulence
in the flow. For this reason, four dimensionless numbers can be used to describe these
flows, namely the Reynolds number Re, the Weber number We, the volume fraction of the
dispersed phase, and the viscosity contrast. Depending on the specific configuration under
investigation, the definitions of these numbers can change, yet they completely define the
case studied provided that the two fluid have the same density.

Several aspects of fundamental importance in emulsions, such as turbulence
modulation, droplet size distributions and interphase energy fluxes, are not fully
understood. We therefore aim to partially fill this gap by means of numerical simulations.
In the following, we provide an overview of the main results available in the literature.
Results for bubble/droplet-laden flows are also discussed when relevant to the present
work.

1.1. Observations on droplet size distribution
The droplet size distribution (DSD) is a key aspect of emulsions, as its prediction becomes
fundamental in most applications. In his early seminal work, Kolmogorov (1949) discussed
the criteria under which a droplet undergoes breakup when subject to surrounding
turbulence. Kolmogorov first proposed a dimensional argument according to which surface
tension forces need to be balanced locally by turbulent energy fluctuations. This idea
was later addressed in Hinze (1955) and translated into a critical Weber number Wec of
order 1 at which breakup occurs, leading to the definition of the Hinze scale dH as the
minimum droplet diameter at which breakup may occur due to pressure fluctuations. A
general definition for this scale is

dH =
(

Wec

2

)3/5 (
σ

ρc

)3/5

ε−2/5, (1.1)

where σ is the surface tension coefficient, ρc is the carrier phase density and ε is the
energy dissipation rate. This estimate proved valid for bubbles (Chan et al. 2021; Masuk,
Salibindla & Ni 2021) and emulsions (Perlekar et al. 2012; Mukherjee et al. 2019; Rosti
et al. 2020; Yi et al. 2021). Different O(1) values have been reported for Wec in numerical
(Rivière et al. 2021) and experimental works (Deane & Stokes 2002; Lemenand et al.
2017), from 0.5 up to 5; for dilute emulsions in turbulence Wec ≈ 1.17, according to the
values from both numerical (Perlekar et al. 2012) and experimental (Yi et al. 2021) data.

For bubbles larger than the Hinze scale, Garrett, Li & Farmer (2000) found that in
isotropic turbulent conditions, droplets break with a cascade process, and the diameter
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distribution follows a d−10/3 power law. This deterministic process can describe accurately
bubble size distributions in breaking waves obtained in experiments (Garrett et al. 2000;
Deane & Stokes 2002; Qi, Mohammad Masuk & Ni 2020) and numerical simulations
(Deike, Melville & Popinet 2016; Chan et al. 2021). The same power law has also
been proposed for emulsions, based on diffuse-interface numerical simulations (Skartlien,
Sollum & Schumann 2013; Mukherjee et al. 2019; Soligo, Roccon & Soldati 2019). For
bubbles smaller than the Hinze scale, Deane & Stokes (2002) suggested the existence of
a fragmentation process; in this case, a d−3/2 power law is used to fit experimental data
accurately. Agreement with this empirical power law has been observed in homogeneous
and isotropic turbulence (HIT) for both bubbles (Rivière et al. 2021) and emulsions
(Mukherjee et al. 2019). The transition between the two power laws is defined by the Hinze
scale. A consequence of this transition is that droplets with d � dH generate both local
and non-local bubble/droplet production, as they can fragment in droplets both larger and
smaller than the Hinze scale (Rivière et al. 2021). Although both power laws have been
derived under the hypothesis of dilute conditions (α � 0.05), they have been observed
recently in HIT studies of dense emulsions (Mukherjee et al. 2019), raising the question
on the effective role of coalescence in the process.

The connection between bubbles and emulsions is non-trivial and deserves special
attention. Hinze (1955) discussed how Wec depends on the fluid properties of the dispersed
phase. He assumed that Wec = C[1 − f (NVi)], with f a generic function of the viscosity
group NVi = μd/

√
ρdσd, where μd is the dispersed phase viscosity. On the other hand,

dH was derived under the assumption of a dilute emulsion, hence the density in (1.1)
refers to the carrier phase, as the phase where the energy dissipation rate ε could be
measured in experiments. This allows the direct application of the Hinze criteria in flows
where density/viscosity ratios are significant as in air–water flows. However, significant
uncertainties are discussed in the literature about the properties of the function f , and
the role of the dispersed phase properties remains mostly unknown (Masuk et al. 2021).
Also unknown is the role of turbulence inhomogeneity and anisotropy, which, according
to Hinze (1955), may be a further source of nonlinear effects in the determination of Wec.
In fact, in flows where the energy dissipation rate shows strong spatial variations, Wec
varies for each bubble/droplet, and it assumes meaning only in an average sense, making it
difficult to disentangle the effects of turbulence anisotropy and property contrast. Despite
all these uncertainties, correlations from Hinze (1955), Garrett et al. (2000) and Deane
& Stokes (2002), derived for isotropic turbulent conditions, apply in most studies with
strong property contrasts and large-scale anisotropy. This is likely due to the underlying
assumption that the breakup process is purely inertial, as it depends only on ε (Garrett
et al. 2000). Thus bubble breakup studies become relevant also for the present study.

Finally, it is worth noticing that the flow configuration appears to have a significant
impact on DSD, and experimental observations in shear flows can depart quite
substantially from the discussed power-law behaviours. The recent work of Yi et al. (2021)
presents strong experimental evidences of gamma/log-normal DSD in Taylor–Couette
flow, confirming the previous findings of Pacek, Man & Nienow (1998). These
configurations are characterized by strong anisotropy, making the comparison with data
obtained for emulsions and bubbles in HIT difficult. On the other hand, Soligo et al. (2019)
studied breakup and coalescence of emulsions dynamic in a turbulent channel flow. These
authors observed the appearance of the −10/3 power law for the DSD in the presence
of surfactants. It is interesting to observe that in this numerical study, the scaling from
Garrett et al. (2000) seems to apply in anisotropic configurations. Fortunately, there has
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been a significant effort in recreating local HIT conditions in experiments in recent years
(Debue et al. 2018; Dubrulle 2019; Knutsen et al. 2020), and new studies are expected to
provide new insights on these aspects.

1.2. Studies of two-fluid turbulence
With the advent of more powerful computational resources, a significant number of studies
have considered droplets in turbulent flows, yet almost all only through diffuse-interface
methods that may display significant mass loss. In their study of emulsions in HIT
turbulence, Perlekar et al. (2012) show that a statistical stationary state can be reached
for the DSD. In the study, the authors used the pseudo-potential lattice Boltzmann method
(Biferale et al. 2011), which compensates mass losses (due to droplets dissolution) by
artificially re-inflating existing ones. Simulations of the Cahn–Hilliard–Navier–Stokes
formulation are presented in Perlekar et al. (2014) for binary fluids. These authors found
that enforcing large-scale HIT arrests coarsening. This result is particularly significant for
emulsions (of which binary fluids represent a special case) as it shows that turbulence is
the main factor to determine the droplet size. Furthermore, these authors report modified
energy spectra for the mixtures, with a crossover in correspondence to the Hinze scale.

Komrakova, Eskin & Derksen (2015) used a free-energy lattice Boltzmann method
to simulate numerically emulsion breakup in HIT, induced by an external large-scale
linear forcing. Their findings show that energy spectra present deviations with respect
to the single-phase configuration and that the numerical method employed may alter
the small-scale dynamics of the flow. Finally, increased coalescence is found for volume
fractions α > 0.05 also owing to the nature of the diffuse-interface method.

Droplet interactions with turbulence have been studied by Dodd & Ferrante (2016) in
decaying isotropic turbulence. Amongst several observations, these authors discuss the
effects of droplet breakup and coalescence on the turbulent kinetic energy budget. Droplet
coalescence lowers the total amount of area, hence decreases the surface energy and
consequently increases the kinetic energy locally, while the opposite occurs in the case of
breakup. More recently, Mukherjee et al. (2019) have studied emulsions in HIT conditions
using a pseudo-potential lattice Boltzmann method, discussing droplet statistics and
their correlation with the surrounding turbulence. They confirm the findings of Perlekar
et al. (2014) for energy spectra pivoting at the Hinze scale, demonstrating that energy is
subtracted from large scales and injected at small scales, while no direct observation of the
underlying mechanism is presented. These authors also show that the droplet generation
can be described through the Weber number spectra. In the same work, Mukherjee and
co-workers discuss and demonstrate the need for using a forcing scale smaller than the
turbulent-box size in order to achieve a polydisperse droplet distribution. It is important
to note that Mukherjee et al. (2019) used a pseudo-potential lattice Boltzmann method,
which leads to a significant loss of the dispersed mass during the simulation, as discussed
fairly by the authors.

As concerns binary fluids, Perlekar (2019) shows how the presence of interfaces leads
to a different energy transfer mechanism, confirming the conclusions in Dodd & Ferrante
(2016). Perlekar (2019) uses the scale-by-scale (SBS) energy balance to show that the
energy absorption at larger scales is given mainly by the interface source term in the
Cahn–Hilliard equation used by the author to describe the multiphase nature of the flow.
Furthermore, Perlekar (2019) shows that small-scale statistics are almost unchanged when
changing We, while they are affected by the Reynolds number. This study complements the
previous findings in binary fluids (Perlekar et al. 2014; Perlekar, Pal & Pandit 2017), where
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coarsening was analysed in three- and two-dimensional turbulence by means of a spinoidal
decomposition. Rosti et al. (2020) study droplets in homogeneous shear turbulence,
focusing on the effect of the droplet initial diameter and the shear rate magnitude; the
results show that a statistically stationary regime (i.e. balance of coalescence and breakup
events, and energy balance convergence) can be reached, while the Taylor-scale Reynolds
number Reλ decreases with increasing surface tension.

Despite the growing literature on the subject, many issues are yet to be fully understood.
In particular, most of the studies have been carried out using diffuse-interface approaches,
which cannot exactly represent the surface terms effects yet are key in many situations. In
this sense, our work complements the very recent one by Rivière et al. (2021), focused on
the bubble breakup dynamics.

1.3. Objectives of the present study
In the present work, we use direct numerical simulations (DNS) to study the effects of
viscosity ratio, volume fraction and surface tension on the emulsion turbulent behaviour.
The chosen set-up is tri-periodic HIT, with turbulence sustained throughout the simulation
time. The analysis is performed at Reλ ≈ 137, which is larger than that attained in
previous interface-resolved numerical studies of multiphase turbulent flows. Also, volume
fraction, viscosity ratio and surface tension are varied to cover most relevant applications
(Jansen et al. 2001). We analyse the turbulence through global and phase-averaged energy
balance, energy spectra, SBS energy budget, and probability density functions (p.d.f.s)
for the intermittency analysis. Furthermore, we discuss DSD for all cases. In summary,
we will show that: (i) the energy balance is significantly altered by the properties of the
dispersed phase; (ii) surface tension forces induce an additional mechanism for energy
transfer from larger scale towards the energy dissipation range; (iii) the modified energy
transport mechanism alters the energy spectra; (iv) the presence of the interface increases
intermittency and alters the small-scale statistics; (v) the DSD displays both the d−3/2 and
d−10/3 power laws, with remarkable accuracy also for d < dH .

2. Methodology

2.1. Governing equations and numerical method
We consider an incompressible flow obeying the continuity and Navier–Stokes equations

∂iui = 0, (2.1a)

ρ(∂tui + uj ∂jui) = −∂ip + ∂i
[
μ(∂iuj + ∂jui)

] + f σ
i + f T

i , (2.1b)

where ui is the velocity in the ith direction, p is the pressure, and ρ and μ are the local
density and viscosity. The forcing term f σ

i = σξδsni represents the surface tension force,
where σ is the surface tension, ξ is the local interface curvature, ni is the ith component of
the surface normal vector, and δs the Dirac delta function that ensures that the surface force
is applied only at the interface (Tryggvason, Scardovelli & Zaleski 2011). The last term in
(2.1b) is the forcing needed to sustain turbulence by injecting energy at the large scales;
among the several algorithms available to force sustained homogeneous and isotropic
turbulence (e.g. Eswaran & Pope 1988; Rosales & Meneveau 2005; Mallouppas, George
& van Wachem 2013; Bassenne et al. 2016), we use here the Arnold–Beltrami–Childress
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(ABC) forcing (Mininni, Alexakis & Pouquet 2006)

f T
x = A sin κ0z + C cos κ0y,

f T
y = B sin κ0x + A cos κ0z,

f T
z = C sin κ0y + B cos κ0x,

⎫⎪⎪⎬⎪⎪⎭ (2.2)

with x, y, z ∈ [0, 2π]. As reported by Podvigina & Pouquet (1994), the ABC forcing
creates an unstable single-phase flow for 1/ν > 20, with ν the kinematic viscosity and
κ0 the forcing wavelength.

The description of the code and the algorithm used can be found in Rosti, De Vita
& Brandt (2019) and Rosti et al. (2020), together with several validations. The method
is therefore described only briefly here; see also Costa (2018) for references to the code
structure. The equations are discretized on a staggered uniform Cartesian mesh; the spatial
derivatives are computed using second-order centred finite differences, and a second-order
Adam–Bashford scheme is used for the time integration. The pressure splitting method
presented in Dodd & Ferrante (2014) is used to obtain a constant-coefficient Poisson
equation, which we then solve with the direct fast Fourier transform based pressure solver
presented in Costa (2018).

The interface between the two fluids is described with the volume of fluid (VOF)
method, in particular the Multi-dimensional Tangent Hyperbola Interface Capturing
(MTHINC) algorithm developed by Ii et al. (2012). The advection equation for the VOF
can be written in divergence form as

∂tφ + ∂iui H = φ ∂iui, (2.3)

where H is the colour function assuming the values 0 and 1 in each of the fluids, and φ

is the cell-averaged value of H. In the MTHINC method, the function H is approximated
locally using the hyperbolic tangent:

H(x′, y′, z′) ≈ 1
2(1 + tanh(β(P(x′, y′, z′) + d))), (2.4)

where (x′, y′, z′) ∈ [0, 1] is the cell-centred local coordinate system, β is a sharpness
parameter (equal to 1 in the current work), d is a normalization factor, and P is
the three-dimensional surface function, assumed here to be quadratic (Ii et al. 2012).
The advantage of the method is that (2.4) allows us to solve the fluxes in (2.3) by
semi-analytical integration. Once the VOF function φ is known, we evaluate the local
fluid properties as

ρ = ρdφ + ρc(1 − φ),

μ = μdφ + μc(1 − φ),

}
(2.5)

where the subscripts c and d indicate carrier and dispersed phase, respectively. Finally,
the continuum surface force (CSF) model is used to compute the surface tension force
(Brackbill, Kothe & Zemach 1992), with the normal evaluated with Young’s method and
the curvature as in Ii et al. (2012).

2.2. Flow configuration
All the simulations are performed using the same ABC forcing, injecting energy at
wavenumber κ0 = 2π/L = 2, with A = B = C = 1, corresponding to Reλ ≈ 137 for the
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single-phase flow (see Appendix B for the characteristics of the reference single-phase
flow). As reported in the literature (Komrakova et al. 2015; Mukherjee et al. 2019), forcing
the second wavelength is recommended in order to avoid coalescence induced by large
turbulent structures in periodic domains.

In addition to the Reynolds number, the emulsion flows are characterized by four
non-dimensional parameters: the volume fraction α = Vd/V , defined as the ratio between
the volume occupied by the dispersed phase Vd and the total volume V = (2π)3; the
viscosity ratio μd/μc, where the subscripts d and c indicate the dispersed and carrier
phases; the Weber number WeL = ρcLu2

rms/σ , where urms is the space–time average of
the root-mean-square velocity of the single-phase case (which can be related to the forcing
amplitude A = B = C); and the scale of the ABC forcing L. Finally, the density ratio
ρ = ρc/ρd is kept constant, equal to 1 in this study.

Here, we will vary the dispersed phase volume fraction, the viscosity ratio and the
Weber number; the parameters pertaining to the different simulations discussed below
are presented in table 1. A convergence study motivating the choice of the resolution in
the table is reported in Appendix B. Finally, the resolution N = 512 has been chosen as
it allows us to resolve adequately all the different cases. Note, finally, that the table also
indicates the integration time NT required to reach statistical convergence of the turbulent
quantities and DSD in units of large eddy turnover times, T = Lurms (Mininni et al. 2006).
The simulations are considered at convergence when global energy production balances
dissipation (see § 2.3 and (2.7) for their definitions) with an error of less than 4 %, also
implying that the average of the time derivative of the interfacial area is negligible (see
Appendix B for further details). Interestingly, NT varies significantly with the physical
configuration. In particular, starting with the reference cases BE1 and BE2, we observe that
increasing μd/μc means longer times are needed to reach a statistically stationary state,
which we will attribute to a decrease of the breakup rate. A similar behaviour is observed
when decreasing WeL, when higher surface tension forces decrease the probability of
breakup events. Finally, large structures become unavoidable when increasing the volume
fraction α (Komrakova et al. 2015; Mukherjee et al. 2019), which implies longer simulation
times.

Visualizations of the transient phase to reach the final steady state are reported in
figure 1 for the reference case BE1 with α = 0.03. The simulation starts at t0 using the
fully developed single-phase HIT field from case SP2. The dispersed phase is initialized
as an ensemble of spheres, which soon deform in the flow as shown in figure 1(b),
pertaining to time t1 = T /4. At statistical convergence, t ≈ 10T , when statistics are
collected, we observe a polydispersed distribution of asymmetric droplets. Note finally that
for α � 10 %, the simulations are initialized using spherical droplets of size d0 ≈ 0.12L,
while a single spherical droplet of initial size d0 = (6αL3/π)1/3 was used for larger values
of α. We have checked that the initial distribution has no effect on the final DSD, as also
reported in Mukherjee et al. (2019) for a similar configuration.

2.3. Observables, phase-averaged energy balance and scale-by-scale budget
In this subsection, we introduce the theoretical tools and the physical observable that will
be discussed throughout the study. The full mathematical derivation, as well as details
on the computation of the energy spectrum and DSD, can be found in Appendix A. The
objective of this study is to understand the turbulence modulations induced by a second
phase, focusing on comparisons of the energy spectra and the SBS analysis. In particular,
we will consider the Taylor-scale Reynolds number, the energy spectra, the phase-averaged
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N μd/μc WeL σ α NT

SP1 256 — — — — 136
SP2 512 — — — — 136
BE1 512 1 42.6 0.46 0.03 115
BE2 512 1 42.6 0.46 0.1 100
V11 512 0.01 42.6 0.46 0.03 115
V12 512 0.1 42.6 0.46 0.03 100
V13 512 10 42.6 0.46 0.03 64
V14 512 100 42.6 0.46 0.03 60
V21 512 0.01 42.6 0.46 0.1 115
V22 512 0.1 42.6 0.46 0.1 100
V23 512 10 42.6 0.46 0.1 64
V24 512 100 42.6 0.46 0.1 60
C12 512 1 42.6 0.46 0.06 100
C13 512 1 42.6 0.46 0.2 100
C14 512 1 42.6 0.46 0.5 100
C24 1024 1 42.6 0.46 0.5 100
C34 256 1 42.6 0.46 0.5 100
W11 512 1 10.6 1.84 0.03 160
W12 512 1 21.2 0.92 0.03 160
W13 512 1 106.5 0.184 0.03 100
W23 768 1 106.5 0.184 0.03 100
W33 256 1 106.5 0.184 0.03 100

Table 1. Parameter settings for the simulations considered in this study: number of grid points in each direction
N, viscosity ratio μd/μc, Weber number WeL, with surface tension σ , volume fraction α and integration time to
reach statistical convergence NT . All simulations are performed with μc = 0.006 and the same ABC forcing.
Each case is denoted by a letter indicating the parameter that is varied: V for viscosity ratio, C for volume
fraction, and W for Weber number. SP are the single-phase flows, and BE are configurations that recur in
different parametrizations (base emulsions).

(a) (b) (c)

Figure 1. Initial evolution of the emulsion flow (example reported for case BE1). The droplets are initialized
at t0 in a developed turbulent field. As turbulence is maintained, breakup and coalescence start occurring (t1),
and statistical convergence in the DSD is achieved after a few turnover times (t2): (a) t0, (b) t1 = T /4, (c)
t2 = 10T .

energy balance, p.d.f.s of velocity fluctuations, dissipation and vorticity, and the SBS
budgets. The Taylor-scale Reynolds number is defined as

Reλ =
(uiui

3

)1/2 λ

ν
, (2.6)
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Turbulence modulations of emulsions in HIT

where λ = (5νuiui/ε)
1/2 is the Taylor scale, with the energy dissipation rate computed as

ε = ν ∂iuj ∂jui for the reference single-phase flow Reλ = 137. Here, we compute ε and all
the relevant observables at each computational grid point and then average in space and
time. This procedure is required due to material properties discontinuities when μd/μc is
varied. Note that from now on, ε will denote the space–time averaged value.

Further insight on the global behaviour of multiphase flows can be gained through the
phase-averaged energy balance:

ρ ∂tkm = Pm − εm + T ν
m + T p

m , (2.7a)

km = 〈uiui/2〉m, Pm = ρ〈uif T
i 〉m, εm = 〈ν ∂jui ∂iuj〉m, (2.7b)

T ν
m = 〈∂jμui

(
∂jui + ∂iuj

)〉m, T p
m = −〈∂iuip〉m. (2.7c)

Here, Pm and εm indicate, respectively, production rate and viscous dissipation rate per
unit volume in each phase. The terms T ν

m and T p
m are the viscous and pressure transport

densities, respectively, and represent the coupling between the two phases; when the
sum of these two, Tm = T ν

m + T p
m , is positive, energy is absorbed from phase m, when

negative energy is transferred to the other phase. Again, in statistical stationary conditions,
∂tkm ≈ 0. Further details on the derivation of (2.7) can be found in Appendix A.

We now move to spectral space and present the SBS balance. This is derived for the
two-fluid flows following the formulation in Olivieri et al. (2020a,b); for more details,
the reader is referred to Frisch (1995) and Alexakis & Biferale (2018). Taking the Fourier
transform of the momentum equations (2.1b), we obtain

∂tũi + G̃i = −iκ p̃/ρ − Ṽi + ˜f σ
i + ˜f T

i . (2.8)

Denoting the Fourier transform of a quantity J(xi, t) as J̃(κi, t) = F {J(xi, t)}, with κi the
ith component of the wavelength vector, in the expression above we have G̃i = F {uj ∂jui}
and Ṽi = F {∂i(ν[∂iuj + ∂jui])}. Note that as the viscosity μ is a function of space and
time, we actually compute the dissipation term in physical space to avoid a convolution
in the spectral space. We next multiply (2.8) with the complex conjugate of the velocity
ũ∗

i , and drop the pressure term by imposing the incompressibility condition κiũi = 0, as
in this work ρc = ρd = 1. Multiplying the complex conjugate of (2.8) by ũi, summing the
equations obtained for ũ and ũ∗, and averaging in time, we finally obtain

∂tE(κi) = T(κi) + D(κi) + Sσ (κi) + F(κi), (2.9)

where

(i) E = 〈ũiũ∗
i 〉t is the time-averaged kinetic energy in the spectral domain, whose time

derivative is zero at statistical steady state;
(ii) T = −〈G̃iũ∗

i + G̃∗
i ũi〉t is the time-averaged energy transfer due to the nonlinear term;

(iii) D = −〈Ṽiũ∗
i + Ṽ∗

i ũi〉t is the time-averaged viscous dissipation;
(iv) Sσ = −〈 ˜f σ

i ũ∗
i + ˜f σ

i
∗ũi〉t is the time-averaged work of the surface tension force at the

different scales;
(v) F = 〈 ˜f T

i ũ∗
i + ˜f T

i
∗ũi〉t is the time-averaged energy input due to the large-scale

forcing.

All of the above are three-dimensional fields in spectral space. Note that at steady state
when the total interfacial area is constant, Sσ integrates to zero (Dodd & Ferrante 2016),
so this term can be seen effectively as an energy transport due to the surface tension.
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(a) (b) (c)

Figure 2. Render of the two-fluid interface (corresponding to the value of the VOF function φ = 0.5) for
different values of the volume fraction α: (a) α = 0.06, (b) α = 0.2, (c) α = 0.5. The vorticity fields are shown
on the box faces on a planar view.

Finally, we perform a spherical-shell integral in spectral space and express each term in
the budget as a function of the magnitude of the wavevector κ . This operation results in
e.g.

T(κ) =
∑

κ<|κi|<κ+1

T(κi). (2.10)

This term represents the shell-to-shell energy transfer function for the nonlinear term of
the momentum equation, and similarly for the other terms above.

3. Results

3.1. Emulsions at different volume fractions
We first examine the influence of the dispersed-phase volume fraction on the turbulent
flow, cases BEx and Cxx in table 1, corresponding to increasing values of α from 3 % to
50 %. A render of the cases discussed here is shown in figure 2, where the iso-contours of
VOF fields are shown for volume fractions 0.06, 0.2 and 0.5.

The modulation of the turbulence is first quantified in terms of integral quantities.
Figure 3 shows Reλ, computed according to (2.6), versus the volume fraction α. Here,
Reλ increases almost linearly with α, by approximately 15 % for α = 0.5. A similar trend
is found for λ, as shown in the inset of figure 3. Considering that the average of ε and k
is approximately constant in all cases (variations of ±3 %), the increase of Reλ and λ is
therefore due to the local variations of the ratio k/ε.

In particular, the increased values of k/ε for similar averaged values of the two quantities
is attributed to the increased correlation between regions of strong turbulent kinetic energy
and low dissipation. Graphical evidence is presented in figure 4, where we show the
instantaneous ratio k/ε for the single-phase (case SP2 in panel a) and multiphase flows
(case BE2 with α = 0.1 in panel b) in logarithmic scale. The figure shows that when the
dispersed phase is present, large regions of fluid with higher k/ε are observed far from the
droplet interface (denoted with a white line). This can be explained as follows: as the total
dissipation is constant, the local increase of ε near the interface, as also observed in Dodd
& Ferrante (2016), corresponds to a decrease of the dissipation rate in large portions of
the fluid, those far from an interface. Considering that the turbulent kinetic energy is less
affected by the presence of the interface, the ratio (k/ε) increases in average. To support
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Turbulence modulations of emulsions in HIT

0 0.1 0.2 0.3 0.4 0.5 0.6

α

136

144

152

160

Reλ

α = 0.03
α = 0.06
α = 0.1

α = 0.2
α = 0.5
Single phase

0.10 0.20 0.30 0.40 0.50
α

0.40

0.42

0.44

0.46

0.48

0.50

λ

Figure 3. Taylor-scale Reynolds number Reλ versus the dispersed-phase volume fraction α, for viscosity ratio
μ = 1 and density ratio ρ = 1. The inset shows the Taylor scale, λ, versus the different values of α under
investigation.

4.0

2.25

–1.25

–3.0

20.0

15.0

10.0

5.0

0

0.5

lo
g
(k

/ε
)

ε

(a) (b)

(c) (d )

Figure 4. (a,b) Contours of the ratio k/ε with logarithmic scale in two planes. (c,d) Energy dissipation rate ε.
(a,c) Results for the single-phase case SP2. (b,d) Results for case BE2 (α = 0.1). The white lines represent the
VOF iso-contours for φ = 0.5.

this statement, figures 4(c,d) depict the instantaneous energy dissipation rates for the same
planes. In the emulsion (panel d), higher values of ε are found close to the droplet interface
and to the clustering regions, while for the single-phase flow (panel c), no specific pattern
is observed.

The one-dimensional energy spectra E(κ) multiplied by κ5/3, i.e. the so-called
compensated spectra, are displayed in figure 5 for the different α considered. The Taylor
scale of the single-phase flow is indicated by the dot-dashed line, while the vertical dotted
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100 101 102

κ

10–10

10–8
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10–4

10–2

100
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(κ

)κ
5
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α = 0.03

α = 0.06

α = 0.1

α = 0.2

α = 0.5

Single phase

κH
κλ

Figure 5. Compensated energy spectra for simulations at different volume fractions α; the dot-dashed line
represents Taylor scale λ, while the dotted line represents the Hinze scale dH .

black line is used for the wavenumber κH corresponding to the Hinze scale, defined as

dH = 0.725ε−2/5(ρc/σ)−3/5. (3.1)

Note that the prefactor 0.725 in (3.1) is set according to the original work of Hinze
(1955) for emulsions in HIT conditions, corresponding to Wec = 1.17.

The data in figure 5 reveal that the presence of the dispersed phase reduces the energy
with respect to the single-phase case (SP1) for κ < κH . At the same time, the energy
content increases at the smaller scales, κ > κH , in the dissipative range of the spectra.
As noted in previous studies (Mukherjee et al. 2019), the amount of energy subtracted to
the large scales is proportional to the volume fraction α. Interestingly, the wavenumber at
which the curves cross over from reduced to increased energy content corresponds to the
Hinze scale. For brevity, we will denote as the pivoting point the wavelength where the
spectra of the multiphase cases intersect the one from the single-phase reference case.

Pivoting points were not observed clearly in some previous studies on emulsions
(Mukherjee et al. 2019; Perlekar 2019), while they are clearly visible in others (Perlekar
et al. 2014; Dodd & Ferrante 2016; Rosti et al. 2020). This is possibly due to the different
methods used to simulate the dispersed phase: the ability of the VOF to accurately resolve
the interface reduces the energy dissipation by the surface tension term in the dissipative
range. Such energy dissipation is indeed observed clearly by Perlekar (2019), who present
results obtained by solving the Cahn–Hilliard equation in a diffuse-interface formulation.
As mentioned in Appendix B, these numerical artefacts do not have significant effects on
the dynamics at the inertial range, while they affect the dissipative range. This aspect will
also be discussed later in this section.

Insight into the energy transfer among the different scales is gained by using the SBS
analysis. The full SBS energy budget, i.e. the contributions from the different terms in
(2.9), is displayed in figure 6(a) for case BE2, chosen as an illustrative example with
an intermediate value α = 0.1. The external forcing is injecting energy at κ = 2, which
is absorbed by the nonlinear transfer term T for a large majority, and by the surface
tension term Sσ for a small part. The nonlinear term transfers energy towards smaller
scales, larger values of κ . The surface tension term, Sσ , acts as a dissipative process
at large scales, where it absorbs approximately the same energy as the dissipative term
D. However, for 10 < κ < 20, we observe a significant change in the energy transport
mechanism: Sσ becomes positive, hence contributing to transferring energy towards the
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Figure 6. Scale-by-scale energy budget for different volume fractions α. (a) Full energy balance for the case
BE2 with α = 0.1; (b) the energy transfer T due to the nonlinear terms; (c) the energy transfer Sσ associated
with the surface tension term; (d) energy dissipation rate D.

small scales, similarly to T , a process active until κmax. It is important to note that the
surface tension transport remains active also at small scales in the dissipative range,
consequently extending the range of wavelengths where the dissipation term remains
active. These observations confirm the previous findings obtained in Perlekar (2019) for
binary mixtures, while showing that dissipation at small scales is due only to D in the case
of sharp interface methods.

The details of the effect of the volume fraction α on each term of the SBS balance
are displayed in figures 6(b–d). We first analyse the nonlinear transfer term T in panel
(b). As α increases, T absorbs progressively less energy at the injection frequency κ = 2.
Consequently, less energy is transferred towards smaller scales by nonlinear advection. The
energy flux Π (not shown) does not display an inverse cascade for any α. Furthermore, we
notice that no energy is transferred to the far end of the dissipative range, which is resolved
over a large range of scales in all cases.

The contribution from the surface tension Sσ (see figure 6c) confirms that interfacial
stresses absorb part of the energy injected into the domain at κ = 2. The energy absorbed
by the surface tension term at large scales is approximately proportional to α. The surface
tension term becomes positive at smaller scales, where energy is released. The positive
peak is reached at approximately the Hinze scale for all cases. As for the energy absorption,
the magnitude of the peak scales proportionally to α. We also notice that for any α, the
surface tension terms act also in the dissipative range, where the nonlinear term T is zero.
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Figure 7. (a) Correlation between the maximum surface tension term, max(
∑

|κi|<κ Sσ (κ)), and the total
surface area A for the different volume fractions α. The dashed black line is the linear fit to the data. (b)
P.d.f. of the DSD for different values of α. The dashed black line indicates the d−3/2 law from Deane & Stokes
(2002), the continuous black line the d−10/3 law from Garrett et al. (2000), and the dotted black line the Hinze
scale dH . The droplet size is normalized by the Kolmogorov scale of simulation SP2, ηsp.

The behaviour observed so far for T and Sσ provides a clear explanation for the previous
observations on the energy spectra. At small wavenumber, the energy cascade produced by
the nonlinear energy transfer is partially inhibited by the presence of the interfacial forces.
For high wavenumbers, T reaches zero progressively, but the energy previously subtracted
by the interfacial stresses at large scale is redistributed at small scales, which can be seen
in figure 5 as an energy increase at high wavenumbers.

To close the SBS balance, we examine the viscous dissipation term D (see figure 6d).
First, we note that only a small amount of the injected energy (less than 5 % for all cases) is
absorbed by the dissipation term at the scale of the forcing, κ = 2. The overall effect of the
dispersed phase is to shift the energy dissipation towards smaller scales. This constitutes
the natural reaction of the system to the increased activity in the dissipative range caused
by the surface tension term. This behaviour becomes more evident as α increases and
progressively enhances dissipation at those small scales where the single-phase dissipation
is negligible.

Summarizing, the surface tension introduces an alternative path for energy transmission
from large towards small scales, as discussed for binary flows in Perlekar (2019). The
amount of energy transferred by the surface tension is directly proportional to the total
droplets surface area A, as shown in figure 7(a), where we display the maximum energy
transferred via surface tension, max(

∑
|κi|<κ Sσ (κ)), and the total area of the dispersed

phase A for the different volume fractions under consideration with a linear fit to the data.
This observation reinforces our previous conclusion that the interface transfers energy
among different scales by disrupting larger turbulent structures and creating smaller ones,
hence affecting the canonical −5/3 slope of the turbulence spectra. Note also that while
in monodispersed flows this results in a deviation at a specific spectral frequency (Dodd &
Ferrante 2016), in polydispersed flows this behaviour is seen at all scales.

We next consider the dynamics of the dispersed phase. We first examine the DSD for
all the values of volume fraction studied – see figure 7(b), where we display the droplet
diameters normalized by the single-phase (SP1) Kolmogorov scale ηsp . The dashed black
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Turbulence modulations of emulsions in HIT

line depicts the d−3/2 law by Deane & Stokes (2002), and the solid line depicts the d−10/3

law by Garrett et al. (2000), valid for larger droplets. For small droplets, the −3/2 law is
well captured also for marginally resolved droplets (with d/ηsp < 6). For droplets larger
than the Hinze scale, the −10/3 law is also a very good fit, with increasing accuracy
for increasing values of α. Our data are in agreement with the findings by Mukherjee
et al. (2019) and explained by higher coalescence probability at higher volume fractions,
leading to a bigger population of larger droplets. Interestingly, the Hinze scale turns out to
define approximately the transition between the −3/2 and −10/3 scalings as proposed in
Deane & Stokes (2002), although for higher values of α, the onset of the d−10/3 power law
occurs at larger diameters. As the droplet distributions can be, to a good approximation,
represented by these two laws, it follows that A ∝ α, explaining why A, Sσ and α are
linearly correlated (see figure 7a).

We now consider the phase-averaged energy budget, introduced in § 2.3. The different
terms of (2.7) – production, dissipation and transport by pressure and viscous forces – are
shown in figure 8, normalized by the single-phase dissipation. We first observe that the
total production and dissipation is

P = αPd + (1 − α)Pc ≈ ε ≈ 0.95εsp (3.2)

for α < 0.5. The energy production density Pm (green symbols in figure 8a) is higher
in the dispersed phase for low volume fractions, while it is comparable to that of the
carrier phase for α > 0.1. The energy dissipation rate per unit volume in the dispersed
phase εd (red symbols in figure 8a) is also larger at low volume fractions and decreases
monotonically with increasing α. The dissipation in the carrier phase, εc, also decreases,
as it compensates for the energy transport Tm from the carrier flow towards the dispersed
phase. The viscous transport (see blue symbols in figure 8b) is significantly lower than
its pressure-induced counterpart, T p

m , although they exhibit similar behaviours: they first
increase until α = 0.1, and then decrease to reach zero for a binary mixture. Note, again,
that the total transport term is zero, i.e. the sum of T p and T ν from both phases. The case
α = 0.5 deserves a specific mention. In this case, production and dissipation in the two
phases are equal, hence the transport term satisfies Tm = 0. Intuitively, it is not possible to
define unambiguously a carrier and dispersed phase in binary mixtures; while the energy is
locally transported from one phase to the other, the global average is zero for both pressure
and viscous transfer.

Finally, we analyse the p.d.f.s of velocity fluctuations un = u/σu, vorticity fluctuations
ωn = (|ωi| − 〈|ωi|〉)/σω, and energy dissipation εn = (ε − 〈ε〉)/σε, normalized by their
standard deviations. In figure 9(a), we observe that while the p.d.f. of the velocity
fluctuation remains symmetric, the tails deviate strongly from the typical pseudo-Gaussian
behaviour of single-phase turbulence (Sreenivasan & Antonia 1997; Jimenez 2000;
Ishihara, Gotoh & Kaneda 2009). Considering the vorticity in figure 9(b), no deviation
is observed in the Gaussian core (as defined in Sreenivasan & Antonia 1997). However,
the distributions of the multiphase flows depart strongly from the single-phase case in the
tails. In particular, the exponentially decaying tails have a higher exponent in the case
of emulsions, indicating more events with strong vorticity. Interestingly, while increasing
the volume fraction does not influence the value of the exponent, increasing α induces
deviations in the distributions already at lower values of ωn. We observe a similar
behaviour for εn in figure 9(c): the intermittency of the single-phase flow is amplified
by the presence of the interface. As for the vorticity, departures from the single-phase
distributions are observed at lower values of ε when increasing the volume fraction α. As
a final general remark, the analysis of the p.d.f.s reveals that strong deviations are induced
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Figure 8. Phase-averaged energy balance versus the dispersed phase volume fraction α; see (2.7). In each
plot, coloured triangles represent the dispersed phase (m = d), while circles represent the carrier phase (m =
c). Each term is normalized by the single-phase energy dissipation εsp computed for case SP2. (a) Energy
production Pm and energy dissipation εm; (b) viscous energy transport T ν

m and pressure energy transport T p
m .
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Figure 9. P.d.f.s of (a) velocity fluctuations u, (b) vorticity ω, and (c) dissipation ε. All quantities are
normalized as standard score.

by the presence of the interface, already at low volume fractions, overall increasing the
intermittent behaviour of the flow. As no collapse is observed for the normalized variables,
it can be inferred that the small-scale statistics are affected by the presence of the interface.

3.2. Influence of viscosity ratio
We consider now the influence of the viscosity ratio on the flow turbulence, i.e. cases BEx,
V1x and V2x in table 1. The viscosity ratios analysed span the range 0.01 < μd/μc < 100,
while WeL = 42.7 for all cases. Two values of the volume fractions are considered,
α = 0.03 (series V1x) and α = 0.1 (series V2x). A render of the two-fluid interface
(corresponding to the value of the VOF function φ = 0.5) is shown in figures 10(a–c)
for cases V11, BE1 and V14, respectively. As μd/μc increases, larger droplets appear; at
low viscosity ratios, we find a significantly higher number of droplets.

We start by examining the Taylor-scale Reynolds number of the emulsion flows for the
different viscosity ratios under investigation. Figures 11(a) and 11(b) show the variation
of Reλ versus the viscosity ratio for the two volume fractions considered, α = 0.03 and
α = 0.1. As expected, Reλ decreases with the viscosity ratio. Significant variations in Reλ
are observed already for small volume fractions, the effects being amplified for α = 0.1.
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(a) (b) (c)

Figure 10. Render of the two-fluid interface (corresponding to the value of the VOF function φ = 0.5) for
different values of the viscosity ratio μd/μc: (a) 0.01, (b) 1, (c) 100. The vorticity fields are shown on the box
faces on a planar view. All simulations are performed at α = 0.03 and WeL = 42.6.
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Figure 11. Taylor-scale Reynolds number of the emulsion flows for the different viscosity ratios examined.
Reλ is shown versus μd/μc. (a) Cases BE1 and V1x, with volume fraction α = 0.03; (b) cases BE2 and V2x,
with α = 0.1. The insets show the evolution of λ with the viscosity ratio.

In the insets of figure 11, we can observe that λ (i.e. the local variations of k/ε) does not
increase linearly with μd/μc, indicating increased velocity fluctuations for the dispersed
phase at lower viscosity.

To better quantify the variations of the flow gradients, we show the phase-averaged
(see (A2)) enstrophy ω2

m in figure 12, normalized by the single-phase values from SP1.
The viscosity ratio affects enstrophy strongly in the dispersed phase, while the magnitude
in the carrier phase is almost constant. Further, smaller variations can be observed
when changing the volume fraction from 0.03 to 0.1. For μd/μc � 1, the enstrophy in
the dispersed phase goes approximately as ω2

c ∝ − log(μd/μc). As the viscosity of the
dispersed phase becomes larger (μd > μc), ωd decreases below the average value of the
single-phase flow and tends towards zero, as high viscosity dampens velocity fluctuations
in the dispersed phase. It is worth noting that for incompressible flows, the energy
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Figure 12. Phase-averaged enstrophy ω2
m (normalized by its value in the single-phase case SP1) for different

viscosity ratios μd/μd . Triangles indicate the dispersed phase (m = d), while circles indicate the carrier phase
(m = c). (a) Results for α = 0.03; (b) results for α = 0.1.

dissipation rate can be defined as ε ≡ ν|ωi|2; however, when phase averaging, the two
formulations differ for by a term proportional to ∂iip.

We now discuss the influence of viscosity ratio on the compensated energy spectra,
shown in figures 13(a,b) for α = 0.03 and α = 0.1, respectively. Similarly to previous
observations for figure 5, the Hinze scale shows, to a good approximation, the pivoting
point, below which energy increases with respect to the single-phase spectra. Differences
in the inertial subrange are hardly observable for α = 0.03, while they become more
prominent when the volume fraction is increased (see figure 13b). Analysis of the data
for κ < κH reveals that the simulations with a dispersed phase present less energy than
the single-phase case. In the dissipative range, the trend emerges more clearly. As κ > κH ,
the less viscous the dispersed phase, the more energy is injected in the smaller scales. As
discussed in the previous section, energy reduces at large scales and increases at small
scales when increasing the volume fraction α.

Figure 14 shows the DSD for all configurations with different viscosity ratios. As for the
data in § 3.1, we also display the −3/2 power law, which well describes the distribution
of small droplets, and the d−10/3 law from Garrett et al. (2000) for larger droplets. In
this range, d > dH , the −10/3 law is observed only in a limited region of the spectrum.
As noted previously, this is most likely due to the low volume fraction considered. The
variation of μd has an influence on large droplets, as higher viscosity in the dispersed
phase increases the probability of formation of these large droplets. This was also observed
qualitatively in figure 10 and confirms previous findings (Roccon et al. 2017).

We present the SBS energy budget for α = 0.1 in figure 15. The results for α = 0.03
show similar trends; see Appendix C for the details. Following the same scheme as in
the previous section, we depict in figure 15(a) the energy balance for case V22, when
μb/μc = 0.1. Similarly to previous observations, the dispersed phase absorbs energy at
large scales and redistributes it to small scales; that is, the presence of the interface
provides an alternative path for energy transfer from small to large wavenumbers and no
inverse cascade is observed. The nonlinear energy transfer T (see figure 15b) displays
a weak sensitivity to the viscosity ratio (almost negligible for α = 0.03, as shown in
figure 27 in Appendix C). Thus the differences in the Reλ and energy spectra discussed
above are not associated with an extension of the inertial range. For wavenumbers larger
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Figure 13. One-dimensional compensated energy spectra for (a) α = 0.03, and (b) α = 0.1, and different
values of the viscosity ratio μb/μc. The vertical dotted line indicates the Hinze scale wavelength, κH .
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Figure 14. P.d.f.s of the DSD for different values of μ, at (a) α = 0.03, and (b) α = 0.1. The dashed line
represents the d−3/2 scaling from Deane & Stokes (2002), while the continuous black line shows the d−10/3

law from Garrett et al. (2000).

than that of the forcing, the nonlinear energy transfer is higher at large scales and lower at
small scales than for the single-phase case.

Figure 15(c) shows the energy transport due to the surface tension term, Sσ . As μd/μc
increases, the wavelength where the positive energy transport is maximum shifts to
larger scales. This behaviour is possibly due to increased coalescence for high μd/μc
(as discussed later in this section). We also observe that with decreasing viscosity ratio,
μd/μc < 1, the curves tend to collapse, as the data for μd/μc = 0.1 and μd/μc = 0.01 are
approximately overlapping. At the injection scale, κ = 2, almost all cases behave similarly.
At intermediate wavelengths, the lower the viscosity ratio, the higher the energy absorbed
by the surface tension forces. As previously observed, the Hinze scale represents, to a
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Figure 15. Scale-by-scale energy budget for different viscosity ratios μd/μc at α = 0.1. (a) Complete energy
balance for case V22 with μd/μc = 0.1; (b) nonlinear energy transfer T; (c) the term Sσ associated with the
surface tension; and (d) the energy dissipation transfer function D.

good approximation, the point where the energy transfer towards small scales by the
surface tension term Sσ is maximum. All these observations apply to the two values of
α considered; see also Appendix C.

A note should be made on the flow with the highest viscosity ratio: in this case, the
energy is not transferred down to the dissipative range. A qualitative explanation is given
by the following scenario. When the interface interacts with a sufficiently large vortex in
the carrier phase, it tends to deform, and in doing so, it absorbs energy through the work
of the interfacial stresses. The deformation of the interface induces shear in the dispersed
phase that is opposed by viscous forces. A higher viscosity in the dispersed phase will
therefore dump larger and more energetic structures, reducing the energy available at small
scales.

Finally, figure 15(d) shows the transfer function of the energy dissipation term D. We
observe that simulations with higher viscosity of the dispersed phase dissipate more
energy at large scales, hence dumping turbulence in the inertial range, as expected
for more viscous flows. This trend is maintained until the dissipative range, where,
instead, a lower viscosity ratio produces higher dissipation. This causes the apparently
paradoxical situation that despite there being limited energy transport by the nonlinear
terms, dissipation is still active at small scales because of the energy brought by the
interfacial stresses; this may suggest the need for a specific definition of dissipative range
for multiphase flows.
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(a) (b)
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Figure 16. Phase-averaged energy balance versus the emulsion viscosity ratio; see definitions of the terms in
(2.7). Coloured triangles represent the dispersed phase (m = d), while circles are used for the carrier phase
(m = c). Each term is normalized by the single-phase energy dissipation εsp computed for case SP2. The
energy production Pm and energy dissipation εm are reported in (a), while viscous energy transport T ν

m and the
pressure energy transport T p

m are shown in (b).

Next, we discuss the influence of the viscosity ratio on the phase-averaged energy
budget, shown in figure 16 for α = 0.1. As for the SBS balance, the same analysis for
α = 0.03 can be found in Appendix C, as the variation of volume fraction does not change
the underlying physical process significantly. The production density (green symbols in
figure 16a) shows only slight variations with viscosity ratios in the carrier phase, whereas it
increases in the dispersed phase when its viscosity increases; in particular, Pd < Pc when
μd < μc. A similar trend is observed for the dissipation rate (red symbols in figure 16a),
when the differences between dispersed and carrier phases become more evident. In this
case, the dissipation in the dispersed case increases with its viscosity until μd/μc = 100,
when it decreases because of the lower energy transferred to smaller scales inside the
droplets. The transport terms, T μ and T p in figure 16(b), indicate that energy is always
transferred from the carrier to the dispersed phase. Both terms increase in magnitude when
decreasing the viscosity ratio, indicating that energy needs to be supplied to the dispersed
phase to sustain turbulence when viscous forces are increasing. The pressure transport is
the preferential path for energy transfer from the carrier to the dispersed phase for low
and moderate values of μ. For the case with largest viscosity of the dispersed phase, the
transfer due to pressure forces becomes lower than that associated with viscous forces.

Finally, we consider the effect of the viscosity ratio on the p.d.f.s of velocity, vorticity
and dissipation rate; see figure 17 for α = 0.1, while data for α = 0.03 can be found in
Appendix C. A low viscosity in the dispersed phase generates larger velocity fluctuations
(see also figure 12), hence the tails of the p.d.f.s are more evident for small values of μd/μc
in figure 17(a). Interestingly, when the viscosity ratio increases above unity, velocity
fluctuations in the dispersed phase are quenched, the standard deviation decreases, and
the statistics are closer to those of the single-phase reference case. The distributions of
the normalized vorticity are shown in figure 17(b). As for the velocity fluctuations, a
higher viscosity in the dispersed phase decreases the intermittency, and the distributions
approach the single-phase values. For μd/μc < 1, intermittency increases and the tails
of the distribution are more evident; nonetheless, they can still be fitted with decaying
exponentials. As observed previously for varying α, the pseudo-Gaussian part of the
vorticity p.d.f. collapses for all cases.
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Figure 17. P.d.f.s of (a) velocity fluctuations u, (b) vorticity ω, and (c) energy dissipation. All quantities are
normalized by their standard deviations. The data pertain to cases V2x in table 1, with α = 0.1.

The p.d.f. of the energy dissipation shows almost no alteration between cases with
different viscosity ratios, while intermittency is increased strongly with respect to the
single-phase case. Due to the normalization with σε, the curve collapse indicates that
variations induced by μd/μc of the small-scale dynamics are negligible.

To conclude, the turbulence is significantly affected by variations of the viscosity
ratio already at small volume fractions. Higher viscosity of the dispersed phase dampens
the small-scale structures because of higher viscous dissipation at all wavelengths. For
emulsions with viscosity of the dispersed phase lower than that of the carrier phase, the
activity at small scales increases and so does intermittency. The surface tension term Sσ

contributes significantly to the transfer of energy to the smallest scales in this case.

3.3. Influence of Weber number
The influence of the surface tension coefficient, expressed through the large-scale WeL
number, is examined in this subsection. As discussed in the literature (Komrakova
et al. 2015; Roccon et al. 2017; Mukherjee et al. 2019), the combination of volume
fraction, surface tension coefficient and energy injection scale, L, has to be chosen
accurately because the HIT configuration is very sensitive to coalescence. Furthermore,
high WeL may generate an excess of unresolved droplets, affecting the results significantly.
Therefore, all the simulations discussed in this subsection are performed at α = 0.03,
while the forcing is maintained at κ0 = 2. The cases discussed in this subsection are BE1
and the series W1x with reference to table 1, covering a significant range of WeL, from
10.6 to 106.5. In figure 18, we show a render of the flow for different values of WeL. As
expected, at low WeL, we observe the appearance of large liquid structures due to higher
surface tension forces. At high WeL, on the other hand, the dispersed phase undergoes
severe fragmentation (see Appendix B for the DSD convergence study of case W13). The
presence of small droplets resulting from fragmentation can be observed in all cases.

We start by studying the global behaviour of the flow through the integral quantities
in figure 19. In figure 19(a), Reλ shows an almost linear increment with both the Taylor
scale λ and WeL (represented with colours). Unlike previous observations in § 3.1 where
the increase of Reλ was due mostly to local variations of the ratio k/ε, decreasing
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(a) (b) (c)

Figure 18. Render of the two-fluid interface (corresponding to the value of the VOF function φ = 0.5) for
different values of the Weber number WeL: (a) 10.6, (b) 42.6, and (c) 106.5. The vorticity fields are shown on
the box faces on a planar view. All simulations are performed at α = 0.03 and μd/μc = 1.

(a) (b)
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Figure 19. (a) Reλ versus the Taylor scale λ; the inset shows the global energy dissipation ε (normalized by
its single-phase value) as a function of WeL. (b) Phase-averaged enstrophy versus the Weber number WeL;
coloured triangles represent the dispersed phase (m = d), while circles indicate data pertaining to the carrier
phase (m = c).

surface tension also lowers the volume-averaged energy dissipation, as shown in the inset.
These findings are in agreement with the results on turbulent emulsions in Rosti et al.
(2020). As the viscosity ratio μd = μc is constant, the decrease of the dissipation is
caused by lower enstrophy levels, as can be appreciated from the data for the carrier
phase in figure 19(b). The behaviour of the enstrophy of the dispersed phase is less
intuitive, exhibiting non-monotonicity; this will be addressed later when discussing the
phase-averaged energy balance.

Figure 20(a) shows the compensated energy spectra at different WeL. As we are
varying the surface tension, the Hinze scale varies in each case (see vertical dotted
lines of corresponding colours). As mentioned before, the Hinze scale defines with good
approximation the spectra pivoting point.

As discussed previously, energy is reduced at larger scales in the inertial range, and
increases at smallest scales. With increasing WeL, higher energy is observed at high
wavelengths.

Figure 20(b) shows the DSD for all the WeL under investigation. As for figure 20(a),
we show the Hinze scale for each case with vertical dotted lines. Again we observe that
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Figure 20. (a) One-dimensional compensated energy spectra for different large-scale Weber numbers WeL;
the wavelengths corresponding to the Hinze scale of each spectra are plotted with vertical dotted lines of
corresponding colours. (b) DSD for different WeL; the Hinze scale dH is reported with dotted lines of
corresponding colours. The continuous black line represents the region where the −10/3 power law applies.

the −10/3 power law from Garrett et al. (2000) provides a reasonable description for the
largest droplets, d > dH; as we increase σ , i.e. low WeL, larger droplets may appear, as
expected because of the increased cohesion forces. In this case, the energy required to
break up large droplets is available only in large eddies. As their turnover time is of the
order of T , large droplet breakup becomes a rare event and the distributions are more
noisy, so it is more difficult to identify a clear trend. In addition, by reducing WeL, the
distribution becomes more irregular for d < dH as most of the dispersed phase is in large
droplets.

The effects of WeL can be described better by the scale-by-scale analysis, shown
in figure 21. The complete energy balance is shown for case W11 (WeL = 10.6) in
figure 21(a). Unlike the cases shown previously for WeL = 42.6, the surface tension
energy transfer Sσ is more uniform through the different scales, and its effects are less
evident globally. To deepen the analysis, we display the nonlinear energy transfer function
T for each case at different WeL in figure 21(b). At the injection wavelength κ = 2, no
major differences are observed when varying the surface tension. At small wavelengths,
κ > 2, we observe that the energy transfer by the nonlinear term increases with WeL,
compensating for the effect of the energy absorption from the surface tension. The energy
transfer at smaller scales, after the peak, increases with σ , approaching the values of the
single-phase flow.

The energy transfer via the interfacial stresses, Sσ , is shown in figure 21(c). The energy
is again absorbed at large scales and distributed at small scales. Flows with small WeL
absorb more energy at small wavenumbers, and the transmission of energy (i.e. positive
Sσ ) is smeared over a higher range of scales, hence the peak (max(Sσ )) is also less evident.
For all WeL investigated, the surface tension term Sσ transfers energy also within the
dissipative range at small scales, where the transport from nonlinear terms has become
negligible.

The energy dissipation D, in figure 21(d), decreases with WeL at large and intermediate
scales, as energy is absorbed partially by Sσ . However, the amplitude of the dissipation
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Figure 21. Scale-by-scale energy budget for different large-scale Weber numbers WeL. (a) Full energy balance
for case W11, with WeL = 10.6; (b) energy transfer T due to the nonlinear term; (c) energy flux Sσ associated
with the surface tension term; (d) energy dissipation rate D.

rates becomes almost independent of the Weber number at the smallest scales. Further, as
previously observed, the presence of the dispersed phase delays the onset of the dissipative
range.

The phase-averaged energy balance from simulations with different Weber numbers is
shown in figure 22. Both production and dissipation (figure 22a) are found to decrease
in the carrier phase when increasing WeL, while the former increases and then decreases
in the carrier phase. Possibly, this can be related to the DSD: decreasing the droplet size
increases the internal dissipation, which may explain the behaviour at the lower Weber
number examined. On the other hand, high deformability decreases the dissipation close
to the interface, which may explain the decrease at the largest WeL. For all values of
WeL considered, the dispersed phase extracts kinetic energy from the carrier phase, as
Tc > 0 (figure 22b). The decrease of surface tension forces results in a monotonic decrease
of the viscous transfer and an increase of the pressure transport for the dispersed phase.
Consistently, dissipation is always higher in the dispersed phase, while it decreases in the
carrier phase with increasing WeL.

Finally, the p.d.f.s for velocity, vorticity and dissipation are shown in figure 23(a–c).
Strong variations are induced in all p.d.f.s, showing that indeed a more rigid interface
favours the appearance of extreme events. Since a more deformable interface offers lower
resistance to the propagation of velocity disturbances from one phase to the other, less
modification of the p.d.f.s with respect to the single-phase case can be expected at
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Figure 22. Phase-averaged energy balance versus the emulsion Weber number; see definitions of the terms in
(2.7). Coloured triangles represent the dispersed phase (m = d), while circles indicate data pertaining to the
carrier phase (m = c). Each term is normalized by the single-phase energy dissipation εsp computed for case
SP2. The energy production Pm and energy dissipation εm are reported in (a), while viscous energy transport
T ν

m and the pressure energy transport T p
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Figure 23. P.d.f.s of (a) velocity fluctuations u, (b) vorticity ω, and (c) energy dissipation. All quantities are
normalized by their standard deviations. The data pertain to cases W1x, BE1 and SP1 in table 1.

higher WeL (see also Rosti et al. 2020). This is indeed observed in all p.d.f.s, where
the distributions are seen to approach the single-phase distribution when increasing WeL.
Nevertheless, rare events are still evident also at the largest Weber considered, especially
for the energy dissipation. Vorticity shows, again, that the pseudo-Gaussian part of the
distribution is identical for all WeL, while the exponentially decaying tails display strong
variations.

4. Conclusions

In this work we discuss how volume fraction, viscosity ratio and Weber number influence
HIT in emulsions. The analyses are performed at different levels of detail, spanning from
phase-averaged balances to SBS energy transfer in spectral space. Some observations are
common to all configurations and highlight some fundamental physical effects introduced
by the dispersed phase. Here, we first consider these different aspects and then discuss the
modulation introduced by the variation of material properties.
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Turbulence modulations of emulsions in HIT

4.1. Spectra and SBS energy balance
In all simulations with a dispersed phase, the energy decreases at large scales and increases
at small scales, corroborating previous findings (Ten Cate et al. 2004; Perlekar et al. 2014;
Dodd & Ferrante 2016; Mukherjee et al. 2019; Rosti et al. 2020; Olivieri et al. 2020a).
Interestingly, this behaviour applies to both solid and liquid dispersed phases in HIT.
Furthermore, the pivoting point of the energy spectra is found to be described, with a
good approximation, by the Hinze scale. This has also been observed in binary mixtures
(Perlekar et al. 2014) and emulsions (Mukherjee et al. 2019), and is extended here to several
operating conditions.

In general, the mechanisms of energy transport are modified as follows. The transfer
by the nonlinear advection terms decreases, as the surface tension forces absorb energy
at large scales. In an emulsion, energy is transferred to small scales also by the surface
tension force, well within the dissipative range of the corresponding single-phase flow,
forcing the viscous dissipation to be active at even smaller scales. No inverse cascade has
been observed in the present simulations.

The general idea, according to which coalescence and breakup are responsible for
modifications of the energy spectra, seems to only partially explain our observations.
In fact, according to this hypothesis, significant deviations should be observed when
comparing spectra for different volume fractions. Here, instead, we observe the largest
deviations in the energy spectra, in particular at small scales, when varying the viscosity
ratio.

From the discussion above, it appears that the amount of kinetic energy at small
wavenumbers may not be used to predict modifications of the various terms of the
SBS budget. In fact, it may be hypothesized that the SBS budget shows a more direct
connection with the DSD. In particular, the SBS term Sσ changes with the total surface
area and interface deformation. In other words, strong topological changes, breakup and
coalescence, change the energy transport by surface tension. Future studies may address
the relation between the energy at small scales and the energy cascade by numerically
inhibiting, reducing or controlling coalescence and breakup (e.g. using front-tracking
methods).

4.2. Effects of the dispersed phase on the dissipative range
The classical ‘far’ dissipative range (κ ∼ κmax), where both nonlinear energy transport and
energy dissipation of the SBS budget are zero, is lost when a dispersed phase is introduced.
In multiphase flows, despite the nonlinear energy transfer vanishing at certain small scales,
the energy dissipation does not because energy is brought to these smaller scales by the
action of the surface tension. As discussed above, energy dissipation is thus forced to
extend towards smaller scales, overall increasing the range of wavelengths where there
is activity. In other words, this increased activity at small scale translates also into an
extension of the dissipative range, with the nonlinear transport substituted by the surface
tension transport. This is an important finding in the present work, which was not clearly
observed in previous studies with diffuse-interface methods (Perlekar 2019).

It is important to understand how the scaling in the inertial range might be affected
by these modifications of the dissipation range. From a practical viewpoint, the results
in Appendix B show that increasing the mesh resolution does not result in significant
alterations of the inertial range, indicating that a relevant analysis of the inertial range
dynamics is still possible even in simulations where the surface tension terms are slightly
under-resolved at small scale. Nevertheless, resolving the dissipative range is important
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for a complete discussion of the SBS budget and e.g. the DSD; understanding turbulence
at small scales in multiphase flows remains, therefore, a relevant question also from a
fundamental point of view.

4.3. Flow intermittency
We have observed that the presence of a dispersed phase increases intermittency, unless
the dispersed phase is highly viscous. The probability of detecting rare events increases,
mainly for energy dissipation and vorticity, as shown here by the p.d.f. analysis. This
finding represents a significant observation for multiphase turbulence and needs to be
addressed further in future studies.

In particular, at higher volume fractions and constant μd/μc and WeL, the exponent
describing the distribution tail exponential decay is independent of the volume fraction
α. The onset of the exponential tail (hence the probability of an extreme event) is, on the
other hand, affected by α, proving that these events are occurring mostly at the interface.
This is a confirmation of the observations in Dodd & Ferrante (2016) on the increased
energy dissipation at the interface. The variation of the exponential tail for both energy
dissipation rate and vorticity at different μd/μc and WeL reveals that intermittency is
affected significantly by the fluid properties. In cases with high μd and low surface tension,
the vorticity intermittency is attenuated and similar to the single-phase cases. On the other
hand, the dissipation seems to be always affected by the multiphase nature of the flow.

4.4. Droplet statistics
In all the conditions analysed, the DSD shows both the −3/2 exponential scaling from
Deane & Stokes (2002) for the small droplets and the −10/3 exponential scaling from
Garrett et al. (2000) for the larger ones, confirming and extending the previous findings
of Mukherjee et al. (2019) to a significant number of different configurations. Moreover,
employing a VOF approach, and its known mass conserving properties, allows us to
extend the −3/2 scaling to significantly small droplets, which was not observed clearly
in previous studies.

The power law d−10/3 well describes the distributions of larger droplets when the
volume fraction is below 10 %, with only a small loss in accuracy for higher values of
α, in agreement with the assumption of negligible coalescence in Garrett et al. (2000).
Although this power law was obtained under the assumption of a dilute dispersed phase,
recent works based on a diffuse-interface approach report the same scaling in the presence
of coalescence (Mukherjee et al. 2019; Soligo et al. 2019). However, Deike et al. (2016)
estimate through accurate sharp-interface simulations a similar exponent, −3, so that it
might be difficult to have a clear distinction on the different effects. Finally, we show that
the estimate of the Hinze scale as a transition point between the two power laws is less
accurate for α > 0.1, suggesting that different model coefficients may be needed when
coalescence is relevant.

4.5. Role of the fluid properties
Our analyses demonstrate that the volume fraction α is the parameter that modifies mostly
the energy fluxes in the flow; yet, increasing the volume of the dispersed phase does not
change the underlying physics. This is documented notably in § 3.1, where we show that
the amount of total interface area determines the energy transport across scales. Moreover,
the simulation data reveal that the energy transfer via surface tension forces is enhanced
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at low viscosity ratios, while high viscosity in the carrier phase inhibits the propagation
of vortices through the interface, hence reducing the overall energy transport. Changing
the Weber number amounts to modulating the pivoting frequency below which energy
transfer through surface tension is directed towards smaller scales. In particular, as the
dispersed phase is less deformable, the energy absorption from the dispersed phase occurs
at larger scales, and turbulence is reduced progressively. In fact, as the surface tension
increases, more energy is required to deform the droplets, an energy that can be found
only in large-scale eddies.

To study the role of the viscosity ratio (see § 3.2), we consider values ranging from
10−2 (a value typical of bubbles) to 102 (typical of droplets). The analysis reveals that for
μd/μc � 1, Reλ increase significantly, due to the lower viscosity in the dispersed phase.
The scale-by-scale energy budget shows that the interfacial and nonlinear transport terms
are not strongly affected at these low viscosity ratios. For μd/μc > 1, on the other hand,
the turbulence in the dispersed phase is reduced, which implies a significantly smaller
Reλ, below the value of the single-phase case. In these cases, the energy transfer induced
by the interfacial stresses is reduced significantly, suggesting that large differences may be
found in liquid–gas and gas–liquid emulsions. The DSD does not show strong differences,
although larger droplets are more likely to be generated by a more viscous dispersed phase.
Note, as discussed above, that the viscosity ratio has a significant impact on the flow
intermittency.

Finally, we have examined the role of the large-scale Weber number WeL. At low WeL,
coalescence is more likely to occur, hence there is a higher probability to find large
droplets. Nevertheless, the Hinze scale proves to be an accurate estimation of the transition
between −3/2 and −10/3 for all the cases analysed. Changing WeL and thus the DSD also
affects the energy transport across scales by the surface tension forces. Specifically, when
decreasing WeL, the energy injection from interfacial tension moves to larger scales.
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Appendix A. Further details on the observables

For the a multiphase flow, the energy balance is obtained by multiplying (2.1b) by the
velocity ui:

ρ

(
∂tui ui

2
+ ∂jui uiuj

2

)
= −∂iui p + μ ∂jui ∂iuj + ∂jμ ui

(
∂jui + ∂iuj

) + uif σ
i + uif T

i .

(A1)
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We define the volume average as

〈·〉m = 1
Vm

∫
Vm

· dV, (A2)

where the subscript m represents an integral over the dispersed phase d, the carrier phase
c or the total volume, if omitted. Applying the operator 〈·〉 to (A1) leads to

ρ ∂tk = P − ε + Ψσ , (A3a)

k = 〈uiui/2〉, P = ρ〈uif T
i 〉, ε = 〈ν ∂jui ∂iuj〉, Ψσ = 〈uif σ

i 〉, (A3b)

where k is the turbulent kinetic energy.
Due to the homogeneity of the HIT configuration, the transport term arising from the

nonlinear transport in (A1) vanishes. Further details on its derivation for the case of
emulsions can be found in Dodd & Ferrante (2016) and Rosti et al. (2020). It can be
proven that Ψσ ∝ ∂tA (Dodd & Ferrante 2016) (with A the total interface area) and that
the contribution of the surface tension to the total energy variation also vanishes, since
the time derivative is zero at the statistically stationary state. Hence we obtain that the
production term P is perfectly balanced by the energy dissipation ε.

Finally, averaging (A1) on each phase (i.e. enforcing (A2)), we obtain the phase-average
energy balance in (2.7). Further details on this approach are described in Dodd & Ferrante
(2016) and Rosti et al. (2020).

We discuss now some relevant property of the SBS budget in (2.9). If we perform
the integration over a sphere instead of a shell (i.e. for all |κi| < κ), then we obtain the
cumulated SBS budget:

∂t
∑

|κi|<κ

E(κi) = Π(κ) +
∑

|κi|<κ

D(κi) + Πσ(κ) +
∑

|κi|<κ

F(κi). (A4)

In this expression, the fluxes Π(κ) = ∑
|κi|<κ T(κi) and Πσ(κ) = ∑

|κi|<κ Sσ (κi) indicate
the energy flux from all the largest scales to κi, and are typically used to study scalings
in the inertial range (where Π(κ) = ε) and the direction of the energy cascade (Alexakis
& Biferale 2018). The remaining terms represent the energy injected and the dissipation
at all scales below κi. The cumulative SBS budget can be related easily to the energy
balance in the physical domain: (A4) and (A3) are equivalent for κ = κmax, hence it can
be demonstrated easily that Π(κmax) = Πσ(κmax) = 0 and ε = D(κmax) = P = F(κmax).
In this work, mostly we will show the shell-by-shell energy budget ((2.9), integrated using
(2.10), referred to SBS if not specified otherwise) as more suited for detailed comparisons
at each scale, while the cumulative energy budget is used for the single-phase flow only.

Another observable discussed extensively in this work is the one-dimensional energy
spectrum. This is computed using Fourier transforms in each direction for all the velocity
components and then averaging in space because of the flow homogeneity. This approach
has been used widely in literature (Perlekar et al. 2014; Dodd & Ferrante 2016; Rosti et al.
2020; Torregrosa et al. 2020; Innocenti et al. 2021), and it is also used here for consistency
with previous studies.

Finally, we also discuss the DSD. This quantity is computed online during the
simulation, using a recursive algorithm to tag liquid structures as defined by the scalar
field φ. Regardless of their shape, velocity and position, droplets of volume V are classified
according to their equivalent diameter d = (6V/π)1/3 at each instant. Further details on
the algorithm are provided in Crialesi-Esposito, Gonzalez-Montero & Salvador (2021).
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Figure 24. Spectral analysis of single-phase HIT (cases SP1 and SP2) and grid-resolution analysis. (a) Spectra
for single-phase simulation with N = 256 (dashed line) and N = 512 (dotted line) against the −5/3 law for the
inertial subrange (dash-dotted black line). (b) Energy scale-by-scale cumulative balance for the single-phase
simulations with N = 256 and N = 512 grid points.

Appendix B. Analysis of the reference single-phase flow and grid convergence

We will now motivate the choice of the resolution adopted for the emulsion simulations,
i.e. N = 512 points in each direction. To this aim, we will first analyse the behaviour
observed in single-phase turbulence. The energy spectra and the cumulative SBS balance
pertaining to the single-phase flow are shown in figure 24. A good agreement between
the cases SP1 and SP2 is evident in figure 24(a). The κ−5/3 law for the inertial range
extends over almost a decade, showing a fully developed turbulent flow at a moderately
high Reynolds number. The two cases yield the same result in terms of ε, with a relative
error of less than 5 %. The cumulative SBS balance shows that due to the moderate
Reλ, the viscous term D is not negligible already at large scales, where it dissipates
approximately 3 % of the injected energy. This is in agreement with the observation that
a fully developed inertial range is observable only partially for Reλ � 200 in single-phase
turbulence (Ishihara et al. 2009). A substantial dissipative range is present for κ � 102,
indicating an accurate computation of the smallest scales. In this region, we can observe
that Π(κmax) = 0 and

∑
|κi|<κ D(κi) = ε. As a consequence of the imposed ABC forcing,

energy injection is clearly observed for κ = 2. The SBS budget shows almost no difference
between the results from the two grid resolutions, and that all relevant processes are
already captured accurately at the lower resolution, N = 256, down to the smallest scales.

To investigate convergence of the multiphase flows, we consider the case WeL = 42.6,
μd/μc = 1 and α = 0.5 for three different resolutions, from N = 256 to N = 1024
corresponding to cases C14, C24 and C34; see figure 25. This configuration was selected
because it is the one with the largest interfacial area and largest fluctuations, dA/dt, and
hence where larger errors in the averaged energy budget are expected. Nevertheless the
spectra in figure 25(a) do not seem to be significantly affected by the grid resolution, and
the dissipative range is observed also at the lowest resolution, N = 256.

A more stringent test is the convergence of the SBS budget, here (and hereafter)
shown in its shell-by-shell form; see figure 25(b), where all terms are normalized by ε

and pre-multiplied by the wavelength κ to improve readability. Comparing the data at
different resolutions, the energy injection at large scales F and the energy transfer by the
nonlinear term T are almost identical in the inertial range. The energy dissipation D and
the transfer due to interfacial forces Sσ display some differences for κ � 10. If we consider
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Figure 25. Grid resolution study on spectral analysis of multiphase simulations (cases C14, C24 and C34 at
α = 0.5, WeL = 42.6 and μd/μc = 1). (a) Energy spectra for simulation with 2563 (dashed line), 5123 (dotted
line) and 10243 (continuous line) compared against the −5/3 law for the inertial subrange (dash-dotted line).
(b) Energy scale-by-scale balance for multiphase simulations with grids 2562, 5123 and 10243.
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Figure 26. Effects of grid size on the DSD for (a) cases Cx4 at α = 0.5, μd/μc = 1 and WeL = 42.6, panel,
and (b) cases Wx3 at α = 0.03, μd/μc = 1 and WeL = 106.5. Blacklines represent the −3/2 (dashed) and
−10/3 (continuous) power-law scalings.

the integral contribution from the surface tension, which should theoretically be zero,
Πσ(κmax)/ε ≈ 0.08 for the lowest resolution, N = 256; this value decreases for N = 512
and remains almost constant at N = 1024, Πσ(κmax)/ε ≈ 0.04. It is worth underlining that
this is the largest error encountered among all cases, since Πσ(κmax)/ε ≈ 0.01 for most of
the other cases discussed in this study. Overall, the energy not resolved by the simulation
with a grid of N = 512 and the differences in the SBS transfer functions can be considered
as negligible for the scope of the present study, where primarily we wish to examine the
energy transfer towards the smallest scales.

The data in figure 25 highlight already important features of emulsions in HIT, which
will be observed consistently in all cases studied. First, the energy at the smallest scales
increases with respect to the single-phase case (figure 25a). Second, the presence of the
interface alters the behaviour of the turbulent flow, with the surface tension forces Sσ

transferring energy from large scales towards the dissipative range. Because of this, the
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Figure 27. Scale-by-scale energy budget for different viscosity ratios μd/μc at α = 0.03. (a) Complete energy
balance for case V12 with μd/μc = 0.1; (b) the nonlinear energy transfer T; (c) the term Sσ associated with
the surface tension; and (d) the energy dissipation transfer function D.
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Figure 28. Phase-averaged energy balance versus the emulsion viscosity ratio; see definitions of the terms in
(2.7). Coloured triangles represent the dispersed phase (m = d), while circles are used for the carrier phase
(m = c). Each term is normalized by the single phase energy dissipation εsp, computed for case SP2. The
energy production Pm and energy dissipation εm are reported in (a), while viscous energy transport T ν

m and the
pressure energy transport T p

m are shown in (b).
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Figure 29. P.d.f.s of (a) velocity fluctuations u, (b) vorticity ω, and (c) energy dissipation. All quantities are
normalized by their standard deviations. The data pertain to cases V2x, with α = 0.03.

total energy transported by the nonlinear term T reduces, and the dissipative range extends
towards smaller scales, where we observe a balance between the work of surface tension
and viscous dissipation. These modified flow features are similar to findings by Olivieri
et al. (2020a,b) for fibre suspensions in turbulent flows.

Finally, as droplet distributions are addressed extensively in this study, we examine the
modifications of the size distributions when increasing resolution; see figure 26(a) for
cases Cx4. Here we observe that for N = 256, the number of large droplets is slightly
underestimated, while overall, the distributions converge for N > 512. The formation
of small droplets seems to present a consistent pattern in all the simulations, showing
that even when breakup results in small droplets (or debris), their generation is still
representative of a physical process. Similar considerations apply to cases Wx3 at WeL =
106.5 (see figure 26b), which is arguably the configuration most prone to the production
of small debris. Once again, the DSD converges for N > 512, while the simulation with
N = 256 is under-resolved due to the generation of a great number of small droplets. Note
also that, as for the cases at α = 0.5, both integral and spectral analysis show convergence
for N � 512. Finally, we mention that although predominant in the DSD, small droplets
are indeed a very small percentage of the total volume, with under-resolved droplets (i.e.
less than eight grid points) accounting for less than 2 % of the total volume and 7 % of the
total area.

Appendix C. Effects of viscosity ratio at α = 0.03

We report here the results for different values of μd/μc at WeL = 42.6 and α = 0.03 (cases
V1x and BE1), for completeness. The main discussions on the physical effects given by
different viscosity ratios are provided in § 3.2, while here only main differences due to the
lower volume fraction will be highlighted.

Figure 27(a) shows the full SBS energy balance for case V12 (see table 1). The
low volume fraction reduces significantly the effect of energy transport due to surface
tension Sσ . Consequently, the modifications of the nonlinear transport with respect to the
single-phase case are small; see figure 27(b). The energy transport due to surface tension
(figure 27c) is attenuated at high viscosity ratios and shifts towards small wavelengths due
to increased coalescence (see § 3.2). Finally, energy dissipation (figure 27d) shows again

940 A19-34

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e,
 o

n 
su

bj
ec

t t
o 

th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

17
9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.179


Turbulence modulations of emulsions in HIT

limited variations due to reduced volume fraction, although it can be observed again that
the small-scale energy transfer is unaffected at high viscosity ratios.

The phase-averaged energy balance in figure 28 shows only weak variations with respect
to the cases at α = 0.1 in figure 16. Again, we notice that energy dissipation in the
dispersed phase increases at higher μd, while energy is always transferred from the carrier
to the dispersed phase, as for α = 0.1.

We finally present the p.d.f.s of velocity, vorticity and energy dissipation in
figure 29(a–c). Again, small variations can be observed with respect to cases at α = 0.1
(figure 17). For vorticity and energy dissipation, we report lower probability to observe
rare events at lower volume fraction, as discussed in § 3.1.
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