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Abstract Adjoint-based iterative methods are employed to compute linear optimal disturbances in a spatially
growing boundary layer around an elliptic leading edge. The Lagrangian approach is used where an objective
function is chosen and constraints are assigned. The optimisation problem is solved using power iterations
combined with a matrix-free formulation, where the state is marched forward in time with a standard direct
numerical simulation solver and backward with the adjoint solver until a chosen convergence criterion is
fulfilled. We consider the global and, more relevant to receptivity studies, the upstream localised optimal initial
condition leading to the largest possible energy amplification at time T . We find that the two-dimensional initial
condition with the largest potential for growth is a Tollmien–Schlichting-like wave packet that includes the
Orr mechanism and is located inside the boundary layer downstream of the leading edge. Three-dimensional
optimal disturbances induce streaks by the lift-up mechanism. Requiring the optimal initial condition to be
localised upstream of the plate enables us to better study the effects of the leading edge on the boundary
layer receptivity mechanisms. Two-dimensional upstream disturbances are inefficient at triggering unstable
eigenmodes, whereas three-dimensional disturbances induce streamwise streaks with significant growth.

Keywords Boundary layer instabilities · Receptivity · Adjoint-based optimisation · Nonmodal growth

1 Introduction

The flat plate boundary layer has been a test bed for various approaches when studying hydrodynamic stability.
Although a fairly simple flow configuration, the relevance of this flow type arises from the fact that it features
many aspects of external flows, thus being an adequate model of these flows. In stability studies, further
simplifications of the flat plate boundary layer are often introduced, e.g. the assumption of a locally parallel
flow with a Fourier decomposition in the streamwise direction [9,23] or of a slowly varying flow amenable to
parabolised equations [2,15,17,27]. Two- and three-dimensional disturbances have been studied using global
modes, providing an accurate representation of the stability of the streamwise growing boundary layer [1].

Leading edge effects are far less studied. Goldstein et al. [12] and Goldstein and Wundrow [13] consider
through asymptotic analysis flow around a flat plate of finite thickness with an upstream vortical free-stream
disturbance. Since the 1990s, there are also a small number of numerical simulations of flow around leading
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edges with different geometry, mainly dealing with acoustic receptivity (see [16,31] and the review by Saric
et al. [24] for early studies). These studies considered the evolution of well-defined disturbances that are
investigated individually, whereas we present here an optimisation aiming to identify the most dangerous
external disturbances.

Recently, the development of the time-stepper technique made it possible to tackle more complicated flow
configurations with two- and three-dimensional disturbances. This technique enables stability studies for any
flow type and geometry, for which a direct numerical simulation (DNS) is feasible. The only requirement is
a numerical solver of the time-dependent linearised Navier–Stokes equations and the corresponding adjoint
equations. This approach was adopted by Tuckerman and Barkley [29] and later by Barkley et al. [4], Blackburn
et al. [5] and Theofilis [28], for example.

The present study is an extension of previous work by Monokrousos et al. [20] where optimal disturbances
were computed for a flat plate boundary layer. Here, we take a step further and include the plate leading edge
while retaining a fairly high Reynolds number where transitional or even turbulent flow is typically observed.
In particular, we focus on the effect of the leading edge and investigate how it changes the optimal disturbances
and how the boundary layer is optimally excited by oncoming perturbations. In recent studies [25,26], we have
considered the linear and nonlinear receptivity to free-stream vorticity of the flow past a flat plate with an
elliptic leading edge. In those works, disturbances periodic in time and space are considered and the relevance
of the three vorticity components of natural free-stream turbulence is investigated by considering axial, vertical
and spanwise vorticity separately for different angular frequencies. No optimisation of the external disturbance
was attempted as done here where the most dangerous linear disturbance component is determined as part
of the results. Nonlinear optimisation has been performed for the simpler Couette flow in [21]. Further, we
consider here an initial value problem and not a forced problem as in Schrader et al. [25] and Brandt et al. [7]
for the case of an infinitely thin plate.

The flow case, for the chosen parameters, is classified as a ‘noise amplifier’ (rather than an ‘oscillator’),
characterised by convective instabilities when studied in the local framework. From the global point of view,
the flow is asymptotically stable to linear disturbances. Therefore, it is more adequate to study the transient
growth problem in the context of non-modal analysis.

2 Optimisation problem

We solve the linearised incompressible Navier-Stokes equations

∂t u + (U · ∇) u + (u · ∇)U = −∇ p + Re−1Δu, (1)

∇ · u = 0,

where u is the disturbance velocity and U the baseflow velocity, p denotes the pressure and Re is the Reynolds
number (defined in Sect. 3.2). The symbol ∂t stands for the partial derivative with respect to time, and
∇ = (∂/∂x, ∂/∂y, ∂/∂z) is the nabla operator, with x, y and z being the streamwise, vertical and span-
wise coordinates. To determine the optimal disturbances at and upstream of the leading edge, the Lagrangian
approach is used where an objective function is chosen and constraints are assigned. The method is equivalent
to finding the leading eigenpair of the composite direct-adjoint Navier–Stokes evolution operator [3]. For a
demonstration in a more general framework, the reader is refereed to Mao et al. [19]. Our objective function
is the integral in space of the disturbance kinetic energy at some final time T ,

J (u) = (u(T ), u(T )). (2)

The constraints chosen are the demand for u to satisfy the linearised Navies-Stokes equations and the require-
ment for the initial condition to be divergence free and of unit energy norm inside the domain Λ (being zero
outside Λ). Hence, the Lagrangian functional is written as

L(u, v, γ, ψ) = (u(T ),u(T ))−
T∫

0

(v, (∂t − A)u) dτ

−γ ((u(0),u(0))Λ − 1)− (ψ,∇ · u(0))Λ (3)
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where v, γ andψ are the Lagrange multipliers, A indicates the governing linear operator and the inner product,
defined by (·, ·)Λ, corresponds to an integral over Λ. We seek to determine u, u(0), u(T ), v, γ and ψ such
that L is stationary, a necessary condition for first order optimality. This is achieved by requiring that the
variation of L be zero, leading to a set of conditions to be fulfilled simultaneously: the solution must satisfy
the governing equations,

(∂t − A)u = 0, (4)

with the normalisation condition

(u(0),u(0))Λ = 1. (5)

Further, the adjoint system, integrated backward in time, must be fulfilled,

(−∂t − A†)v = 0, (6)

where A† is the adjoint Navier–Stokes operator, and the initial and optimality conditions are

v(T ) = u(T ),
u(0) = γ−1(v(0)− ∇ψ)|Λ. (7)

In the above, the scalar fieldψ represents a projection to a divergence-free space, where the pressure-like scalar
field ψ is solution to a Poisson equation. More details are provided in [20] for a generic three-dimensional
disturbance while here the method is applied to disturbances initially localised only in two-dimensions, i.e. the
localisation is applied to a single spanwise Fourier mode. Note also that the projection of the initial condition
onto the divergence-free space is performed by a GMRES iterative algorithm before marching in time the
forward problem [11].

To solve the optimisation problem, a matrix-free method is employed, where the state is marched forward
in time with a standard DNS solver and backward in time with the corresponding adjoint solver until a chosen
convergence criterion is fulfilled. The initial and normalisation conditions for the two systems are given by
(7). With this approach, we propose a systematic and direct method to compute the receptivity of the boundary
layer to external disturbances. In this framework, the computed optimal modes can be used as a projection basis
to quantify the ability of oncoming free-stream disturbances to initiate perturbations in the boundary layer.

3 Numerical approach

3.1 Numerical code

The governing equations are solved with the spectral element code Nek5000 developed by Fischer [30]. The
equations are discretised by a weighted residual spectral element method (see Patera [22]), using a multi-domain
decomposition while preserving high order accuracy. Inside each sub-domain (referred to as spectral element),
the fields are represented by a spectral decomposition using Legendre polynomial Lagrangian interpolants,
where the grid points are allocated according to a Gauss–Lobatto Legendre distribution (see Fischer et al. [11],
for details). The numerical method for the computation of the optimal initial condition is validated against
previous results from Monokrousos et al. [20] obtained by a global spectral method (described in [10]).

3.2 Flow case

We consider the flow around a flat plate with an elliptic leading edge. The leading edge features the shape of
a modified super ellipse, ( y

b

)2 = 1 −
(

a − x

a

)p

, p = 2 +
( x

a

)2
, (8)

with zero curvature at the juncture to the flat section so that no disturbances are introduced at the junction, i.e.
the plate does not scatter disturbances at its leading edge. The ratio a/b defines the leading edge bluntness,
chosen here to be 6. This results in a relatively blunt shape. The Reynolds number of the flow is Re = bU/ν
based on the half thickness of the plate (b), the free-stream velocity (U ) and the kinematic viscosity of the
fluid (ν). We only consider half of the body and impose a symmetry condition along the stagnation streamline
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Table 1 Spatial resolution of the two- and three-dimensional computational domains for flow over a flat plate with an elliptic
leading edge of aspect ratio 6, where nt , nn and nz denote the number of spectral elements used along the surface-tangential,
surface-normal and spanwise directions, and ntot is the total amount of elements

Case nt nn nz ntot N nv,tot np,tot Rex

2D low Re 100 17 – 1,700 9 138,754 108,800 1e5
2D high Re 160 19 – 3,040 9 246,411 194,560 6e5
2D high Re-L 219 21 – 4,599 9 374,680 294,336 9e5
3D 124 19 3 7,068 9 5,379,472 3,618,816 3e5
N is the spectral order, defining the number of polynomials used to approximate the flow solution on the elements. nv,tot =
(nt N + 1)(nn N + 1)(nz N + 1) is the number of nodes of the velocity grid and np,tot = nt nnnz(N − 1)3 the nodes of the pressure
grid. Rex denotes the outflow Reynolds number

ahead of the leading edge. Most of the results presented are obtained for a Reynolds number of Re = 3000.
We also include a few results for a lower Reynolds number, Re = 1000. The streamwise Reynolds number
Rex = xU/ν will occasionally be used when presenting the results, where x is the distance from the leading
edge. We refer to the study by Schrader et al. [25] for a validation of the steady base flow around the leading
edge against numerical and experimental results published in the literature.

3.3 Resolution

Table 1 compiles the parameters (number of elements and spectral order) defining the spatial discretisation
of the computational domain. The total number of elements depends on the length of the domain, where the
two-dimensional simulations are carried out on a longer domain than the three-dimensional simulations in
order to fully capture the unstable region of the two-dimensional Tollmien–Schlichting (TS) waves. In all
simulations, the elements are clustered near the wall and in the leading edge vicinity.

4 Results

We investigate the disturbances causing the largest transient energy growth for different optimisation times.
Since the base flow is homogeneous in the spanwise direction, disturbances of different spanwise periodicity
can be studied separately. Owing to the significant computational cost of the iterative optimisation procedure,
we are forced to restrict the study to a few typical cases reflecting the essential physical mechanisms.

4.1 Two-dimensional optimal initial conditions

4.1.1 Global optimal initial conditions

Two-dimensional optimal disturbances are computed for two different Reynolds numbers, Re = 1000 and
3000. Here, we drop the constraint of localising the optimal disturbance structure upstream of the leading edge
(last term in Eq. 3).

In Fig. 1, the disturbance energy E(t)/E0 is shown for various optimisation times. E(t) is defined as

E(t) = (u(t),u(t)) , (9)

and E0 denotes the initial energy (time t = 0). The red line in Fig. 1 is the energy envelope. Figure 1a shows
results for the low Reynolds number (Re = 1000) where the boundary layer is locally stable everywhere.
The outflow Reynolds number based on the distance to the leading edge is Rex = 105. In this case, the only
possibility of energy growth is through the Orr mechanism.

Figure 1b reports results for the higher Reynolds number (Re = 3000). In this case, we observe that locally
unstable TS wave packets are generated and amplify exponentially as they are convected downstream. The
maximum time for energy growth is here governed by the downstream extension of the computational box, i.e.
a longer box would enable longer optimisation times and more space for the exponential instability to grow.
Additionally, we note a local maximum for short optimisation times which corresponds again to a pure Orr
mechanism, being active on small time scales. The energy decay seen for large optimisation times is due to the
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Fig. 1 Disturbance energy E(t)/E0 versus optimisation times for two-dimensional disturbances at a Re = 1000 and b Re = 3000
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Fig. 2 Spatial structure of optimal initial condition and corresponding response at Re = 3000. Initial condition: a streamwise
component, b wall-normal component. Response: c streamwise component, d wall-normal component. The red line indicates the
boundary layer edge, δ99 (colour figure online)

fact that these disturbances gradually exit our computational domain and thus their spatially integrated energy
decays.

In Fig. 2a,b, the spatial structure of the optimal disturbance is shown for the optimal time T = 300 and a
Reynolds number of Re = 3000. The flow structures clearly display the Orr mechanism generating an unstable
wave packet (Fig. 2c,d; see also references [1,20]).

4.1.2 Localised two-dimensional optimal initial conditions

We study two-dimensional optimal initial conditions that are localised in space. The aim is to investigate
how an upstream disturbance optimally penetrates the boundary layer around the curved leading edge and
subsequently generates a perturbation that can undergo streamwise growth inside the boundary layer. Indeed,
two-dimensional TS waves are the driver of boundary layer transition to turbulence in flight condition where
we typically have low levels of free-stream turbulence (<0.4 %) as well as in wind tunnels of good quality and
reduced noise.

Figure 3 displays the localised initial condition upstream of the leading edge and the flow at the optimisation
time T = 700: here, we can see the reduction of the disturbance wavelength when interacting with the boundary
layer and the formation of a weak TS wave packet. For initial perturbations limited to a sub-domain upstream
from the leading edge, the results obtained are largely in line with those reported in the literature. The upstream
localised vortical disturbances turn out to be rather inefficient in penetrating the boundary layer. Furthermore,
the disturbance generated inside the boundary layer is significantly damped during the initial phase and consists
of a wave packet characterised by a relatively high streamwise wavenumber—larger than that of the locally
unstable TS wave. It turns out that the optimisation procedure favours a less unstable wave packet over the
most unstable waves since the former is probably more capable of penetrating the shear layer. The growth of
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Fig. 3 Spatial structure of optimal localised initial condition and corresponding response at Re = 3000 and outflow Rex =
900000. Streamwise velocity component of a the initial condition and b the optimal response. The red line indicates the boundary
layer edge, δ99 (colour figure online)
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Fig. 4 Contour levels of energy gain G = E(t)/E0 versus the final optimisation time and the spanwise wavenumber. a Non-
localized and b localized initial disturbance condition. The Reynolds number is Re = 3000

the wave packet would be enhanced on an even longer computational domain with sufficient space for the TS
waves to grow exponentially. Owing to the high computational cost of the iterative optimisation procedure,
we were, however, forced to limit the length of the plate. This points to the limitations of the current approach
for receptivity studies in the absence of a strong amplification mechanisms as in the case of the lift-up effect
studied below.

Acoustic waves seem, therefore, the most efficient mean to trigger TS waves. Buter and Reed [8] have
observed that vortical receptivity is lower than that to acoustic waves. For a significantly high frequency
(F = 230), they have found that the coefficients for receptivity to vortical modes are about 1/3 than those for
acoustic disturbances. In Schrader et al. [25], the values of the receptivity coefficients to spanwise free-stream
vorticity are compared to those for acoustic receptivity from Wanderley and Corke [31] for a leading edge with
aspect ratio equal to 20. The receptivity coefficients to vortical noise are lower by one order of magnitude than
those to acoustic waves. In particular, the largest coefficient for vorticity is about 15 % of that for sound waves.

4.2 Three-dimensional optimal initial conditions

4.2.1 Global optimal initial conditions

When studying three-dimensional disturbances, we need to consider an additional parameter, namely the
spanwise disturbance wavenumber β. Therefore, in order to determine the optimal value of β, we now loop
over two parameters, the optimisation time and the spanwise wavenumber (two-dimensional parameter space).

In Fig. 4a, we plot iso-contours of the energy gain G = E(t)/E0 for different optimisation times T and
spanwise wavenumbers β. We identify a clear peak at T = 90 and β = 2.0. In order to understand the physical
mechanisms behind this peak, we consider the spatial distribution of the disturbance velocities. The three
velocity components of the optimal initial condition are shown in Fig. 5a, and the corresponding velocities
of the response are depicted in Fig. 5b. We note a strong component-wise energy transfer, implying that the
lift-up mechanism is active, where streamwise vortices induce streamwise streaks inside the boundary layer.
For the present case, the initial energy content (t = 0) of the streamwise velocity component is only 6.3 % of
the total energy, increasing to 91.3 % at the optimal time (t = T ). The energy of the wall-normal (spanwise)
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Fig. 5 a Optimal initial condition and b the corresponding flow response. Streamwise, wall-normal and spanwise velocities are
shown from top to bottom. The energy growth is G = 1.3 × 103 at a Reynolds number of Re = 3000. The Reynolds number at
the outflow based on the distance from the leading edge is Rex = 300000

velocity component decreases from 28.6 % (65.1 %) to 1.8 % (6.9 %) of the total disturbance energy. The total
energy growth is G = 1.3 × 103. Similar results were obtained by Andersson et al. [2] using the boundary
layer equations and by Monokrousos et al. [20] in the global framework of a flat plate boundary layer without a
leading edge. The emerging flow structures are plotted in Fig. 5b. We notice in Figure 5 that the Orr mechanism
with the characteristic upstream leaning structures contributes partly to the downstream development of the
disturbance.

For longer optimisation times, a rapid decay of the amplification is observed in Fig. 4 when disturbances
leave our computational domain. As we increase the optimisation time, the optimal initial disturbance moves
farther upstream so that the excited flow response stays inside the domain within the optimisation time. Beyond
a certain value of T , the optimal initial condition moves upstream of the leading edge into a region without
significant mean shear, which explains the lower amplification. In these cases, the initial disturbance resembles
the localised optimal perturbation discussed in the next section. For short times T , on the other hand, the lift-up
mechanism does not have enough time to fully exploit the shear in the boundary layer.

In order to compare our results with those from [20], where the wavenumber is scaled by the boundary
layer displacement thickness, we need to re-scale the lengths and wavenumbers of our present formulation. In
the units used in Ref. [20], the present optimal wavenumber is β∗ = 0.67. This value is comparable to that in
[20] (β∗ = 0.55), where we ascribe the difference to the presence of the leading edge.

4.2.2 Optimal localised three-dimensional disturbances

As for the two-dimensional modes, we perform a parametric study to find the optimal time T and spanwise
wavenumber β. In Fig. 4b, iso-contours of energy growth for different optimisation times and spanwise
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wavenumbers are shown for the case of the upstream localised disturbance. The red dot corresponds to the
maximum. The optimal disturbance occurs for T = 125 and β = 2.8. Comparing these values to those
obtained for the global (non-localised) optimal, we identify two main differences: (i) the optimal time T is
longer and (ii) the optimal spanwise wavenumber β is larger. The larger value of T is expected as the upstream
localised perturbation needs additional time to travel to the leading edge and penetrate the boundary layer.

We have shown above that the receptivity to purely two-dimensional disturbances is very weak upstream
of the leading edge. This observation can possibly explain why the optimal wavenumber β for the upstream
localised case is larger than that of the global optimal: whereas larger values of β may, on the one hand,
become less optimal with respect to the lift-up mechanism, the corresponding disturbances are, on the other
hand, less damped when penetrating the shear layer at the leading edge. These two trends seem to be in balance
at β = 2.8 (β∗ = 0.93). The physical mechanisms pertaining to the energy growth appear to be similar in the
cases of global and upstream localised optimal initial conditions. However, the Orr mechanism is absent in the
latter case because there is no significant mean shear upstream of the leading edge, which could support an
additional energy gain due to upstream leaning disturbance structures. As the streaks are the result of a robust
amplification mechanism, the lift-up effect, the final disturbance is very similar when considering localised
and non-localised optimal initial conditions [see e.g. 6,17]. However, the streamwise vortices creating those
streaks appear to have a different wall-normal localisation: these vortices are lower and located inside the shear
layer, closer to the wall, in the case of upstream localised disturbances, whereas they extend higher up when
they are already above the flat plate at time zero.

The spatial distributions of the upstream localised optimal initial condition and the corresponding response
are shown in Fig. 6a,b. As for the non-localised disturbance, most of the perturbation energy is initially in
the cross-stream components (36.7 and 45.6 % in the normal and spanwise direction, respectively), whereas

Fig. 6 a Localised optimal initial condition and b corresponding flow response. From top to bottom: streamwise, wall-normal
and spanwise disturbance velocities. The energy growth is G = 1.2 × 102 and the Reynolds number Re = 3000. The outflow
Reynolds number (based on the distance from the leading edge) is Rex = 300000
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the streamwise velocity only carries 17.7 % of the total energy. At the final optimisation time, conversely,
the streamwise component contains 93.6 % of the total energy, while the normal and spanwise components
only account for 1.8 and 4.6 % of the disturbance energy, respectively. As long as the disturbance vortices
travel upstream of the leading edge, they slowly decay similar to what is observed in decaying turbulence.
However, once the vortices reach the region with strong mean shear near the stagnation point (after T ≈ 20),
they quickly start to transfer energy to the streamwise boundary layer streaks, extracting energy from the mean
shear by the lift-up effect. It is thus important to include the leading edge effect in a receptivity study (see also
[25]). The total energy growth is substantially weaker relative to the global (non-localised) optimals. This is
attributed to the following reasons: (i) the Orr mechanisms cannot contribute to the energy gain upstream of
the leading edge and (ii) the lift-up effect is active farther upstream relative to the non-localised case, where
the local Reynolds number—and thus the transient growth potential—is lower (see [2]).

5 Conclusions

We have applied a Lagrange multiplier technique using the direct and adjoint linearised Navier–Stokes
equations in order to quantify the disturbance growth potential in a flow over a flat plate with an ellip-
tic leading edge at moderately high Reynolds numbers. We consider the optimal initial condition lead-
ing to the largest possible energy amplification at time T . In particular to understand the boundary layer
response to external ambient noise, we compute an optimal disturbance localised upstream of the leading
edge. This approach can be used to create a modal basis for a projection of free-stream disturbances, estab-
lishing a direct method for computing receptivity coefficients for externally excited flows. While this may
not be the most efficient way to compute receptivity coefficients, it provides details about the most dan-
gerous components of the incoming disturbances. The optimisation framework adopted is not restricted to
streamwise slowly varying base flows, a common assumption of the first order approximation of the Orr–
Sommerfeld–Squire formulation and the more advanced Parabolised Stability Equations approximation. More-
over, the method presented here allows us to include curved geometries and fully three-dimensional flow
configurations.

We find that the two-dimensional initial condition with the largest potential for growth is a TS-like wave
packet that includes the Orr mechanism in the initial growth phase and is located inside the boundary layer
downstream of the leading edge. The growth of this optimal disturbance is linked to the exponentially unsta-
ble eigenmodes of the Blasius boundary layer, and it is limited by the streamwise extent of the computa-
tional box. The case of three-dimensional optimal disturbances exhibits a peak in the energy for a much
earlier time (i.e. a more upstream location) and for a spanwise wavenumber of β = 2.0, relevant to the
well-understood lift-up mechanism. This value is in close agreement with earlier studies of a similar nature
[20].

The upstream localised optimal initial conditions are more interesting as they allow for a better under-
standing of the effects of the leading edge on the boundary layer receptivity. In this setting, the optimal initial
disturbance conditions reside in the free stream upstream of the leading edge. We find that two-dimensional
upstream disturbances are rather inefficient at triggering unstable wave packets. The flow around the leading
edge has a strong damping effect on this type of disturbance, so that the optimisation procedure favours stable
wave packets with lower damping in the initial boundary layer penetration phase over the downstream unstable
(but initially highly damped) wave packets. Note that the present formulation does not allow acoustic waves
to be admissible upstream disturbances, although they are probably the most effective in generating TS waves,
see Haddad and Corke [14] and Wurz et al. [32] as examples of numerical studies where acoustic waves
are imposed in an incompressible flow as oscillating harmonic free-stream boundary conditions. The present
method can be extended to acoustic disturbances by considering sensitivity to and optimisation of boundary
conditions, as done for example by Mao et al. [18,19] and in [7] for wall blowing and suction. Indeed, it is
interesting to add that the approach suggested in [19] is also suitable to extend the present formulation to the
spatial framework.

The three-dimensional, upstream localised disturbances turn out to be more efficient in perturbing the
boundary layer than their two-dimensional counterparts. They are able to exploit the lift-up mechanism effi-
ciently, although the local Reynolds number is lower than in the case of global optimal initial conditions (i.e.
the streak generation happens farther upstream). Since the boundary layer streaks created by the upstream dis-
turbance are located farther away from the wall than the TS waves of the two-dimensional scenario, they do not
suffer from the high energy loss due to diffusion close to the wall. Additionally, the streamwise wavenumber
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of the streaks is low and does not depend much on the (low) local Reynolds number, therefore rendering this
instability mechanism robust.
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