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The attenuation of three-dimensional wavepackets of streaks and Tollmien–
Schlichting (TS) waves in a transitional boundary layer using feedback control is
investigated numerically. Arrays of localized sensors and actuators (about 10–20)
with compact spatial support are distributed near the rigid wall equidistantly along
the spanwise direction and connected to a low-dimensional (r = 60) linear quadratic
Gaussian controller. The control objective is to minimize the disturbance energy in
a domain spanned by a number of proper orthogonal decomposition modes. The
feedback controller is based on a reduced-order model of the linearized Navier–
Stokes equations including the inputs and outputs, computed using a snapshot-
based balanced truncation method. To account for the different temporal and spatial
behaviour of the two main instabilities of boundary-layer flows, we design two
controllers. We demonstrate that the two controllers reduce the energy growth of
both TS wavepackets and streak packets substantially and efficiently, using relatively
few sensors and actuators. The robustness of the controller is investigated by varying
the number of actuators and sensors, the Reynolds number and the pressure gradient.
This work constitutes the first experimentally feasible simulation-based control design
using localized sensing and acting devices in conjunction with linear control theory
in a three-dimensional setting.
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1. Introduction
In recent years, industrial, economical and environmental needs have reinvigorated

the interest in practical methods for control of transitional and fully turbulent wall-
bounded shear flows. Currently, research efforts are devoted to the manipulation
of fluids by passive means, for example by riblets (Choi, Moin & Kim 1993) or
discrete roughness elements (White & Saric 2000), by ad hoc active means, for
example via wave cancellation (Sturzebecher & Nitsche 2003), opposition control
(Hammond, Bewley & Moin 1998) or wall-motion techniques (Quadrio & Ricco
2004) and with linear and nonlinear control theoretical approaches, for example
using spatially localized convolution kernels (Högberg, Bewley & Henningson 2003a)
or adjoint-based optimization methods (Bewley, Moin & Temam 2001). Significant
efforts are also devoted to the development of acting and sensing devices, such as
synthetic jets (Smith & Glezer 1998), electro-magnetic actuators (Pang & Choi 2004),
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plasma actuators (Grundmann & Tropea 2008) or various micro-electro-mechanical
system (MEMS) actuators (Ho & Tai 1998) constructed using micro-machining
techniques.

1.1. Linear control of transition

It is now well established that under certain conditions, the initial phase of the
laminar–turbulent transition in wall-bounded flows is largely governed by linear
mechanisms. We therefore believe that tools of linear control theory may provide
efficient, robust and feasible controllers to delay transition to turbulence. The
combination of linear systems and control theoretical tools and transition control
dates back to the seminal works by Joshi, Speyer & Kim (1997), Cortelezzi et al.
(1998) and Bewley & Liu (1998), who paved the way for future researchers. These
investigations applied feedback control to the problem of linearized plane Poiseuille
flow, taking into account unknown and variable disturbances in imprecise flow
conditions, mathematical modelling of boundary actuation (blowing and suction
at the wall), optimality and robustness (LQG/H∞ methods), minimal realizations
(controllability and observability) and so on.

However, the tools in linear control theory are developed for systems with number
of degrees of freedom of the order of 102; controllers with 105 of states or more
are of no interest in engineering applications due to the amount of hardware and
computer resources required to compute a real-time control law. As a consequence,
all model-based control designs involve the problem of reducing the order of the
controller. In fact, this issue was already addressed by Cortelezzi et al. (1998); they
analysed distributed measurements and actuators and designed the linear controllers
in Fourier space, since for spatially invariant systems such as channel flow, the three-
dimensional (3D) system becomes completely decoupled into a set of two-dimensional
(2D) subsystems. The approach requires an online 2D (for each xy-plane) fast fourier
transform (FFT) of the measurement vector and an online 2D iFFT of the control
vector, in addition to assuming that the disturbances are spatially periodic in the
spanwise direction. However, the main drawback besides the periodicity assumption
is that the cost of the online 2D FFTs grows rapidly with the number of actuators and
sensors.

A different approach in physical space was adopted by Högberg & Bewley (2000)
and Högberg et al. (2003a), after the theoretical predictions by Bamieh, Paganini
& Dahleh (2002). There, it was shown that for spatially invariant systems with
distributed control and measurements, optimal and robust controllers, obtained by
solving a set or family of smaller problems in the Fourier space, are spatially localized
with compact support. This means that controllers designed in Fourier space for each
wavenumber pair independently (considering for example the channel flow) result
in realizable and practicable controllers (or kernels) in physical space, which can at
least hypothetically be implemented using MEMS. Several successful projects were
initiated to extend this approach to weakly spatially developing flows (Chevalier
et al. 2007a; Monokrousos et al. 2008) and even to fully turbulent flows (Högberg,
Bewley & Henningson 2003b; Chevalier et al. 2006). However, there are several
shortcomings of this approach which have rendered it difficult to implement it
experimentally: (i) it introduces a controller with the same order as the plant; (ii) it is
only applicable to spatially invariant systems; (iii) it assumes distributed sensors and
actuators.

As we mentioned earlier, controllers of very high order are useless in applications;
today we lack methods to reduce the order of very high-dimensional controllers in a
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systematic way, since the methods developed in the control community are applicable
only to moderate size controllers. The limitation to spatially invariant flows is a severe
restriction; even if the approach can be extended to weakly spatially developing flows,
more complex flows such as flows in ducts, corners, diffusers and around leading edges
are out of reach. Finally, the assumption of distributed sensors and actuators restricts
the approach to acting and sensing devices that can be manufactured in very large
numbers such as MEMS devices; in many applications this is not cost-efficient and,
moreover, only a few localized sensors and actuators are suffice to manipulate the
flow in a desired way.

1.2. Model reduction of the Navier–Stokes equations

This paper addresses the limitations – with no assumptions made about the geometry
or about the shape and distribution of actuators and sensors – of previous methods in
a direct and efficient way by reducing the complexity of the Navier–Stokes equations
before designing the controller. For this model reduction step to be meaningful, the
complexity of the governing system must be reduced by several orders of magnitude,
that is, from several million degrees of freedom to less than a hundred, while preserving
the essential dynamics. It has not been clear how to define ‘essential dynamics’ in the
context of transition control and once defined, if such an enormous order reduction
can be performed in a systematic and efficient manner. The method used in this paper
is balanced truncation. An approximation of this approach for large-scale systems,
such as those typical in fluid mechanics, was proposed by Rowley (2005) and recently
applied to channel flow instabilities by Ilak & Rowley (2008).

As recognized by Bewley (2001), the only requirement to achieve the desired flow
behaviour is that suitable control signals are determined based only on filtered
information delivered from the sensor measurement. Thus, of utmost importance
for control design is to extract the components necessary to describe the relation
among time signals from the full dynamics governed by Navier–Stokes equations. A
general input–output framework was developed in Bagheri, Brandt & Henningson
(2009 b), where the disturbance and actuators were considered as inputs, whereas
the objective function and sensors were considered as outputs. It was shown that
the input–output behaviour is the ‘essential dynamics’ and it could be represented
equally well with a reduced-order model of 60 degrees of freedom as with the Navier–
Stokes equations of order 105. This proof-of-concept work showed for the first time
that this significant order reduction can be combined with control theoretical tools
to attenuate disturbances in spatially developing flows. The work presented in this
paper extends previous research on reduced-order models and linear feedback control
of 2D disturbances to a fully 3D setting. This is not a trivial extension, since the
third spatial direction introduces several new challenges; the disturbance dynamics is
significantly more complex due to the presence and competition of different instability
mechanisms.

When the background disturbance level is very low (of the order of 0.05 %),
packets of travelling waves, Tollmien–Schlichting (TS) waves, are typically observed
in boundary layers. These waves are characterized by small streamwise scales and large
spanwise extent. However, in the presence of moderate levels of vortical perturbations
in the free stream, streaky streamwise-elongated structures emerge in the boundary
layer; these streaks have a dominant spanwise length scale of the order of the
boundary-layer thickness.
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In addition to having completely different spatial structures, these two disturbances
also evolve on different time scales. The TS wavepackets grow exponentially on a
viscous time scale and break down when they reach amplitudes of the order of a few
per cent of the free-stream velocity, whereas the streaks grow at an algebraic rate,
quickly reaching their peak energy and triggering turbulence at amplitudes one order
of magnitude larger than TS wavepackets. The two types of disturbances span a wide
range of temporal and spatial scales, making the control design and in particular the
choice of actuators and sensors and their placement a disturbance-dependent task.
Indeed, previous work on flow control has targeted either streaks or TS wavepackets;
however, in realistic conditions, it is likely that both instability mechanisms co-exist.
In order to be able to control both types of disturbances, we build two controllers:
each aimed at one of the two types of instabilities. However, it is the intention of this
work to control both types of disturbances using the same spatial shape of actuators
and sensors.

1.3. Scope of the investigation

The present study is based on a fully 3D configuration that resembles actual
experimental set-ups – see for instance Lundell (2007) or Sturzebecher & Nitsche
(2003) – with a set of localized actuators and sensors distributed near the wall.
The long-term aim of this research project is to develop numerically reliable and
fast controllers that are possible to use in laboratory experiments. For example,
measurements from hot film sensors or wall wires could, after being processed
by analogue to digital converters (A/D) and digital signal processors (DSP), be
fed to a computer that quickly computes the control signals using the numerically
obtained low-order controller developed in this work. The control signal would then
be converted to analogue signal using D/A converter and fed to plasma actuators.
Numerical investigations can also be useful for wind-tunnel experiments, by providing
guidelines for the shape and spatial distribution of actuators and sensors. The
design and placement of actuators and sensors can be studied through extensive
numerical parametric studies, reducing the number of experiments required to obtain
a satisfactory controller. Thus, we believe that the numerical study presented here takes
us one step closer to incorporating theoretical tools into the practical (experimental)
flow control community.

The objective of this work is to investigate whether 3D streaks and TS wavepackets
can be attenuated by specific controllers based on a few localized sensors and
actuators. The controllers are designed using reduced-order models in conjunction
with linear optimal feedback control. In addition, the efficiency and robustness of
the linear controller will be investigated to assess the control performance when the
system is operating at off-design conditions.

This paper is organized as follows. In §§ 2 and 3, the control problem is formulated
with a description of the configuration, disturbances, actuators, sensors and objective
functions. The model reduction problem is briefly introduced. The characterization
of the leading balanced modes and the validation of the reduced-order models of the
Navier–Stokes system are provided in § 4. In this section, we start by discussing
separately the results for streaks and TS waves, while the previous theoretical
formulation is independent of the specific disturbance considered. Section 5 provides a
short introduction to the linear quadratic Gaussian (LQG) framework. Sections 6 and
7 contain the main results of the paper: the performance of the control is evaluated
for 11 different configurations of sensors and actuators for the TS wavepackets case
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Figure 1. Input–output configurations. For a complete list of the cases, see tables 1 and 2.
Here the side view (a), the reference cases for the TS case (b) and the streak case (c) are
depicted. The input B1 in (b) is an optimal initial condition that triggers TS waves, located at
(30, 1, 0). The control action is provided by the input B2, which consists of a row of actuators
located at x = 400. The output C2 at x = 300 contains an array of sensors used for flow
estimation. For the streak case (c), B1 is located at (30, 1, 0), B2 at x =125, and the estimation
sensor row C2 is placed at x = 75. The effect of the controller is quantified by C1, defined in
a region spanned by 10 proper orthogonal decomposition (POD) modes (here indicated with
a darker grey region); for each case, one set of modes is generated. In both cases, all the
estimation sensors are connected to all the actuators (centralized control).

and 4 configurations for the streaks. The paper ends with a discussion in § 8 and a
summary of the main conclusions (§ 9).

2. Governing equations and flow parameters
We study the dynamics and control of small-amplitude perturbations in a viscous,

incompressible flow over a flat plate, using numerical simulations. The 3D input–
output configuration, shown in figure 1, is an extension of the 2D case studied
in Bagheri et al. (2009a , b). The disturbance velocity field is governed by the
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Navier–Stokes equations linearized around a spatially evolving zero-pressure-gradient
boundary-layer flow u(x, t) = (U (x, y), V (x, y), 0)T,

∂u
∂t

= − (U · ∇) u − (u · ∇) U − ∇p + Re−1∇2u + λf (x)u, (2.1a)

0 = ∇ · u, (2.1b)

u = u0, at t = 0. (2.1c)

The disturbance velocity field and the pressure field are u(x, t) = (u, v, w)T and p(x, t),
respectively. The flow evolves in the spatial domain Ω defined by

Ω = {x ∈ �3|x ∈ [0, Lx], y ∈ [0, Ly], z ∈ [−Lz/2, Lz/2]}, (2.2)

where the streamwise, wall-normal and spanwise directions are denoted by x, y and
z, respectively. The Reynolds number is defined as Re =U∞δ∗

0/ν, where δ∗
0 is the

displacement thickness at the inflow position, U∞ is the uniform free-stream velocity
and ν is the kinematic viscosity. The simulations were performed at Reδ∗

0
= 1000,

corresponding to Rex ≈ 3 × 105 at the computational inlet.
The following boundary conditions are imposed in Ω:

u(x, y, −Lz/2) = u(x, y, Lz/2), (2.3a)

u(0, y, z) = u(Lx, y, z), (2.3b)

u(x, 0, z) = u(x, Ly, z) = 0. (2.3c)

A no-slip condition is imposed on the flat plate (y = 0). Far away from the
wall (y = Ly), in the free stream, Dirichlet boundary conditions enforce vanishing
perturbations. Periodicity of the solution is assumed in the spanwise direction, whereas
in the streamwise direction, an outflow boundary condition is imposed within the
Fourier approximation by the term λf (x)u in (2.1a). This forcing is identically zero
inside the physically relevant domain (x ∈ [0, 800]) and rises to order one inside a
fringe region, starting at x =800, where it forces the perturbations to zero (Nordström,
Nordin & Henningson 1999).

In this work, our aim is to present the linear systems and control theory in as
simple and compact form as possible and put the focus on the control performance
and the associated physics. Therefore, we omit entirely any discussion of partial
differential equations (PDEs) and the following analysis is presented for finite-
dimensional systems – ordinary differential equations (ODEs) – for simplicity. The
infinite-dimensional formulation of the theory is presented in Bagheri et al. (2009 b),
where the relevant function spaces, inner products and derivations of adjoint operators
alongside a more in-depth theoretical discussion are provided. Note, however, that
the fundamental difference between the theory for ODEs and PDEs is related to
convergence (see e.g. Curtain & Zwart 1995); other than that, the two formulations
are analogous.

The results presented in this paper are computed with a pseudo-spectral code
(Chevalier et al. 2007b). The computational domain Ω has the dimensions indicated
in the captions of tables 1 and 2; a resolution of 768 × 101 × 120 has been deemed
sufficient and used for all the simulations. The spatial discretization requires thus
n ≈ 107 degrees of freedom. The discretized and linearized Navier–Stokes equations
(2.1) with the boundary conditions (2.3) can be written as an initial-value problem as

u̇(t) = Au(t), u(0) = u0, (2.4)
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where u ∈ � ⊂ �n is the state variable in the state space � endowed with the inner
product 〈 · , · 〉Ω . For the flat-plate boundary layer, the flow is globally stable (Åkervik
et al. 2008) – but convectively unstable – resulting in a stable matrix A, i.e. all the
eigenvalues of A have negative real part.

The action of A ∈ �n×n on u corresponds to evaluating the right-hand side of the
linearized Navier–Stokes equations and enforcing the boundary conditions. Associated
with this operator is the evolution operator T , which can be defined as

u(t) = T (t)u(0) = exp(At)u0. (2.5)

Given an initial flow field u0, T provides the velocity field at a later time t; the action
of the operator amounts to integrating the governing equations forward in time. In
a similar way, the adjoint evolution operator T ∗ provides the solution of the adjoint
linearized Navier–Stokes equations at different instants in time. Applying this operator
corresponds to integrating the adjoint state backwards in time. The continuous and
discrete adjoint equations are given in Appendix A; a detailed derivation of the
operators for the corresponding two-dimensional case is provided in Bagheri et al.
(2009b).

3. Input–output system and model reduction
The input–output configuration is schematically depicted in figure 1; formally, the

linear system with inputs and outputs is defined as follows:

u̇(t) = Au(t) + B1w(t) + B2φ(t), (3.1a)

z(t) = C1u(t) + Ilφ(t), (3.1b)

v(t) = C2u(t) + Iα g(t). (3.1c)

The first input B1 ∈ �n, located far upstream, models an incoming external
perturbation, whereas the second input B2 ∈ �n×m represents m actuators. The
temporal behaviour of the inputs is given by the signals w ∈ �, g ∈ � and φ ∈ �m

respectively. The measurement signals, contained in the vectors v ∈ �p and z ∈ �k ,
provide information about the perturbation and are extracted by p sensors C2 ∈ �p×n

and k sensors C1 ∈ �k×n, respectively. To model measurement noise corrupting the
sensors signals, the output equation (3.1b) is forced with unit-variance white noise
g(t). The vector Iα ∈ �p contains in each entry the scalar value α. A large value of α

introduces a high level of noise corruption on the measurement v(t), whereas a small
value indicates high fidelity of the information extracted by the sensors C2. Finally,
the matrix Il ∈ �k×m contains in each entry the parameter l, which allows penalization
of the controller effort, as further discussed in § 3.3.

The energy growth of the TS wavepacket and the streaks is characterized by
different growth rates and temporal scales: whereas the TS wavepacket grows at an
exponential rate and breaks down quite far downstream of the inflow, the streaks
grow at an algebraic rate, quickly reaching the maximum level of energy and resulting
in a relatively early breakdown. The different time scales of the disturbances have
vital implications for the control design as shown in figure 1; in order to mitigate
properly the two types of disturbances, a proper control scheme for each case is
designed. The set-up designed for the mitigation of the streaks is located upstream
in the domain, before the maximum growth is reached. Conversely, the location of
the TS wavepacket controller is chosen in the centre of the box, since the maximum
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Figure 2. Impulse response of the system to an initial disturbance in B1, leading to maximum
energy growth at time T = 1820; the streamwise component of the resulting disturbance is
displayed at t =400, 800 and 1600. The lighter and darker grey represent positive and negative
velocities, respectively. The spreading of a TS wavepacket is observed.

growth appears far downstream. In the following sections, the m+1 inputs and p + k

outputs are introduced in detail.

3.1. B1: optimal disturbances

The upstream disturbance B1 is a localized initial condition that provides the
maximum energy of the perturbation at a given final time. As recently shown by
Monokrousos et al. (2010a), different instability mechanisms can be triggered by
three-dimensional, localized initial conditions computed for different optimization
times. In particular, long optimization time provides an initial condition that triggers
a wavepacket of TS waves, whereas streamwise vortices are obtained as an optimal
initial condition when large amplification in short time is sought.

Figure 2 shows the impulse response to an initial condition B1 that provides
the maximum growth for a final time tmax ≈ 1820 at three instants in time; the
streamwise component is tilted in the upstream direction, leaning against the shear
layer. Initially, the evolving disturbance extracts energy from the mean flow via the Orr
mechanism (see e.g. Butler & Farrell 1992; Åkervik et al. 2008); the structure gradually
rotates until it aligns with the shear. As the disturbance propagates downstream, the
wavepacket grows in size and spreads in the spanwise direction. The evolution of the
disturbance energy, defined as

E(t) = 〈u(t), u(t)〉Ω, (3.2)

is shown in figure 4(a). We observe an exponential growth of the energy and an
amplification E(tmax)/E(0) ≈ 2 × 103.

The evolution of the optimal initial condition obtained for a shorter time, tmax = 720,
is depicted in figure 3. The initial condition is a packet of streamwise vortices, with
most of the energy contained in the wall-normal and spanwise components. The energy
growth is related to the lift-up mechanism, characterized by the energy transfer to the
streamwise component; this instability mechanism generates long streaky structures,
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Figure 4. Disturbance energy as a function of time for the TS waves (a) and streaks (b).

growing in size in the streamwise direction, as shown in figure 3. The energy evolution
is shown in figure 4(b), where an amplification E(tmax)/E(0) ≈ 3 × 102 is found.

3.2. B2 and C2: actuators and sensors

Each of the m actuators in B2 is represented by a volume forcing localized in a
region close to the wall. The actuators are placed in a row in the spanwise direction;
the p sensors represented by C2 are also composed of a row of localized elements,
located a short distance upstream of the actuators. All the elements in B2 and C2

are analytically expressed by a Gaussian function given in Appendix B. The fact that
we have modelled the actuators and sensors as volume forcing does not mean that
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they are unrealistic or not relevant for practical implementation; it is the effect of an
actuator that is important to model, and not the actuator itself. Therefore, the action
that the volume forcing has on the flow could possibly be reproduced, for example
using plasma actuators (Grundmann & Tropea 2008). The measurement signal v(t)
is the spatial integral of the velocity field u weighted with the Gaussian function (see
(B 3)).

The actuator array designed for the mitigation of the TS wavepackets is located
halfway in the downstream direction, while the array designed for the streaks control
is placed upstream; it was found by numerical simulations that the performance of
the feedback control schemes is dependent on the number of elements used and the
streamwise location, as discussed later.

3.3. C1: objective function

The aim is to determine a control signal φ(t) using the noisy measurements v(t), so
that the perturbation energy of the flow is minimized in the region defined by C1.
Moreover, the energy expended by the actuator has to be limited in order to design an
efficient controller. Hence, the criterion to be minimized is expressed by the objective
function

‖z‖2
L2(0,T ) =

∫ T

0

‖C1u‖2
Ω + φT ITl Ilφ dt, (3.3)

where the entries of the matrix Il , given by the parameter l, define the cost of the
control; note that we assumed the cross-term between the control input and C1u to
be zero (Zhou, Doyle & Glover 2002). Low values of l allow strong actuations, as the
control input is allowed to have a higher magnitude. On the other hand, high values
of l penalize strong actutation. Also, it is worth noting that values of l that are too
low may result in unphysical control inputs.

The spatial support for C1 is localized in a region downstream, where disturbances
have high energy, as sketched in figure 1. The subspace of the domain where the
controller minimizes the energy is spanned by a basis {C1,1, . . . , C1,k}, which in the
present configurations is a sequence of POD modes (see e.g. Holmes, Lumley &
Berkooz 1996), obtained from the impulse response of the initial disturbances. This
approach is similar to the so-called output projection technique used by Rowley
(2005) and Ilak & Rowley (2008). The POD modes are the most energetic structures
triggered by the inputs; the corresponding eigenvalues {γ1 � γ2 � · · · � γk} represent
the fraction of the total flow energy captured by each mode.

The POD basis is empirical, i.e. it accurately represents the data that generated it;
therefore, two different sets of modes are computed, one for each initial condition
considered. The POD modes generated for the TS wavepacket configuration come
in pairs (see e.g. Rempfer & Fasel 1994), because two real-valued functions are
required to describe a flow structure travelling as a wavepacket; each pair exhibits the
same structure, only shifted in the streamwise direction. In contrast, the corresponding
POD eigenvalues associated with the streak disturbance, not shown here, are no longer
ordered in pairs, since the disturbance is characterized by low-frequency elongated
structures in the direction of propagation.

To identify a proper POD basis, we also considered snapshots generated from all
the inputs (i.e. including the actuators). The comparison between the POD modes
generated by all the inputs (B1 and B2) and those obtained from the initial condition
(B1) demonstrated that only modes corresponding to small γ , containing less than 1 %
of the total energy, are affected by the structures related to the actuators. Thus, POD
modes generated only by the upstream disturbance were used during the numerical
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simulation; in particular, the first 10 POD modes capture 93 % and 91 % of the total
flow energy for the TS and streak configurations, respectively, and are used as the
basis for C1. An alternative choice for C1 is presented in Semeraro et al. (2010), where
a set of Fourier modes localized in the streamwise and wall-normal directions were
introduced to define the objective function.

The leading POD modes capture the relevant spatial characteristics of each
disturbance as illustrated in figures 5 and 6, where two modes for each set are
shown. For the TS wavepacket (figure 5), one POD mode for each of the two first
pairs is shown: it can be seen that the structure is mostly located downstream,
indicating where the energy response to the forcing is the largest. For the streaks
(figure 6), the first two modes have significant spatial support starting from x = 250
and extend all the way to the end of the domain. The streamwise and the wall-normal
components are antisymmetric with the respect to the xy-plane (z = 0), whereas the
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spanwise component is symmetric; opposite symmetry features are observed for the
TS wavepackets. The cross-section reveals the tilted shape of the modes, with the
streak leading edge further away from the wall than the trailing edge.

3.4. Model reduction

In general, a reduced-order model of the input–output system (3.1) can be obtained via
a projection onto a low-dimensional subspace �r ⊂ �, spanned by r basis functions,
Φ = (φ1, φ2, . . . , φr ) ∈ �n×r . Thus, the disturbance field u ∈ � can be approximated
by ũ ∈ �r ,

ũ =

r∑
j=1

qjφj = Φq, (3.4)

where q =(q1, q2, . . . , qr )
T ∈ �r are the scalar expansion coefficients. The coefficients

can be computed from

qj = 〈u, ψ j 〉Ω or q = Ψ ∗u, (3.5)

where Ψ = (ψ1, ψ2, . . . , ψ r ) ∈ �n×r are adjoint modes; the adjoint modes are bi-
orthogonal to the expansion basis Φ , i.e. Ψ ∗Φ = I, where I ∈ �r×r is the identity
matrix. The asterisk represents the application of the inner product 〈 · , · 〉Ω between
the rows of Ψ ∗ and u. The approximation (3.4) can be inserted in the input–output
system (3.1). Taking the inner product with the adjoint modes results in the reduced-
order model of order r ,

q̇(t) = Arq(t) + B1rw(t) + B2rφ(t), (3.6a)

z(t) = C1rq(t) + Ilφ(t), (3.6b)

v(t) = C2rq(t) + Iα g(t), (3.6c)

where Ar = Ψ ∗AΦ , B1r = Ψ ∗ B1, B2r = Ψ ∗ B2, C1r = C1Φ and C2r = C2Φ .
The choice of a proper expansion basis is crucial for the performance of the reduced-

order model; in our case, we aim to build a model that preserves the dynamics between
the actuators and sensors. Indeed, among all the possible divergence-free velocity
fields, only certain states can be triggered by the inputs (B1 and B2) and observed
by the outputs (C1 and C2). These states are called controllable and observable states,
respectively. The unobservable/uncontrollable states are redundant for the input–
output behaviour of the system; thus, they can be discarded. Moreover, it turns out
that, when m, p � n, with m being the number of inputs and p the number of the
outputs, the complexity of (3.1) can be further reduced, while preserving the relation
between the inputs and outputs.

A systematic approach of removing these states is called balanced truncation (Moore
1981); in Appendix C a summary of this method is given in a simplified space-
discrete form. The focus is on the Hankel operator, which provides a direct mapping
between the inputs and the outputs. From this operator, a set of balanced modes
and a corresponding adjoint set can be defined, and used as a projection basis.
Unfortunately, the necessity to solve Lyapunov equations makes the exact balanced
truncation unfeasible for large systems. An approximation based on snapshots of the
flow field is introduced in Rowley (2005). In particular, the snapshots are computed
by marching in time the linearized NS forced by all inputs, and backward in time the
adjoint system forced by the sensors. In Appendix C, the method is briefly outlined
for the present notation; note, however, that the original method proposed by Rowley
(2005), also referred to as balanced proper orthogonal decomposition (BPOD), is
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characterized by the output projection of the sensor over a POD basis generated from
the inputs data set.

Further extensions of balanced truncation are available for unstable systems and
nonlinear problems. Indeed, a balanced truncation as introduced by Moore (1981)
can be applied only to a system linearized about a stable steady state. An extension
to unstable cases was proposed by Zhou, Salomon & Wu (1999); the method relies
on the identification of the stable and the unstable states, for instance via a modal
decomposition, and the application of balancing to those subspaces. Recently, the
method was applied using the snapshot-based approximation for the control of
unstable flows such as the open cavity case (Barbagallo, Sipp & Schmid 2009) or the
flow past a flat plate (Ahuja & Rowley 2010); in those cases, the unstable dynamics
of the system is represented by the unstable modes, while the approximate balance
truncation is applied to obtain a reduced-order model of the stable partition of
the system. Finally, an interesting application to nonlinear systems is presented in
Ilak et al. (2010), where reduced-order models for the complex Ginzburg–Landau
equation are compared. The best performance is obtained by Galerkin projection of
the nonlinear system onto a basis of balanced modes obtained from the corresponding
linearized system.

4. Reduced-order models
In this section, we discuss the set of approximate balanced modes – and the related

adjoint set – computed for both the TS and streak cases. The structure of the modes
is investigated, pointing out the main structural features. Indeed, an advantage of
this technique is the possibility of analysing the spatial distribution of the modes;
the spatial support reveals peculiarities of the flow from the input–output point of
view and provides physical insight into the sensors/actuators placement. In fact, the
resulting balanced mode φj is the global structure in the flow that is ‘influenced’
by the input B by an amount given by its Hankel singular value (HSV) – see
Appendix C. The corresponding adjoint mode ψ j is a flow structure that – if used
as an initial condition – will result in an output energy given also by its HSV. Thus,
these global modes represent flow fields ranked according to their response behaviour
(controllability) and output sensitivity (observability).

In this section, we first discuss the balanced modes obtained by considering only
the upstream disturbance B1 ∈ �n and the outputs C1 ∈ �k×n (POD modes), for the
sake of clarity. Finally, the reduced-order models for the full system, including also
the actuators B2 ∈ �n×m and sensors C2 ∈ �p×n, are presented and their performance
is analysed. One model is computed for each configuration; in table 1, 11 different
configurations (labelled A–M) for the TS mitigation are listed. In all cases, the elements
have an equidistant spacing in the spanwise direction at ∆z = 20. The relative position
of the arrays in the streamwise direction is fixed; the distance among the actuators
was chosen after preliminary tests to get a proper actuation. For the streaks, we
found that a finer distribution, ∆z = 4, of the actuator elements in the spanwise
direction is necessary. This is mainly due to the smaller spanwise scales of the streaks
(β = 2π/Lz = 0.58, with a total width of Lz ≈ 11). In table 2, the configurations for the
control of streaks are listed, labelled N–Q. For the largest cases, the linear systems
consist of 10 inputs and 19 outputs (case A, table 1), and 9 inputs and 18 outputs
(case N, table 2); their complexity n is of the order of 10 million.

The TS case and the streaks are discussed separately in the following sections.
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Case Actuators Sensors Control penalty Noise corruption Energy reduction System norm
m p l α E/Enc ‖G‖2

2

Ts0 – – – – 1.00 324.25

A 9 9 100 0.01 0.070 1.42
B 9 9 250 0.01 0.064 13.23
C 9 9 500 0.01 0.12 55.27

D 9 9 100 10 0.068 1.48
E 9 9 100 50 0.061 8.46
F 9 9 100 150 0.57 209.03
G 9 9 100 250 0.85 318.74

H 3 3 100 0.01 0.55 6.91
I 5 5 100 0.01 0.13 2.25
L 7 7 100 0.01 0.071 1.28
M 9 5 100 0.01 0.068 1.56

Table 1. Cases A–M correspond to 11 closed-loop systems for the control of TS wavepacket,
whereas case ‘Ts0’ is an uncontrolled configuration. In all the cases, the computational box
Ω has dimensions [Lx,Ly, Lz] = (100, 30, 120π). The number of actuators B2 (m), the number
of sensors C2 (p), the control penalty (l) and the degree of noise corruption (α) vary for the
different configurations. The peak perturbation energy of the controlled cases as a fraction
of the uncontrolled peak disturbance energy, together with the 2-norm of the input–output
system transfer function, is also displayed.

Case Actuators Sensors Control penalty Energy reduction System norm
m p l E/Enc ‖G‖2

2

Sk0 – – – 1.00 114.24

N 8 8 50 0.66 38.84
O 8 8 100 0.67 79.85
P 8 8 150 0.81 96.40
Q 8 8 70 0.79 55.96

Table 2. Cases N–Q correspond to four closed-loop systems for the control of streaks,
whereas case ‘Sk0’ is an uncontrolled configuration. The control penalty (l) varies for the
different configurations; the measurement noise is α = 0.01 for all set-ups. The same number
(m) of actuators B2 (m) and sensors C2 (p) is considered for all the configurations; in the
last configuration, a different layout is considered, where the sensor array and the actuator
array are placed in x = 100 and x = 150, respectively. The dimensions of the computational
domain for all the cases are [Lx,Ly, Lz] = (1000, 30, 240). The peak perturbation energy of the
controlled cases as a fraction of the uncontrolled peak disturbance and the 2-norm is reported.

4.1. TS wavepackets

Using the snapshot method, the balanced modes and the adjoint balanced modes
related to the TS wavepacket were computed; the snapshots were collected with
constant time spacing, 
t = 16, in a time interval [0, 3000] for the forward simulation
and in [0, −2600] for the 10 adjoint simulations.

The computed Hankel singular values σj are shown in figure 7 (circles). Similar
to the POD modes discussed previously, the HSVs generated for the TS come in
pairs, where the corresponding modes have the same structure, only shifted along the
streamwise direction by a quarter of wavelength. The isocontours of the streamwise
components of the first and the third balanced modes (φ1, φ3) and their related adjoint
modes (ψ1, ψ3) are shown in figure 8; the structure is shown in both the xy-plane
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Figure 7. The Hankel singular values of the complete models (stars) are compared with the
HSVs generated considering the first input B1 and the output C1 only (circles). On top Hankel
singular values generated for the models related to TS waves (a), on bottom HSVs for the
streaks (b).

(z = 0) and the xz-plane (y ≈ 1.6). The leading balanced modes are characterized by a
nearly two-dimensional TS wavepacket structure, located mostly in the downstream
region. These modes are strongly controllable flow structures and capture the response
behaviour of the system to the input B1.

The associated adjoint balanced modes are mostly located far upstream and
represent flow structures to which the output C1 is most sensitive. The spatial
separation between these structures and the most controllable structures identified by
the direct balanced modes is similar to the spatial separation observed between the
direct and adjoint global modes of the linearized Navier–Stokes equations, A. This
is a sign of the streamwise non-normality of A (Chomaz 2005). In figure 8(b–d), the
streamwise component of the modes in the xy-plane (z = 0) is shown. Here one can
see a tilted structure leaning against the shear, similar to the optimal initial condition
discussed in § 3.1.

Figure 7 shows the HSVs corresponding to the balanced modes used to compute the
reduced-order model using all the inputs (m+1) and outputs (p+k) (stars), pertaining
to case A in table 1. It is interesting to note that the associated HSVs decay slower
than the HSVs computed using only B1 and C1 (circles). The leading singular values
of the two systems are equal, indicating that the input–output dynamics of the system
is strongly influenced by the energy triggered by the input B1 and the observability
characteristics of the functions chosen as output C1.
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Figure 8. Balanced modes and related adjoint modes for the TS waves. Left: streamwise
component of the leading balanced mode φ1 (a) and the third balanced order mode φ3 (c).
Right: corresponding adjoint modes ψ1 (b) and ψ3 (d). Positive velocity is represented by red,
while negative one is in blue; for all the modes depicted here, the top view is shown in the
xz-plane at y ≈ 1.6, the side view is in the section xy at z = 0.

One way to validate the snapshot-based balanced truncation is to check whether the
controllability and observability Gramians of the reduced-order model are diagonal
and equal to the HSVs. The diagonal elements of the Gramians associated with
the reduced-order model and the HSVs were found to be the same for the first 80
modes. Owing to numerical discretization errors, higher-order modes gradually lose
bi-orthogonality, causing the presence of off-diagonal elements in the Gramians.

To test the reduced-order model, we compare impulse responses of the Navier–
Stokes system (3.1) with those obtained from the low-order model (3.6). For
configuration A, there are in total 10 input signals and 19 output signals, resulting in
190 impulse responses. In figure 9, the following three signals are shown:

B1 → C2,0, B2,0 → C1,1, B1 → C1,1. (4.1)

The second subscript of B2 and C2 indicates the element according to figure 1. In all
the figures, the impulse responses of a reduced model of order r = 60 are shown by
black dots, while the solid grey line provides the direct numerical simulation (DNS)
results. We observe that the low-order model (r = 60) is able to preserve the input–
output behaviour of the full Navier–Stokes system (n ≈ 107), albeit the significant
model-order reduction. The agreement between all the impulse responses of the two
systems is as good as the three signals shown here.
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Figure 9. Impulse response of the system (a) from the input B1 to the output C2,0, (b) from
B2,0 to C1,1 and (c) from B1 to C1,1, when a propagating TS wavepacket is considered. The
grey line shows the DNS results, while the black dots indicate the impulse response of a
reduced model of order 60.

4.2. Streaks

The approximate Hankel singular values generated for the streak case are shown in
figure 7(b). In this case, the snapshots were collected with a constant time spacing,

t = 16, in a time interval [0, 3000] for the forward simulation and a time interval
[0, 2000] for the 10 adjoint simulations. In agreement with the POD results, the HSVs
do not come in pairs, due to the low-frequency elongated structure characterizing
the modes (see figure 10). The first two balanced modes resemble the POD modes
depicted in figure 6 and show the typical structure aligned with the shear, in the xy

section at z ≈ 3.1. The streamwise velocity component u is one order of magnitude
larger than v and w. The corresponding leading adjoint modes shown in figure 10(b, d )
are located slightly more upstream and have an order of magnitude large value in
v, w compared with u. Note that the spatial support of the balanced modes and the
corresponding adjoint modes is nearly the same; the significant difference between the
forward and adjoint modes is in the dominant velocity component. This is a sign of
component-wise non-normality; the most efficient mechanism of growth of a streak
is energy transfer from the wall-normal and spanwise components to the streamwise
component.

As shown in figure 7(b) – similar to the case of the TS wavepacket – the HSVs of
the complete system (including all inputs and outputs) decay slower than the HSVs
computed using only B1 and C1 (stars) and the leading singular values of the two
systems are equal.

A low-order model (r =60) computed using balanced modes captures properly
the input–output behaviour of the entire system (n ≈ 107). The validation of the
snapshot-based balanced truncation method and the properties of the reduced-order
model were tested following the same steps as for the TS reduced-order model. In
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Figure 10. Leading balanced modes and related adjoint modes for the streaks. Left:
streamwise component of the leading balanced mode φ1 (a) and the second balanced order
mode φ2 (c). Positive velocity is represented by red, while negative one is in blue. Right:
wall-normal component of the corresponding adjoint modes ψ1 (b) and ψ2 (d). Positive
velocity is represented by black, while negative one is in green. For all the modes depicted
here, the top view is shown in the xz-plane at y ≈ 1.6, and the side view is in the section xy at
z = 2.

figure 11, we compare the input–output behaviour of the full Navier–Stokes system
and the reduced-order model, for the following three signals:

B1 → C2,−1, B2,−1 → C1,1, B1 → C1,1. (4.2)

The second subscript of B2 and C2 indicates the element according to figure 1.
A similar good agreement is observed for all the impulse responses, and we can
conclude that input–output relation of the signals for the streak configuration can be
adequately described with a low-dimensional model.

5. Feedback control
The aim of this section is to use the validated balanced reduced-order models

to mitigate the growth of the disturbances. Although the steps taken to design the
closed-loop control are the same as for the 2D case studied by Bagheri et al. (2009 b),
the control problem is significantly more complex due to the additional spanwise
direction.

Since the reduced-order models show essentially the same input–output behaviour
as the original system (but with only 60 degrees of freedom), they are used during the
control design. Once the feedback controller is constructed, it can be applied on-line,
in parallel to the DNS simulations.
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Figure 11. Impulse response of the system (a) from the input B1 to the output C2,−1, (b)
from B2,−1 to C1,1 and (c) from B1 to C1,1 for the streak model. The grey line shows the
DNS results, while the dotted black dots indicate the impulse response of a reduced model of
order 60.

5.1. Main steps of LQG design

Using the tools of control theory, we can determine what action the actuators should
take to minimize the disturbance energy in a region defined by C1, and if the action
of an actuator should depend on all sensor measurements or only the sensor located
upstream at the same spanwise location. In particular, the controller can be designed
using the LQG approach. Assume that the external disturbance signal w(t) and
the measurement noise g(t) in (3.6) are unit-variance white-noise processes. Then,
based on the noisy measurements v(t) extracted from the sensors C2, the controller
provides a control signal φ(t) for the actuators B2, such that the mean of the output
energy of z,

E
{

‖z‖2
L2[0,∞)

}
= E

{∫ ∞

0

qT CT
1rC1rq + φT ITl Ilφ dt

}
, (5.1)

is minimized. The first step in constructing a controller is to estimate the full state u
given only the noisy measurements v(t) – also referred to as the estimation problem.
After the state has been successfully estimated, we assume, in a second step, that
the control φ(t) and the estimated reduced state q̂(t) ∈ �r satisfy a linear relation
involving some yet unknown matrix K ∈ �m×r , i.e.

φ(t) = Kq̂(t). (5.2)

The goal of this second step is then to find such a matrix K, which is referred
to as the control gain. One attractive feature of the LQG design is that the two
steps (estimation and full-information problem) can be performed independently of
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each other, (see Anderson & Moore 1990). Moreover, if both problems are optimal
and stable, the resulting closed-loop system, composed of the two problems, is also
optimal and stable. The main disadvantage of LQG is that it does not account for
uncertainties of the underlying system (A, B, C) (see Doyle 1978). One can only check
the robustness by ad hoc testing the controller for various parameters.

For a derivation of the LQG solution, please refer to e.g. Lewis & Syrmos (1995)
and Bagheri et al. (2009c) for a ‘classical’ optimal control framework or Doyle et al.
(1989) and Dullerud & Paganini (1999) for a more ‘modern’ robust control framework.
Here, we just state the solution of the two separate problems.

To estimate the full state u(t) given only the noisy measurements v(t), an estimator
that governs the dynamics of an estimated state q̂ can be introduced:

˙̂q(t) = Ar q̂(t) + B2rφ(t) + L(v(t) − v̂(t)). (5.3)

In the above expression, we compare the measurement from the velocity field v = C2u
and the measurement from the estimated state v̂ = C2r q̂ and feed back the mismatch
in these two quantities using the estimator gain L ∈ �r×p. It can be shown (Kalman
1960) that the estimation gain that minimizes the estimation error ‖q − q̂‖, and results
in a stable system given by

L = − 1

α2
YCT

2r , (5.4)

where Y ∈ �r×r is a solution to an algebraic Riccati equation (see e.g. Laub 1991).
In the second step, assume that the full state is given by q at all times and that

φ(t) =Kq(t) (instead of (5.2)). Inserting the feedback relation into (3.1) and neglecting
the output v, we get

q̇(t) = (Ar + B2rK)q(t) + B1rw(t), (5.5a)

z(t) = C1rq(t) + Ilφ(t). (5.5b)

It remains to choose K ∈ �m×r such that the system is stable and the control signal
φ(t) minimizes output energy, ‖z‖2. The solution is provided by an optimal control
state-feedback problem (see e.g. Anderson & Moore 1990), where the optimal control
signal is given by

K = − 1
2

(
ITl Il

)−1
BT

2rX, (5.6)

and X ∈ �r×r is a solution of a Riccati equation.
Finally, combining the estimator (5.3) and the full-information controller (5.5), we

obtain the reduced-order controller (also called compensator or observer) of size r:

˙̂q(t) = (Ar + B2rK + LC2r )q̂(t) − Lv(t), (5.7a)

φ(t) = Kq̂(t). (5.7b)

At each instant in time, given only the measurements v(t), the compensator provides
the control signal φ(t). The controller thus connects measurements from sensors to
the actuators, which in combination with the Navier–Stokes system (3.1) results in a
feedback closed-loop system, denoted by Gc hereafter.

When the external disturbances are white-noise processes, the 2-norm of the closed-
loop system is a convenient measure of the input–output behaviour. The 2-norm of
the closed-loop system Gc can be defined (Green & Limebeer 1995) as

‖Gc‖2
2 =

∫ ∞

0

|z|2dt = ‖z‖2
L2(0,∞). (5.8)
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So, the 2-norm of Gc equals the control objective (3.3) defined earlier (for the infinite
time horizon) and can be calculated from the signals extracted by the output C1.

5.2. Centralized versus decentralized approach

The spatial localization of the actuators and the sensors requires a proper
multivariable approach for the controller design. A simple approach is a decentralized
control, where each actuator is connected only with one sensor (in our case, the
corresponding upstream sensor); in such a controller, each loop can be regarded as
a single-input-single-output (SISO) system and an equal number of actuators and
sensors is required. If the decentralized controller is stable in each SISO loop and the
inputs and the outputs are decoupled or only weakly coupled, then the closed loop is
also stable.

For the TS wavepacket case, the decentralized approach yielded an unstable closed-
loop system in numerical tests. A physical explanation is that the perturbation
triggered in the boundary layer by the localized initial condition shown in figure 2
gradually spreads in the spanwise direction while propagating. This results in a
dynamic coupling in the spanwise direction; thus, in this particular configuration,
the decentralized approach is unfeasible since the spanwise coupling is disregarded.
A second analysis is given by the relative gain array (RGA) matrix (Skogestad &
Postlethwaite 2005, pp. 510–514), which provides a measurement of the degree of
coupling among the inputs and the outputs of the system. Applying it to the reduced-
order model, a strong coupling was found, confirming the presumption carried from
the numerical tests.

Conversely, for the streaks case, the numerical tests resulted in a stable closed-loop
system with both the approaches, although the closed-loop system built using the
centralized design showed best performance. Moreover, the RGA matrix analysis
suggested a weak degree of cross-coupling of the I/O system. From a physical
point of view, this behaviour can be explained considering the strong elongation
in the streamwise direction and the slow spanwise spreading of the streaks; these
features result in a weak dynamical coupling in the spanwise direction. Nonetheless,
a centralized approach accounts for the spanwise cross-coupling without disregarding
it, resulting in more efficient disturbance mitigation.

In this work, we design a centralized controller for all cases (A–M and N–Q), i.e.
all the actuators are connected with all the sensors used for estimation. Using the
LQG approach, a centralized controller is guaranteed to result in a stable closed-loop
system.

6. Control of TS wavepackets
In this section, the performance of the closed-loop system for the different sensor–

actuator configurations listed in table 1 is investigated. In the reference case A, a full
set-up is considered, where the row of actuators and the row of estimators consist
of nine localized Gaussian elements equally spaced in the spanwise direction. Using
this set-up, three cases are studied with different control penalty l (cases A–C) and
four cases are analysed with different degree of noise contamination α (cases D–G);
with α = 0.01, case A can be considered to be an inexpensive controller when l = 100
(the controller effort is relatively cheap); case B is an intermediate case, with l = 250,
whereas case C is an expensive case, with l = 500. In configurations D–G, the control
penalty l is fixed, while the noise contamination parameter α is changed. Finally, for
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Figure 12. Input and output signals of the closed-loop system excited by an impulsive forcing.
(a) Output signals extracted from C2,0, located in (x, z) = (300, 0) (solid line), and C2,2, placed
in (x, z) = (300,+40) (dashed line). (b) The controller signals fed in B2,0 and B2,2 are indicated
by a solid line and a dashed line, respectively. (c) Measurements extracted by the first sensor
C1,1 for case A (solid) and the uncontrolled case (dash-dotted line).

the cases H–M, a reduced number of actuators and/or sensors is used, in order to
investigate the dependence of the closed-loop performance on m and p.

We investigate the performance of the controlled closed-loop system and the
uncontrolled Navier–Stokes system, when an impulsive forcing w(t) = δ(0) or a
stochastic white-noise forcing is applied. We consider: (i) the impulse response (time
signals), which provides a physical and direct measure of the control performance; (ii)
the system 2-norm, which represents a total measure of the input–output behaviour
and (iii) perturbation energy in the full spatial domain Ω .

In table 1, the 2-norm and the ratio between the peak energy and the initial
disturbance energy is tabulated for each case. We observe a significant reduction of
both measures. In the following section, these results are investigated further.

6.1. Input–output analysis of the closed-loop system

In figure 12, a few sensor measurements and actuator signals φ(t) for an impulse
in w(t) pertaining to case A are shown. The location of actuators and sensors is
shown schematically in figure 1. Figure 12(a) shows measurement signals used for
estimation of the disturbance associated with the sensors C2,0 and C2,2 for an impulse
in B1. The measurement detected by C2,0 (solid line) reveals a wavepacket structure
of the evolving disturbance. The travelling disturbance reaches the sensor location at
t ≈ 500, in agreement with the estimated velocity of the wavepacket in a boundary
layer ( ≈ 0.47U∞). The element C2,2 (dashed line) shows an analogous behaviour,
although a delay due to the spanwise spreading of the wavepacket is observed;
moreover, the signal is characterized by a smaller amplitude.
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Figure 13. Kinetic energy as a function of time. In (a) and (b), the solid line shows the
energy of B1. In (a), three closed-loop configurations for three different control penalties l are
compared: −�−, a cheap case; −�−, an intermediate case; −�−, an expensive case. In (b),
the influence of noise corruption α on the performance is considered; the curves correspond
to cases D–G: −�−, D; − + −, E; − � −, F; −�−, G.

Figure 12(b) shows the control signals feeding the actuators B2,0 and B2,2; they are
depicted by a solid line and a dashed line, respectively. In both cases, a time lag of
200 time units from the estimation signals is observed, to account for the advection
of the waves from the location of the sensors to the location of the actuators array.
The shift observed between the two signals is related to the 3D structure of the
incoming perturbation. As mentioned previously, the actuator signals are computed
using all the measurements extracted from C2. The control signal corresponds in
fact to a cancellation signal; if the sensors were located at the same location as the
actuators, a signal 180◦ out of phase with the control signal would be measured.
Cancellation techniques, where a second wave of appropriate amplitude and phase
cancel the travelling wave by interference, have been investigated for a long time (see
e.g. Milling 1981). However, the main feature of the feedback approach adopted here
is that no a priori knowledge of the functional behaviour of the controller is required
and the controller is able to react to unexpected system uncertainties.

In figure 12(c), the output signal extracted from C1,1 (the first POD mode)
is compared between the controlled case (solid line) and the uncontrolled case
(dash-dotted line). It is clear that the amplitude of the closed-loop output signal
is significantly reduced. Computing the system 2-norm, the performance can be
evaluated by taking into account all the k = 10 signals extracted by C1. As shown in
table 1, for case A, ‖Gc‖2

2 = 1.42; this is a reduction of about 99 % of the 2-norm of
the uncontrolled case (‖G‖2

2 = 324.25). As the controller effort is reduced, we observe
higher values of ‖Gc‖2

2 (case B, ‖Gc‖2
2 = 12.23 and case C, ‖Gc‖2

2 = 55.27). Increasing
the degree of noise corruption of the signal leads to a worsening of the performance;
in particular, this is evident when rather high values of α are considered; for instance,
in case D, a reduction of about 99 % is observed (‖G‖2

2 = 1.48), whereas for cases F
and G, ‖Gc‖2

2 = 209.03 and ‖Gc‖2
2 = 318.74, respectively.

6.2. Perturbation energy and disturbance evolution

Figure 13(a) shows the kinetic energy (in the full domain Ω) as a function of time
for the uncontrolled case (solid line) and the controlled case A (−�−). The energy
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Figure 14. Evolution of a TS wavepacket at t = 1000, 1250, 1750, without control (a, c, e) and
with control (b, d, f ). The isocontours of the streamwise components are shown in the xz-plane
at y ≈ 1.9; red isolines indicate positive velocity, while the negative one is indicated by blue.
All the plots are characterized by the same isocontour range [−1.03, 1.03].

peak for the uncontrolled case is reached at t ≈ 1820, with an energy amplification
E(tmax)/E(0) = 2 × 103, whereas the controlled case shows one order of magnitude
smaller peak value at t ≈ 1100. Note that the controller is designed to reduce the
norm of C1 and not the total kinetic energy of the flow. Nonetheless, by demanding
the disturbance energy to be small at C1, the disturbance amplitude has to decrease
significantly before it reaches the objective function. Therefore, minimization of
disturbance energy in the region defined by C1 results in an actual reduction of the
energy in the entire domain. The streamwise velocity component of the disturbance
field at t = 1000, 1250 and 1750 for case A (left column) and the uncontrolled case
(right column) are shown in figure 14. The isocontours display the flow field in
the xz-plane at y = 2. At t =1000, the perturbation is convected past the location
x = 400, where the array of actuators is placed; the original structure is distorted into
a more complicated 3D pattern, where traces of localized actuators are recognizable.
At t = 1250, the perturbation appears to be mostly concentrated in the centre
(z ≈ [−50, 50]) of the domain, whereas the spanwise extension of the structures is
significantly reduced. The original nearly 2D structure breaks down into a fully 3D
structure. Finally, at t = 1750, a significant damping of the amplitude results in contour
levels that are barely visible for case A, while the perturbation for the uncontrolled
case attains its maximum energy. It is interesting to note that similar results were
obtained by Sturzebecher & Nitsche (2003). They performed an experiment based on
an adaptative controller designed to attenuate the TS instabilities; also in this case,
the disruption of the original 2D structure resulted in a reduction of the disturbance
level.
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Figure 15. (a) The r.m.s. values of the uncontrolled system (solid line) and the controlled
system A (dashed line). The location of the actuators and sensors is indicated by a lighter
and darker region, respectively. (b) Perturbation energy versus time for a case forced by
the stochastic white-noise signal w(t) for an uncontrolled case (solid lines) and a controlled
case (dashed lines); the horizontal lines represent the mean of the energy in the interval
t ∈ [2500, 12 500].

Figure 13 also shows the performance of the full set-up controller for different
choices of the penalty l (cases A–C). Note that for an intermediate value (l = 250, case
B), the perturbation is characterized by a peak energy value close to the corresponding
configuration with a cheap controller effort, although the norm ‖Gc‖2

2 is higher. Case
C (expensive controller) is the only configuration where the perturbation energy does
not decay monotonically downstream of the actuators. When the noise corruption
degree is considered as a parameter (cases D–G), an improvement is noticed, as
expected, when smaller values of α are considered.

Figure 15(a) shows the behaviour of the controlled case A (dashed line) compared
with the reference case, when the perturbation is excited with a stochastic white-noise
forcing; the location of the actuators is indicated by a blue region, whereas the grey
region indicates the location of the sensors. In the streamwise interval [390, 460], in the
vicinity of the actuators, the r.m.s. value of the streamwise velocity component, after a
small overshoot, begins to decay and at the end of the domain, it is nearly one order
of magnitude smaller than the uncontrolled flow. The behaviour of the disturbance
energy in time is shown in figure 15(b); the mean values indicate a reduction of
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Figure 16. Kinetic energy as a function of time. In (a) and (b), the solid line shows the energy
of B1. In (a), cases H (− � −), I (− + −), L (−�−) and A (−�−) are characterized by 3, 5, 7
and 9 actuators, respectively. In (b), the curves correspond to cases I (− + −), M (− × −) and
A (−�−) with 5, 5 and 9 sensors, respectively.

one order of magnitude of the energy amplitude and a significant reduction in the
fluctuation (i.e. variance) is observed for the controlled case.

6.3. Influence of the number of sensors and actuators

The norm ‖Gc‖2
2 and the energy amplification for cases D–F are reported in table 1.

It can be concluded that controllers with a lower number of actuators than case
A (m =9) are still able to reduce the norm ‖Gc‖2

2 significantly, whereas there is a
somewhat less efficient reduction in the perturbation energy amplification.

Figure 16(a) shows the energy behaviour for cases H–L in addition to the reference
case A and the uncontrolled case. A gradual improvement of the performance is
observed when the number of actuators is increased. Indeed, by increasing the number
of the equidistant actuators, it is possible to cover a wider region in the spanwise
direction. As a consequence, a considerable reduction in the energy growth is observed
only when a sufficiently wide region in the spanwise direction is spanned by the
actuator array. In particular, case H (m = 3, p = 3) can be considered an example of
insufficient actuation; in figure 16(a), we notice an initial overshoot of the energy in
the interval t ∈ [1000, 1200], when the controller begins to act, and a weak energy
reduction. Moreover, the spatial evolution of the perturbation, not shown here, is
similar to the uncontrolled case, indicating a weak influence of the actuator on the
perturbation structure.

Figure 16(b) shows the influence of the number of sensors (cases I and M).
The energy curve for case A (m =9), obtained with nine estimators, is hardly
distinguishable from the curve obtained with the controller designed for case M,
based only on five estimators. The array of sensors is located further upstream than
the array of actuators, where the spanwise extension of the TS wavepacket is smaller.
Therefore, the sensors located on the flanks have a nearly insignificant contribution
to the estimation of the disturbance.

7. Control of streaks
The performance of the closed-loop system in the case of streaks is investigated

considering three different configurations, see table 2. In all cases, the rows of actuators
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Figure 17. Input and output signals of the closed-loop system N excited by an impulsive
forcing. (a) Output signals extracted from C2,1, located in (x, z) = (100, 4) (dashed line), and
C2,−1, placed in (x, z) = (100, −4) (solid line). (b) The controller signals fed in B2,1 and B2,−1

are indicated by a solid line and a dashed line, respectively. (c) Measurements extracted by the
first sensor C1,1 for case N (solid) and the uncontrolled case (dash-dotted line).

and sensors consist of eight localized Gaussian elements, equally spaced in the
spanwise direction (∆z = 4). More details are sketched in figure 1, where the location
of the elements is depicted. The parametric investigation is carried out considering
three different control penalties l: the reference case N is a cheap controller with
l = 50; case O is an intermediate case with l =100, whereas case P is the expensive
case, with l = 150. The description of the results closely follows the steps considered
previously for the TS control, using (i) the impulse response (time signals), (ii) the
2-norm of the system and (iii) the perturbation energy in the full domain.

7.1. Input–output analysis and disturbance evolution

Figure 17(a–c) shows measurements extracted from the system and actuator signals
φ(t) for the reference case N. In particular, figure 17(a) reports the signals extracted
for the estimation from the sensors C2,+1 and C2,−1, depicted by a dashed line and
a solid line, respectively. The signals are opposite in phase, since the perturbation is
antisymmetric with respect to the xy-plane (z = 0). The sensors register the disturbance
at t ≈ 100, in accordance with the estimated velocity of propagation of a streak in
a boundary layer ( ≈ 0.80–0.85U∞). The signal amplitude reaches its maximum at
t ≈ 150, after which it decays. The actuators B2,+1 and B2,−1 are fed with the signals
shown in figure 17(b) by a solid and dashed line, respectively. The actuation is activated
as soon as the sensors detect the incoming perturbation. It is interesting to note that
the actuator signal has a sign opposite to the corresponding sensor measurement:
a positive measurement extracted by the sensor coincides with a negative actuation
signal further downstream and vice versa, similar to the so-called opposition control
(Hammond et al. 1998).
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Figure 18. Impulse response to a localized initial condition triggering the lift-up effect at
t = 100, 500, 750. The isocontours of the streamwise component are shown in the xy-plane at
z = 4 without control (a, c, e) and with control (b, d, f ). Positive velocity is indicated by red
contours, while blue contours indicate negative velocity; all the plots have the same isocontour
range [−0.65, 0.65].

Finally, figure 17(c) shows the measurements extracted from the sensor C1,+1 for
both the controlled case (solid line) and the reference uncontrolled case (dash-dotted
line). A reduction in the signal amplitude is observed, although the overall performance
is worse than for the TS case. Figure 18 shows the streamwise velocity component
for the uncontrolled case (left column) and the controlled case H (right column); the
isocontours display the flow field in the xy-plane at z =1.5 for three instants of time,
t = 100, 500, 750. The same isocontour levels are considered for each instant of time.
As previously noticed, the controller action starts as soon as the perturbation reaches
the estimation sensors located at x =75; indeed, it is possible to notice at t = 100 the
action of the controller in x = 125. At t =500, the perturbation has travelled further
downstream, while being reduced by the controller. The structure of the perturbation,
shown in figure 18(d), is similar to the uncontrolled case in figure 18(c), although
of lower amplitude. Final decay due to the viscous effects is observed at t =750 in
both the cases. The streak is disrupted by the actuation at the wall. The effect of the
control on the evolving perturbation is similar to the reactive controller implemented
by Lundell (2007) and the modulated blowing/suction used by the same author in a
previous work (Lundell 2003).

In table 2, the performance of the controllers with various control penalties is
quantified by the 2-norm of the transfer function Gc. A reduction of about 66 %,
30 % and 16 % of the 2-norm of the transfer function Gc is reported for the cheap
(case N), intermediate (case O) and the expensive controller (case P), respectively.

7.2. Perturbation energy

Figure 19 shows the kinetic energy of the streak disturbance in the full domain Ω

as a function of time. The uncontrolled case is indicated by a solid line and it is
characterized by an energy amplification E(tmax)/E(0) = 3 × 102, occurring at t ≈ 350.
The cheap controller (l = 50) and the intermediate controller (l = 100) give an initial
peak at t ≈ 180, followed by the decay of the perturbation amplitude; in both cases, a
reduction of about 33 % of the energy peak is observed. Although the energy peaks
are almost comparable for the controllers N and O, the first one is more aggressive
and shows a stronger damping of the energy amplitude for t ≈ 200.
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Figure 19. Disturbance energy as a function of time for the streaks. The uncontrolled reference
case St0 is represented by a solid line. The closed-loop configurations listed in table 2 are
shown: −�−, the cheap case N; −�−, the intermediate case O; −�−, the expensive case P.
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Figure 20. The r.m.s. values of the uncontrolled system (solid line), the controlled system N
(dashed line) and the controller system Q (dashed, thinner line). For case N, the location of
the actuators and sensors is indicated by a lighter and darker grey region, respectively.

Figure 20 shows the behaviour of the controlled cases N and Q compared with the
reference case, when the perturbation is excited with a stochastic force (white noise);
the r.m.s. of the streamwise velocity is considered along the streamwise direction. The
aim of this analysis is twofold: understanding how the controller behaves along the x-
coordinate and providing some insights into the influence of a different location of the
arrays. In all the cases, a quick drop of the r.m.s. values is observed at the location of
the actuators, where the controller starts to act on the perturbation. The configuration
in case N allows a larger reduction of the maximum urms (figure 19). The performance
degrades when the actuators are located further upstream. The perturbation energy
increases at the actuators location, and the r.m.s. values slowly decay downstream
(x � 150); thus, although the actuator is still able to quench the perturbation,
the increased energy reduces the overall performance of the controller. This can
be explained by a larger estimation error: the estimator can correctly capture the
streaks (streamwise velocity perturbation) downstream rather than vortices upstream
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(cross-stream velocity components); this error is related to the efficiency of the low-
order model.

The control performance subject to stochastic excitations indicates that the
controller is able to continuously react to different temporal scales, which is
encountered for example in the presence of free-stream turbulence (FST).

8. Discussion and remarks
In this section, we discuss the results presented above in the context of practical

implementation and future development of our investigation. The fully 3D set-up
makes the present controller close to possible experimental implementation, where
localized actuators and sensors are used. It is possible to use numerical studies to
gain valuable information about the experimental set-up beforehand and to compute
the control gains that will be implemented. The sensors and the actuators (C2 and
B2, respectively) can be modelled as localized volume forcing. The objective function
C1 can be defined either numerically or using an array of sensors. In particular,
the first choice relies on the possibility of reproducing a POD approach as that
we followed in the control design once the upstream disturbance B1 is modelled.
Here, optimal initial conditions were used to show the feasibility of the control,
but, in general, the choice of the upstream disturbance B1 is closely related to the
environment that one desires to reproduce. For instance, the perturbation arising
from FST can be modelled using a projection over a finite number of optimal modes
(Tempelmann, Hanifi & Henningson 2010). Conversely, in a low-noise environment,
where TS waves dominate, localized initial conditions distributed in the spanwise
direction can spontaneously generate packets of TS waves. Once the inputs and
outputs are modelled, the LQG compensator can be easily designed following the
procedure explained; moreover, numerical tests can help in determining the most
efficient form of actuation, provided these are correctly modelled in the simulations.
The location and number of sensors and actuators is also easier to test in a simulation
than in a laboratory. Useful information can be obtained in this case by examining
the spatial structure of the direct and adjoint balanced modes. In this respect, our
results suggest that, for an effective implementation of the feedback control of a 3D
wavepacket in a boundary layer, actuation may be more crucial than sensing and
estimation of incoming disturbances. This is in agreement with the recent empirical
observations in Monokrousos, Lundell & Brandt (2010b).

A further strategy directly applicable in experiments relies on a system identification
algorithm, known as the eigensystem realization algorithm (ERA). This represents
an approach formally equivalent to the model reduction procedure discussed here;
for more details, we refer to Ma, Ahuja & Rowley (2009). This technique allows the
identification of a model for the system from the input/output analysis and is thus
particularly well-suited to the experimental set-up. Once the model is identified from
the experimental data, it is possible to design an appropriate LQG controller for
the experiment. However, information about balanced modes, sensitivity and spatial
structures of the most amplified perturbations is not accessible in this way.

The choice of actuators/sensors and their placement was decided mainly by
following physical arguments based on the knowledge of the instabilities. To control
TS wavepackets, the array of actuators was placed in the centre of the box.
Indeed, after the actuation, the perturbation recovers the spanwise coherence and
experiences new energy growth, similar to that achieved during the first stage (see
figure 14f ). However, this behaviour clearly suggests the need of introducing a
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repeated streamwise actuation, as shown in Sturzebecher & Nitsche (2003). The
introduction of multi-stage actuation can improve the overall performance of the
device, moving the transition location further downstream. Moreover, using successive
arrays it is possible to target instabilities of different frequency growing at different
Reynolds numbers (different streamwise regions), or perturbations that arise in the
presence of adverse pressure gradients.

To control streaks, two different set-ups located in different streamwise positions
were tested; an improvement of the overall performance (around ≈ 15 %) was
observed when the sensors and actuators were further upstream. Note that in the
case streaks are induced by FST, there is a longer upstream region of streak growth;
moreover, the streaks we introduced are optimal and characterized by a fast energy
growth. Therefore, in the presence of external FST, the estimation/control can be
more effective. As shown before, and in agreement with the experimental results of
Lundell (2007), streaks are damped at the location of actuators. However, streaks can
be regenerated early with the presence of FST, see Monokrousos et al. (2008). Thus,
repeated control can also be exploited here by introducing a number of arrays acting
at different positions in the streamwise direction.

The possibility of placing more than one actuation array and their interaction was
also investigated. We performed numerical tests – not reported here – where the TS
controller and the streak controller were simultaneously active, in the presence of a
TS wave, streaks or a linear combination of the two optimal initial conditions. We
observed that the streaks controller damped only the streaky structures, while the set-
up further downstream quenched only the TS waves. The behaviour can be interpreted
considering the POD-based objective function, which is completely different in the
two cases, so that one type of disturbance is transparent to the controller designed
for the other type. In other words, the TS controller did not react in the presence
of streaks, whereas it was effective when TS packets were introduced, and vice versa
the streak controller did not react in the presence of TS packets. Note that this
framework allows building of a reduced-order model able to act on disturbances that
have different time- and length scales.

Finally, for a practical implementation, we have to account for unavoidable
modelling errors; in the present paper, we assumed a perfect knowledge of the
flow parameters, but, in general, a practical implementation of the control needs to
guarantee robust performance when uncertainties are present as well. The optimal
control framework used here does not account explicitly for uncertainties; however,
it is important to note that the behaviour of the controller can nonetheless be robust
enough to small deviation of the flow parameters. Using numerical simulations, it is
possible to verify the robustness of the controller. In figure 21(a, b), two examples are
shown: deviation from the design, Reynolds number, and behaviour in the presence
of an adverse pressure gradient. In the first case, for a deviation of ±5 % of the
nominal Reynolds number, it is still possible to achieve good performance. Further
investigation at higher Reynolds numbers revealed a progressive worsening of the
performance, analogous to that we observed with fewer actuators. The presence of
an adverse pressure gradient introduces a strong change in the propagation of the
wavepackets, both in terms of amplification and propagation speed; a Falkner–
Skan–Cooke (FSC) boundary layer is considered, with m = −0.025, see Schlichting &
Gersten (2000). As expected from linear stability theory, the disturbance energy shows
a larger amplification, Emax/E0 ≈ 1.3×106 (figure 20b). In this case, the controller used
for case A is still able to reduce the magnitude of the energy peak by almost one order
of magnitude, but the result is overall less satisfactory than for the nominal pressure
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Figure 21. Perturbation energy as a function of time for TS wavepackets at two off-design
conditions. The controlled cases are obtained using the controller A. (a) Kinetic energy versus
time for the TS wave propagating at Re = 1050 is represented by a dash-dotted line. A solid
line indicates the behaviour of the controller in off-design conditions, whereas the dotted line
is related to the same controller acting at design conditions. (b) Perturbation energy evolution
for a wavepacket evolving in the presence of an adverse gradient pressure (m= − 0.025). The
solid line denotes the controlled case.

gradient. The difference in the performance is mainly attributed to the different speed
of the travelling unstable waves, which makes the actuation slightly out of phase.
In addition, since the estimator is expecting lower amplifications, the control signal
is weaker than necessary. To conclude, it is worthwhile to point out that a more
robust controller can be included in this framework. An example is given by the H∞
approach (Dullerud & Paganini 1999).

9. Conclusion
Using systematic methods from control theory in combination with localized

sensing/actuation, it is possible to reduce the growth of small-amplitude 3D
disturbances in the boundary layer. To this end, we have built low-dimensional
models (r =60) that capture the input–output behaviour of the flat-plate boundary
layer, and used these models for the optimal feedback control design. The initial
conditions considered provide the maximum energy growth for a given final time;
in particular, we demonstrated that the energy of 3D TS wavepacket, obtained for
long-time optimization, is damped by two orders of magnitude using nine sensors for
estimation and nine actuators. The control performance was also investigated with a
reduced number of sensors and actuators in the configuration; it was found that a
smaller number of actuators decreases significantly the effectiveness of the controller,
whereas a reduced number of sensors has a smaller impact on the performance. When
a short time of optimization is considered, an initial condition triggering a streaky
wavepacket is obtained; in this case, the perturbation energy can be damped using
eight sensors each for the estimation and actuation.

Although the significant reduction of perturbation energy for transition control
remains to be tested, such a drastic energy reduction is likely to result in a delay
of the initial stages of the transition process. If the actuators and sensors represent
realistic models of physically feasible devices, it is possible to use the low-dimensional
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controller designed numerically in laboratory experiments. The fact that we have
modelled the inputs and outputs as volume forcing does not mean that they cannot
be implemented experimentally. It is the effect of an actuator that is important
to model, and not the actuator itself. Another issue that needs to be taken into
account for a real application is control robustness. If the numerically designed
controller is used in laboratory experiments, it is unavoidable that some parameters,
such as the Reynolds number and pressure gradients, will vary. We showed that
the controllers are robust to a strong deviation of the Reynolds number, whereas
the performance was less satisfactory at an off-design pressure gradient. Fortunately,
modern developments in robust control theory may be used to rigorously incorporate
uncertainties that may be present in the design process. The method for optimal
control presented in this paper can be incorporated into such a robust control
framework.
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Appendix A. Adjoint Navier–Stokes equations
In this section, the adjoint Navier–Stokes equations are given for the sake of

completeness. A detailed derivation is provided by Bagheri et al. (2009b).
The adjoint velocity field and the adjoint pressure field are denoted by

p(x, t) = (u∗, v∗, w∗) and σ (x, t), respectively. Considering the boundary conditions
(2.3) used for u and requiring that p =(u∗, v∗, w∗), p and σ satisfy

p (0, y, −Lz/2) = p (x, y, Lz/2) , (A 1a)

p (0, y, z) = p (Lx, y, z) , (A 1b)

p (x, 0, z) = p
(
x, Ly, z

)
= 0, (A 1c)

p (0, y, −Lz/2) = p (Lx, y, Lz/2) , (A 2a)

σ (0, y, −Lz/2) = σ (Lx, y, Lz/2) , (A 2b)

and the adjoint of the linearized Navier–Stokes equations (3.1) associated with the
inner product 〈 · , · 〉Ω is given by

−∂ p
∂t

= (U · ∇) p − (∇U)T p + ∇σ + Re−1∇2 p + λf (x) p, (A 3a)

0 = ∇ · p, (A 3b)

p = pT at t = T . (A 3c)

The code described by Chevalier et al. (2007b), based on a Chebyshev–Fourier
series approximation, is used for both the forward and adjoint simulations. Using

this approximation, the discrete operators Â, B̂ and Ĉ and the respective adjoint
operators can be defined. As in the case of the forward system, the adjoint equations
(A 3) can be cast as an initial-value problem,

− ṗ(t) = Â∗ p(t), p(T ) = pT , (A 4)
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where the action of Â∗ corresponds to evaluating the right-hand side of (A 3),

including the boundary conditions. The evolution operator T ∗ associated with Â∗ is
defined as

p(−t) = T ∗(t) p(T ). (A 5)

Given an initial condition, the adjoint evolution operator T ∗ provides the resulting
flow field at time −t .

Appendix B. Analytical expressions of actuators and sensors
Each element of the arrays B2 and C2 is a localized Gaussian function

h (x, x0) =

⎛
⎜⎝

σxŷ

−σyx̂

0

⎞
⎟⎠ exp

(
−x̂2 − ŷ2 − ẑ2

)
, (B1a)

where

x̂ =
x − x0

σx

, ŷ =
y

σy

, ẑ =
z − z0

σz

. (B1b)

The scalar quantities appearing in the denominator define the size of the Gaussian
spatial distribution close to the wall and are equal for all the elements; for the
TS waves, we considered (σx, σy, σz) = [5, 1.5, 6], whereas for the streaks we used
(σx, σy, σz) = [1.75, 2, 2]. All the elements of the arrays have the same spatial shape;
the position in the plane xz is given by x0 and is contained for all the test cases in
tables 1 and 2. From this definition, we obtain

B2 =
[
h

(
x, xφ,1

)
, h

(
x, xφ,2

)
, . . . , h

(
x, xφ,m

)]
(B2)

and

C2u =

∫
Ω

⎛
⎝h

(
x, xv,1

)
u

. . .

h
(

x, xv,p

)
u

⎞
⎠ dx dy dz, (B3)

where m and p indicate the number of actuators and sensors, respectively. Each
element of B2 and C2 is denoted by a second subscript. The actuators mimic a
manipulation on the flow close to the wall; the measurements are extracted by
averaging the velocity field using the Gaussian function as weights.

Denoting by p(x, t) = (u∗, v∗, w∗) the adjoint velocity field, the adjoints of the input
and output operators B2 and C2, associated with the inner product 〈 · , · 〉Ω , are

B∗
2 p =

∫
Ω

⎛
⎝h

(
x, xφ,1

)
p

. . .

h
(

x, xφ,m

)
p

⎞
⎠ dx dy dz (B4)

and

C∗
2 =

[
h

(
x, xv,1

)
, h

(
x, xv,2

)
, . . . , h

(
x, xv,p

)]
. (B5)

Hereinafter, the notation adopted in the next sections will denote the continuous
operator; the discretized operators will be indicated by a hat. Note that the hat is
omitted in the article.
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Appendix C. Balanced truncation for model reduction
In this section, the basic concepts for balanced truncation – controllability,

observability and the Hankel operator – are briefly recapitulated in a simplified discrete
form; for more details, we refer to Bagheri et al. (2009 b), where the Hilbert spaces
and the norms used are introduced for the definition of the continuous operators and
the related adjoint operators.

The relation between the inputs and outputs of the system can be described by
considering the formal solution of the input–output system (3.1). Introducing the
input vector f (t) = (w, g, φ)T ∈ �(m+2) and the output vector y(t) = (z, v)T ∈ �(p+k),
we can rewrite the system (3.1) in the standard state-space form as

u̇(t) = Âu(t) + B̂ f (t), (C1a)

y(t) = Ĉu(t) + D̂ f (t), (C1b)

where B̂ = (B̂1, 0, B̂2), Ĉ = (Ĉ1, Ĉ2)
T and D̂ ∈ �(p+k)×(m+2),

D̂ =

(
0 0 Il

0 Iα 0

)
. (C2)

The solution of the system (C1) is given by

y(t) = Ĝ f (t) = Ĉ
∫ t

−∞
T (t − s)B̂ f (s) ds, (C3)

assuming both the initial condition u0 and the term D̂ to be zero. The linear mapping

Ĝ : L2(−∞, ∞) → L2(−∞, ∞) between the inputs f (t) and outputs y(t) is a causal
input–output operator. Both the signals and the system Ĝ can be represented in the
frequency domain. A Laplace transform of (C3) results in a transfer function matrix

y(s) = G̃(s) f (s) = (Ĉ(sI − Â)−1 B̂) f (s), (C4)

with s ∈ �. Henceforth, the tilde on G̃ is omitted since it is related to G by a linear
transformation.

The mapping Ĝ is not a finite-rank operator: thus, a second finite-rank mapping is

introduced. For the given system Ĝ, the Hankel operator Ĥ : L2(−∞, 0] → L2[0, +∞)
is defined as

y(t) = Ĥ f (t) = Ĉ
∫ 0

−∞
T (t − s)B̂ f (s) ds. (C5)

The Hankel operator is closely related to the controllability and observability
operators. In particular, the controllability operator L̂c : L2(−∞, 0] → � is defined as

u0 = L̂c f (t) =

∫ 0

−∞
T (−s)B̂ f (s) ds, (C6)

and maps past input signals f (t) to an initial state u0. The action of L̂c is numerically
approximated by the time-stepper that computes the response of the system governed
by the linearized Navier–Stokes equations forced by f (t) with a zero initial condition.
The second operator, the observability operator L̂o, provides a dual action and maps
the state u0 to future outputs, L̂o : � → L2[0, +∞); it is defined as

y(t) = L̂ou0 = ĈT (t)u0, t � 0. (C7)
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Using the above definitions, the Hankel operator can be seen as the combination of
the two operators:

Ĥ = L̂o L̂c. (C8)

Note that the operator Ĥ has at most rank n for a state space of order n. Indeed, an
input is driven via L̂c to an initial state u0 and each output can be determined from
the knowledge of the state u0. Since each state u0 is determined uniquely from an
input, two linearly independent states will produce two linearly independent future
outputs; thus, the rank of the operator Ĥ cannot exceed the dimension of the state
space n.

C.1. Adjoint operators

Using the adjoint of the inputs and outputs introduced in (B4) and (B5), respectively,
it is possible to define the adjoint of the controllability operator L̂c : L2(−∞, 0] → �
and the observability operator L̂o : � → L2[0, ∞). To this end, we introduce the
inputs vector t = (z∗, v∗) ∈ �(p+k) and the outputs vector e =

(
w∗, φ∗, g∗) ∈ �(m+2).

The adjoint of the controllability operator L̂
∗
c : � → L2(−∞, 0] maps an initial

adjoint state p0 ∈ � to a signal e at time −t :

e(−t) = L̂
∗
c p0 = B̂∗T ∗(−t) p0. (C9)

The adjoint of the observability operator L̂
∗
o : L̂2[0, ∞) → � drives the input signal t

to the reference state p0:

p0 = L̂
∗
o t(t) =

∫ ∞

0

T ∗(s)Ĉ
∗
t(s) ds. (C10)

The direct mapping from the inputs t to the outputs e can be obtained combining L̂
∗
o

and L̂
∗
c; the adjoint Hankel Ĥ

∗
: L2[0, ∞) → L2(−∞, 0] operator is thus defined as

e(−t) = Ĥ
∗
t(t) = L̂

∗
c L̂

∗
o t(t) =

∫ ∞

0

B̂∗T ∗ (s − t) Ĉ
∗
t(s) ds. (C11)

Finally, introducing B̂∗ and Ĉ
∗

in the initial-value problem (A 4), the dual input–
output system can be defined as

− ṗ = Â∗ p + Ĉ
∗
t, (C12)

e = B̂∗ p. (C13)

In the adjoint system, the roles of B̂ and Ĉ have been exchanged: the system is now
forced by the outputs t , while the inputs are extracted as measurements.

C.2. Balanced modes

Using the Hankel operator and the related adjoint operator, we can quantify the
output energy obtained from a past input f (t) by

‖ y‖2
L2[0,∞) = 〈Ĥ f , Ĥ f 〉L2[0,∞) = 〈 f , Ĥ∗ Ĥ f 〉L2(−∞,0]. (C14)

If a given input forcing f i(t) is a unit-norm eigenvector of Ĥ∗ Ĥ , then the output
energy will be given by the square of the corresponding Hankel singular value
(HSV) σi:

Ĥ∗ Ĥ f i(t) = σ 2
i f i(t). (C15)
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The HSVs are real and positive; thus, they can be ranked according to the associated
energy amplification. Multiplying (C15) from left with L̂c, we get

L̂c Ĥ∗ Ĥ f i(t) = L̂c L̂
∗
c︸ ︷︷ ︸

P

L̂
∗
o L̂o︸ ︷︷ ︸
Q

L̂c f i︸ ︷︷ ︸
σiφi

= σ 2
i (σiφi), (C16)

where we have defined the balanced mode φi associated with σj as

φi =
1

σi

L̂c f i , (C17)

and the controllability Gramian P and the observability Gramian Q as

P = L̂c L̂
∗
c =

∫ ∞

0

T (τ )B̂ B̂∗T ∗(τ ) dτ, (C18a)

Q = L̂
∗
o L̂o =

∫ ∞

0

T ∗(τ )Ĉ∗ĈT (τ ) dτ. (C18b)

The balanced modes are thus the eigenvectors of the product of the observability Q
and controllability Gramians P , written in matrix form,

(P Q)Φ = ΦΣ2, (C19)

Φ = (φ1, φ2, . . . , φr ) and Σ2 =diag{σ 2
1 , . . . , σ 2

r }. The set of left eigenvectors of P Q
represents the adjoint balanced modes set, hereafter denoted by Ψ .

Two main reasons make the model reduction obtained by projection onto balanced
modes particularly convenient.

(a) The reduced-order system is guaranteed to be asymptotically stable if σj �= σj+1

for all j (Pernebo & Silverman 1982).
(b) Tight error bounds exist (Glover 1984),

σr+1 � ‖Ĝ − Ĝr‖∞ � 2

n∑
j=r+1

σj , (C20)

where Ĝ and Ĝr are the input–output systems associated with (3.1) and (3.6),

respectively, and ‖Ĝ − Ĝr‖∞ is the infinity norm. More details about the operators
introduced in the identification of the balanced mode are given by Glover (1984) and
Dullerud & Paganini (1999).

C.3. Snapshot method

An essential ingredient in the computation of the balanced modes is the identification
of the Gramians P and Q, usually evaluated as solution of Lyapunov equations
(Green & Limebeer 1995). Unfortunately, the solution of the Lyapunov equations
involves a computational complexity O(n3) and a storage requirement O(n2), making
it unfeasible for high-dimensional systems (Laub et al. 1987). An alternative is given
by the snapshot method (Rowley 2005), where empirical Gramians are computed using
the following quadratures:

P̂ ≈
nt∑

j=1

T (tj )B̂ B̂∗T ∗(tj )δj = X X∗, (C21a)

Q̂ ≈
nt∑

j=1

T ∗(tj )Ĉ
∗
ĈT (tj )δj = Y ∗Y . (C21b)
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Here, δj are the time quadrature weights, nt the number of samplings, X ∈ �n×ntm

and Y ∈ �n×ntp are the Cholesky factors:

X = [T (t1)B̂
√

δ1, T (t2)B̂
√

δ2, . . . , T (tk)B̂
√

δnt
], (C22a)

Y = [T ∗(t1)Ĉ
∗√

δ1, T ∗(t2)Ĉ
∗√

δ2, . . . , T ∗(tk)Ĉ
∗√

δnt
]. (C22b)

Each element of the Cholesky factor X contains snapshots of the flow field computed
by the impulse response to each input B̂i at a given time tj . Similarly, the Cholesky
factor Y can be obtained by gathering the snapshots computed by marching
backwards in time with the adjoint system (A 3). Please note that the number of
collected snapshots is nt times the number of inputs (m) and outputs (p).

Using the low-rank Cholesky factors, the approximate direct and adjoint balanced
modes can be computed as follows. As a first step, the singular value decomposition
of Y ∗ X is formed:

Y ∗ X = UΣV ∗. (C23)

The size of Y ∗ X is ntp ×ntm; as long as the number of degree of freedom n is smaller
than the number of collected snapshots, the method is cheaper than the standard
method (using full Cholesky factors of size n × n) . The diagonal matrix Σ contains
the approximate HSVs. The direct and adjoint balanced modes are then given by

Φr = XVΣ−1/2, Ψ r = Y ∗UΣ−1/2. (C24)

Here, only time quadrature weights were considered; however, note that spatial
integral weights are introduced when inner product are computed, see Bagheri et al.
(2009 b). In general, numerical tests (Ilak & Rowley 2008; Ahuja 2009; Bagheri et al.
2009a) have shown that the approximate balanced modes are a good approximation
to exact balancing modes and that Σr are close to the true HSVs. This can be
attributed to the low numerical rank of the Gramians, when m, p � n.
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