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A numerical study of swimming particle motion and nutrient transport is conducted
for a semidilute to dense suspension in a thin film. The steady squirmer model is
used to represent the motion of living cells in suspension with the nutrient uptake
by swimming particles modelled using a first-order kinetic equation representing the
absorption process that occurs locally at the particle surface. An analysis of the
dynamics of the neutral squirmers inside the film shows that the vertical motion is
reduced significantly. The mean nutrient uptake for both isolated and populations of
swimmers decreases for increasing swimming speeds when nutrient advection becomes
relevant as less time is left for the nutrient to diffuse to the surface. This finding
is in contrast to the case where the uptake is modelled by imposing a constant
nutrient concentration at the cell surface and the mass flux results to be an increasing
monotonic function of the swimming speed. In comparison to non-motile particles, the
cell motion has a negligible influence on nutrient uptake at lower particle absorption
rates since the process is rate limited. At higher absorption rates, the swimming
motion results in a large increase in the nutrient uptake that is attributed to the
movement of particles and increased mixing in the fluid. As the volume fraction
of swimming particles increases, the squirmers consume slightly less nutrients and
require more power for the same swimming motion. Despite this increase in energy
consumption, the results clearly demonstrate that the gain in nutrient uptake make
swimming a winning strategy for micro-organism survival also in relatively dense
suspensions.

Key words: biological fluid dynamics, micro-organism dynamics, multiphase and
particle-laden flows

1. Introduction
The aim of this study is to compute numerically the nutrient transport and uptake

in a thin film populated by swimming micro-organisms when the fluid motion and
the mass transfer of nutrients are generated by the particle swimming and the nutrient
absorption at the particle surface. The study of active particle motion in a fluid
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has important applications for understanding living cellular organisms. These include
species of bacteria, green algae and marine plant-like organisms such as phytoplankton.
The supply of nutrients is important for the overall health of suspensions of living
cellular organisms where the nutrients include dissolved gasses such as oxygen,
proteins, organic compounds and small particles.

The motion of active particles in confined environments is commonly observed in
many controlled laboratory settings, e.g. Petri dishes, droplets, thin soap films, or films
in glass slides (Berke et al. 2008). In confined environments the swimming particle
volume fraction φ can range from the semidilute to dense suspensions. Numerical
simulations of such suspensions require therefore the capability of resolving multiple
particle interactions. Prior numerical work of fully resolved flow focuses largely on
active suspensions in unbounded domains with mass transport analysis limited to
single swimming particles. In this study, the effect of swimming motion on nutrient
uptake in thin films is explored by means of fully resolved simulations using an
immersed boundary method (IBM) for finite-size particles combined with a soft-sphere
collision model (Breugem 2012).

The behaviour of single micro-organisms and active suspensions has been studied
in many instances (see e.g. Koch & Subramanian 2011). However, only a few of the
numerical studies of individual swimming particles, including biofilms, that provide
insight into the behaviour of active suspensions include mass transfer and nutrient
uptake (Magar, Goto & Pedley 2003; Magar & Pedley 2005; Michelin & Lauga
2011; Taherzadeh, Picioreanu & Horn 2012). In these studies, the concentration of
nutrients in the fluid medium are typically treated as a passive scalar. In the case
of individual swimming particles, Magar et al. (2003), Magar & Pedley (2005) and
Michelin & Lauga (2011) use a widely adopted unsteady and steady swimming cell
model first introduced by Lighthill (1952) and Blake (1971). In this model, referred
to as the squirmer model, the swimming cell is assumed to be spherical in shape
with an applied tangential surface velocity that represents the surface distortion of
beating cilia. This generalization allows us to classify the swimming motion into
three swimming modes (pushers, pullers and neutral swimmers), and is in good
agreement with the swimming motion of several micro-organisms such as Parmecium
and Opalina (Ishikawa, Locsei & Pedley 2008). The simple neutral and steady model
used here has been adopted in several investigations of processes related to the physics
of swimming micro-organisms, such as locomotion in stratified (Doostmohammadi,
Stocker & Ardekani 2012) and viscoelastic fluids (Zhu et al. 2011; Zhu, Lauga &
Brandt 2012).

Owing to a wide range in the values of the nutrient mass diffusivities D of typical
nutrients, both convective and diffusive mass transport occur in the fluid (Musielak
et al. 2009) while the fluid motion is dominated by viscous diffusion. In a study of a
single swimming particle, Magar et al. (2003) and Magar & Pedley (2005) show that
the swimming motion of a single cell increases the mass flux at the surface of the
particle in comparison with an inert translating sphere. The mass flux is quantified in
terms of the Sherwood number, a dimensionless nutrient concentration gradient at the
particle surface. The increase in the mass flux at the particle surface increases with
larger swimming speeds or increasing Péclet numbers. The Péclet number Pe= Usd/D,
where d is the cell diameter and Us is the cell swimming speed, is the ratio of
convective to diffusive mass transport in the fluid. For a free swimming particle the
increase in the mass flux at the particle surface scales to Pe1/2 in comparison with
Pe1/3 for an inert translating sphere. Similarly, Short et al. (2006) study molecular
transport in suspensions of Volvocine green algae and demonstrate that the increase
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of uptake due to swimming permits cells of radius r > 10 µm to overcome diffusion
limitations and satisfy metabolic requirements. In an optimization study of the nutrient
uptake and swimming mode of an individual swimming particle, Michelin & Lauga
(2011) show that the optimal swimming motion coincides with the optimal nutrient
uptake for all Péclet numbers. All of these results are obtained assuming constant
nutrient concentration at the particle surface. In Magar et al. (2003) and Magar &
Pedley (2005) a first-order nutrient uptake model is also included in an appendix.
These authors perform asymptotic analysis in the limit of very small and very large
Péclet numbers and show that the uptake decreases in this case. The first-order
rate equation for nutrient uptake at the particle surface has been used in studies of
single swimming particle motion, biofilms (Taherzadeh et al. 2012) and diatom chains
(Musielak et al. 2009). This study is the first to adopt a similar simple nutrient uptake
model and apply it to a suspension of swimming particles in an intermediate range of
Péclet numbers.

The connection between swimming cellular organisms and enhanced mixing in
the fluid is often discussed in terms of an effective fluid diffusivity that can
be incorporated into continuum models. In a three-dimensional numerical study
of swimming particle motion in unbounded flow, Ishikawa & Pedley (2007a) and
Ishikawa, Locsei & Pedley (2010) show that the effective diffusivity in the fluid
increases as the cellular volume fraction of the suspension increases, whereas the
diffusivity of swimmers decreases. Underhill, Hernandez-Ortiz & Graham (2008)
found that the diffusivity is affected by the swimming particle mode, with pushers
enhancing fluid diffusivity and pullers less. In experiments of swimming algal cells in
thin films, Kurtuldu et al. (2011) showed that the reduced dimensionality of the thin
film further enhances the diffusivity which increases rapidly with volume fraction and
follows a Gaussian distribution at volume fractions above 7 %.

Various numerical studies have confirmed experimental observations of coherent jet-
like and vortex-like structures in three-dimensional or unbounded domains (Saintillan
& Shelley 2007; Ishikawa et al. 2008; Evans et al. 2011, to cite a few). Swimming
particles align with neighbouring particles as a consequence of near-field interactions
resulting in organized large-scale motion (Ishikawa & Pedley 2008; Lin, Thiffeault
& Childress 2011) that further enhances fluid mixing. Interestingly, the recent
experiments by Ishikawa et al. (2011) show that in concentrated suspensions of
swimming bacteria, this collective behaviour is energy efficient in the sense that a
very small fraction of the dissipated energy from swimming is transferred to the
large-scale motion that in turn produces very large gains in the mass transport in
the fluid. In these investigations, however, no direct connection to nutrient uptake is
discussed.

In a confined environment, the interactions of the swimming cells with the bounding
surfaces affects the particle distribution and collective motion, something which has
consequences for the nutrient transport and uptake. For suspensions in a bounded
domain, the swimming cells accumulate near the surface, as observed for bacteria
(Li et al. 2011) and up-swimming, bottom-heavy algae (Pedley & Kessler 1992),
two different cellular organisms with opposite swimming modes, one ‘pushing’ the
other ‘pulling’. Several experimental and theoretical studies of swimming particle
interactions with surfaces show that the particle interaction with the wall can vary
with particle size, swimming type and particle shape and the long time trajectory of a
swimming particle moving near a surface is not easily predicted (Li et al. 2011; Berke
et al. 2008; Spagnolie & Lauga 2012; Zhu, Lauga & Brandt 2013). While most of
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these studies were conducted for solid walls, the motion toward a stress free surface,
such as an air and water interface, show some similarities.

Finally we note that active suspensions in two or three dimensions have relevant
differences. In two dimensions, for example, the far-field effects of swimming motion
extend farther as the velocity decays as 1/r rather than 1/r2 as in three dimensions.
Hernandez-Ortiz, Stoltz & Graham (2005) found that the tendency of particles to
accumulate near thin film surfaces occurs at lower volume fractions. As the volume
fraction increases, large-scale coherent motion occurs which disrupts the localization
of particles near the surface, eventually mixing the particles across the fluid layer.
Ishikawa & Pedley (2008) conducted a numerical study of swimming particle motion
in monolayers in which the size of the collective motion is in agreement with the
experimental observations of the size of swirls in a bacterial bath (Wu & Libchaber
2000). The collective motion in confined domains is several particle radii larger than
the size of cohesive motion observed in unbounded domains (Ishikawa et al. 2008).

The objective of this study is to analyse the mass transport properties of an active
suspension in a thin film and the effect of the cell nutrient absorption rate on the
mean uptake by exploring the Sherwood–Péclet and the Sherwood–Damköhler number
relationships where the Damköhler number is a dimensionless nutrient uptake rate.
These relationships have not been explored for multiple swimming particles or for
swimming particles in confined environments.

2. Governing equations

The scaling of the governing equations is based upon the characteristic variables
for swimming cells in flow dominated by viscous diffusion. The characteristic
length is the diameter, d, of the swimming particle and the characteristic velocity
is the swimming speed, Us, of a solitary swimmer in an unbounded domain. The
characteristic time is the viscous diffusion time d2/ν where ν is the viscosity of the
fluid. The characteristic stress is a viscous stress, τ = ρfνUs/d, where ρf is the density
of the fluid. Using these scaling arguments, five dimensionless variables appear in
the governing equations. The characteristic flow parameters are the Reynolds number
Re, the Péclet number Pe, the Schmidt number Sc = Pe/Re = ν/D, which is the ratio
of the nutrient diffusion time to the viscous diffusion time, and the solid particle to
fluid density ratio, α = ρp/ρf where ρp is the density of the solid. In addition, in our
problem we examine variations of the Damköhler number Da = kd2/D, where k is a
first-order reaction rate used in the nutrient absorption model. Da is the ratio of the
diffusion time and the nutrient uptake time.

It is important to note that when the viscous diffusion time is used as the
characteristic time, the unsteady terms in the governing equations are retained. The
retention of the time variation in fluid and particle motion permits a general solution
that collapses to the steady solution and resolves time-dependent phenomena that
might occur at the same time scale as the viscous diffusion. For swimming micro-
organisms ranging in diameter from d = 1 to 100 µm the Reynolds number can range
between Re = 10−5 and 10−1 (Magar et al. 2003). In this low-Reynolds-number flow
regime, convection in the fluid is negligible and the unsteady Stokes’ equations for
fluid flow apply. The diffusivity of nutrients such as oxygen and proteins in water can
range from 10−11 to 10−7 resulting in a range of Pe values from 10−3 to 102 (Magar
et al. 2003). For the given range of nutrient diffusivities, a lower limit for the Schmidt
number, which governs the mass diffusion time with respect to the diffusion time in
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FIGURE 1. Diagram of the thin film with swimming particles represented by Lagrangian grid
points.

the mass transport equation is Sc ' 100. At the scale of swimming micro-organisms,
both convective and diffusive mass transport are therefore relevant.

2.1. Eulerian equations for fluid flow and mass transfer
The scaling of the momentum equations for the fluid results in a dimensionless form
where the Reynolds number only appears in front of the convective term. Since
the Reynolds number is much less than unity, the convective term is neglected
in the numerical implementation solving only the unsteady Stokes’ equations. The
dimensionless equations for the fluid are expressed as

∂uf

∂t
=−∇p+∇2uf + fp, (2.1)

∇ ·uf = 0 (2.2)

where uf is the fluid velocity and fp is the force resulting from the fluid and solid
particle interactions.

The thin film is bounded by two open surfaces, representing for example an air and
water interface, that extend in the horizontal x and z directions while the film thickness
lies vertically in the y direction as shown in figure 1. It is assumed that the surface
tension of the interface is high enough such that the swimming particles are unable
to break through the surface, resulting in a zero normal velocity component. For the
tangential velocity components, the boundary condition is a homogenous Neumann
boundary condition. The equations at the fluid boundary, ∂Ωf , are

∂uf

∂x
·n= 0 with x ∈ ∂Ωf ; (2.3)

uf ·n= 0 with x ∈ ∂Ωf . (2.4)

Periodic boundary conditions are implemented in the x and z directions.
Owing to the broad range in the Péclet number, both convective and diffusive mass

transport play a role in nutrient uptake. The concentration of nutrients in the fluid
is represented by a passive scalar, cf . The dimensionless mass transport equation is
expressed as

∂cf

∂t
+ Pe

Sc
uf ·∇cf = 1

Sc
∇2cf + s, (2.5)
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where s is a source term representing the absorption of nutrients at the swimming
particle surface. At an initial time, the nutrient concentration in the thin film is
saturated. In our model the nutrients are replenished at the open surfaces which
reflects the absorption of gases into the thin film or a steady nutrient supply from an
external source. Periodic boundary conditions are maintained in the x and z directions.
The initial conditions and boundary conditions are

cf = 1 at t = 0; (2.6)

cf = 1 for x ∈ ∂Ωf . (2.7)

2.2. The nutrient absorption model
During the process of nutrient uptake by the swimming particles, the nutrients diffuse
toward the particle surface and are absorbed into the cell in an enzymatic process
(Musielak et al. 2009). Simple first-order kinetics, such as Minod kinetic equation,
with and without a saturation concentration (Magar et al. 2003; Musielak et al. 2009;
Taherzadeh et al. 2012) have been used in numerical models of nutrient absorption. In
this study, the nutrient uptake at the cell surface is a volumetric absorption process
that is characterized by a simple first-order kinetic equation without a saturation
concentration. The nutrient concentration at the particle surface cs is absorbed at a rate
described by the reaction rate, k. The absorbtion rate, s, is expressed in dimensionless
form as

s=−Da
Sc

csδ(x− xs) with xs ∈ ∂Ωp. (2.8)

The absorption rate, s, is the source term in (2.5) and is applied at the particle
interface using the regularized delta function, δ.

Further examination of the mass transport equation (2.5) shows that the first term
on the right-hand side represents the diffusive transport of nutrients toward the surface
while the second term represents the removal of the nutrients from the thin film during
absorption into the solid particle.

By solving the mass transport equation and taking into account (2.8), the
relationship between the mass flux at the surface of the particle and the absorption
rate is

Jp ≡ 1
Sc

∮
S
∇c ·n dS=−

∫
V

s dV, (2.9)

where S is the surface area of the particle and V is the volume of the domain. The
dimensionless mass flux is defined by the Sherwood number, Sh, which is the ratio
between the total mass flux and the diffusive mass flux. For a spherical particle the
relationship between the Sherwood number and the mass flux at the particle surface,
Jp, as defined in (2.9) is Sh = 2Jp/JR where the reference flux JR is the diffusive flux
for a stationary sphere in an unbounded domain. The diffusive flux for a spherical
particle is 2πdc∞/Sc, where c∞ = 1.

2.3. Swimming particle model
The swimming micro-organism is represented by an idealized model swimmer, where
the propulsion mechanism is given by a steady tangential velocity applied at the
particle surface representing the surface distortions of beating cilia or flagella. This
so-called envelope model, first proposed by Lighthill (1952) and extended by Blake
(1971), is also referred to as the steady squirmer model. The dimensionless tangential
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velocity, uθ , is a function of the polar angle, θ , that is defined from the axis positioned
through the front of the swimming particle. The surface velocity is usually described
by the following kinematic condition

uθ = sin θ (1+ β cos θ) , (2.10)

where the ratio of the squirmer modes is defined as β = B2/B1; B1 is the first squirmer
mode coefficient that gives the far flow field and B2 is the second squirmer mode
or stresslet that defines the near-flow field. The ratio of the squirmer modes, β,
governs the position and size of the flow recirculation regions and its value defines
three swimming types, pushers, pullers and neutral swimmers. The surface velocity is
normalized by the swimming speed of a solitary squirmer in an unbounded domain,
which is equal to Us = 2/3B1 for all swimming types. In the present numerical
analysis, the collective behaviour and mass transport of active suspensions of neutral
swimmers, β = 0, are considered. The analysis of the differences due to the nature of
the near field interactions in suspensions of different swimming types are left as future
work.

2.4. Lagrangian equations for swimming particles
The velocity at the solid surface, up, is a combination of the translational velocity of
the swimming particle, the angular velocity due to particle rotation and the prescribed
tangential surface velocity that represents the propulsive swimming mechanism of
moving surface cilia following the squirmer model. The equation for the surface
velocity is expressed as

up = us + ω × r+ uθeθ , (2.11)

where us is the translational or swimming velocity and ω is the angular velocity of the
particle.

The translational and angular velocities are determined from the Newton–Euler
equations of motion for solid spheres. The equation for the particle swimming velocity
is expressed in dimensionless form as

αVp
dus

dt
=
∮

S
σ ·n dS+ (α − 1)VpFrey, (2.12)

where Vp is the particle volume, and the fluid stress is σ = −pI + 2D, and the
deformation tensor is D = 1/2

(
∇uf +∇uT

f

)
. The second term on the right-hand side

of the equation represents the buoyancy force acting on the particle where the Froude
number is Fr = gd2/Usν. In the numerical analysis the motion of neutrally buoyant
particles with α = 1 is considered since the settling velocity for swimming cells is
typically smaller than the swimming speed. For a relative density difference of few per
cent, the settling velocity is of the order of micrometres per second, thus at least one
order of magnitude lower than micro-organisms swimming speeds.

The angular momentum equation in dimensionless form is expressed as

Īp
dω
dt
=
∮

S
r× σ ·n dS, (2.13)

where r is the radial distance and Īp is the dimensionless moment of inertia for a
sphere, αVp/d3/10. For bottom-heavy swimming cells with a centre of mass that is
offset from the centre of volume, an additional gravitational term appears on the
right-hand side of (2.13) orienting the swimming motion contrary to the direction of
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gravity. Studies of diffusive behaviour and coherent structures in active suspensions for
bottom-heavy swimming particles have been conducted and are relevant in applications
involving pullers such as green algae (Ishikawa & Pedley 2007b; Ishikawa et al. 2008).
A prior study also investigates the motion of bottom-heavy swimmers confined to
motion in two dimensions, showing the development of lateral wavy band formation
(Ishikawa & Pedley 2008). In this study, bottom-heaviness is not considered.

The equations for particle motion used in the IBM model replace the surface
integral for the stress with the volumetric integral of the fluid and solid interaction
force, fp, and a corrective force which accounts for the inertia of the fictitious fluid
within the particle volume. The equations also include the lubrication force correction
for near-field particle and surface interactions and the repulsive force for particle
collisions with neighbouring particles or planar surfaces, see the Appendix for more
details. The form of the Newton–Euler equations (2.12) and (2.13) used in the IBM
method are expressed as

α
dus

dt
=− 1

Vp

∫
Vl

fp dVl + 1
Vp

d
dt

∫
Vp

uf dVp + (α − 1)Frey + flc + fr (2.14)

Īp

Vp

dω
dt
=− 1

Vp

∫
Vl

r× fp dVl + 1
Vp

d
dt

∫
Vp

r× uf dVp, (2.15)

where flc is the corrective lubrication force and fr is the repulsive force. In this work,
the density ratio is α = 1 and buoyancy effects are neglected. The volumetric integral
for the fluid and solid interaction force in both (2.14) and (2.15) is taken in the thin
volume Vl surrounding the Lagrangian grid points at the particle surface.

3. Numerical method
The motion of swimming cells in a thin film is simulated with a computationally

efficient IBM for the coupling of finite-sized moving particles with the surrounding
fluid flow. The original numerical model, developed by Uhlmann (2005) and
expanded by Breugem (2012), was designed to model the interactions of multiple
inert spheres with second-order accuracy. The near-field interactions and collisions
between neighbouring particles and solid surfaces are modelled using both a corrective
lubrication force and the soft-sphere collision model. In particular, the tangential
lubrication force and the lubrication torque are neglected and only the normal
component of the force is imposed. Indeed, the normal component of the lubrication
forces is of order 1/ε, whereas the tangential component is of order log ε, with ε

the gap width. This is based on no-slip conditions of rigid spheres. The interactions
between neighbouring particles and surfaces have been validated for the settling of a
particle toward a wall and the motion of two spheres in close proximity (see Appendix
and Breugem 2010). Note however that for the volume fractions investigated here,
simulations without lubrication correction do not show any appreciable difference.

In the IBM method, the governing equations (2.1), (2.2) and (2.5) are solved
throughout the entire domain on an Eulerian background grid. The spherical particle
interface is defined by Lagrangian grid points that translate over the Eulerian grid as
shown in figure 1 where we display the spherical particles, defined by the Lagrangian
grid points, in the thin film. The fluid and solid equations are coupled using a force
distribution around the particle interface and interpolation using a regularized delta
function is used to transmit the fluid and solid interactions between the Lagrangian
and Eulerian grids. When a particle approaches a surface or neighbouring particle
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within a small distance ε, the lubrication force in the thin layer between the surfaces
is calculated and applied in the particle equation of motion. During collision, the
soft-sphere collision model is implemented. In the soft-sphere collision model, a small
overlap between the particle and the contacting surface is permitted before a repulsive
force is applied in the equations of motion for the colliding particle or particles. The
collisions between multiple particles are considered and the numerical model is not
limited to only two particles. The IBM method is therefore designed to resolve the
fluid and solid interactions of dense suspensions and is not limited to the semidilute
regime. Further details of the IBM method can be found in the Appendix and in
Breugem (2010, 2012).

The fluid and solid interaction force, fp, in (2.1) and (2.14) is calculated on the
solid Lagrangian grid points and distributed onto the Eulerian background grid after a
series of interpolations using a regularized Dirac delta function, δd. Uppercase letters
are used to represent variables defined on the Lagrangian grid points, l, and lowercase
letters represent variables defined on the Cartesian grid points, ijk. The calculation
of the force distribution on the Eulerian grid around the particle interface can be
summarized as follows (Breugem 2012),

U∗f =
∑

u∗f δd (x− Xn)1x1y1z, (3.1)

Fp = 1
1t

(
Un

p − U∗f
)
, (3.2)

fp =
∑

Fpδp (x− Xn)1Vl, (3.3)

where u∗f is the provisional velocity obtained from the used pressure-correction
scheme and 1Vl has been introduced previously as the thin volume surrounding the
Lagrangian grid points at the particle surface. The summations in (3.1) and (3.3) are
taken over the Eulerian and Lagrangian grid points, respectively. The particle velocity,
Up, is calculated on the Lagrangian grid points by solving the following particle
equations of motion, (2.10), (2.11), (2.14) and (2.15), in sequential order.

In the numerical implementation, the mass transport equation (2.5) is solved using
the same numerical approach as the fluid equations. Explicit time integration is
conducted using a third-order Runge–Kutta scheme while the diffusive term is solved
using the semi-implicit Crank–Nicolson scheme. In the iterative process, the nutrient
concentration field is corrected to account for the source term s. Following the same
procedure for uppercase and lowercase variables used to calculate the fluid and solid
interaction force, the concentration at the surface, cs, and the absorption rate at the
interface defined by the source term s are calculated at a new time step tn+1 using a
provisional concentration c∗f as

C∗f =
∑

c∗f δd (x− Xn)1x1y1z, (3.4)

Cn+1
s = C∗f −

Da

Sc

1t

2

(
C∗f + Cn+1

s

)
, (3.5)

S∗ = 1
1t

(
Cn+1

s − C∗f
)
, (3.6)

cn+1
f = c∗f +1ts∗. (3.7)

The mass flux, Jp, given in (2.9) is calculated as

Jp =−
∑

Sn+11Vl. (3.8)
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FIGURE 2. (Colour online) (a) Trajectories of squirmers with β = 5 and initial distance
dx = 1 in the transversal dimension. Comparison with Ishikawa, Simmonds & Pedley (2006).
(b) A comparison of the Sherwood and Péclet numbers for a single swimming particle in an
unbounded domain with β = 1 and a constant nutrient concentration at the particle surface.
The Péclet number in the comparison is based on the particle radius, r.

3.1. Numerical validation

A grid size convergence test of the swimming speed Us of a single swimming particle
in an unbounded domain was conducted for four different grid spacings 1x of the
background grid. In the test 16, 24, 32 and 36 grid points for cell diameter d/1x were
used. The exact value of the swimming velocity is Us = 1. From the data, numerical
implementation of the model swimmer is first-order accurate with an exponent of
1.07. Richardson extrapolation of the swimming speeds show that the results converge
to a swimmer velocity of Us = 1 within four decimals for infinite resolution. In the
numerical simulations, a grid spacing of d/1x = 24 is used producing an error in the
swimming speed of 6.7 %. Although the error due to the numerical implementation
results in a flow field that is less accurate than the Stokes’ flow field solutions used to
analyse dilute suspensions, this is deemed sufficient for our purposes.

The resulting error in the swimming particle velocity can be attributed to the
high resolution required to resolve the flow field surrounding the swimming particle.
Observations of the flow field cross-section show recirculation cells within the
swimming particle with cores close to the edges of the sphere. At lower resolution,
these flow features are not fully captured leading to errors in the interpolation of
the velocity at the fluid and solid interface. The effect of the grid resolution on the
accuracy of the particle swimming speeds were reported in the numerical work by
Downton & Stark (2009) who studied the motion of a solitary swimming particle in
unbounded flow using a finite-volume flow solver. In the numerical study, errors as
large as 15 % for a grid spacing of d/1x = 24 were reported. A comparison with
the work of Magar et al. (2003) and Ishikawa et al. (2006) is shown in figure 2.
In figure 2(a) we report the trajectories of squirmers with initial distance dx = 1 in
the transversal dimension, whereas the Sherwood and Péclet numbers for a single
swimming particle in an unbounded domain for a constant nutrient concentration
applied to the particle surface is displayed in figure 2(b). Note that in our simulations
a finite domain is used with open boundary conditions for the velocity field and
Dirichlet boundary conditions for the nutrient concentration in the y direction. In the x



538 R. A. Lambert, F. Picano, W.-P. Breugem and L. Brandt

and z directions the boundary conditions are periodic. More details and validations of
the present method are provided in the Appendix.

4. Results and discussion
The motion of swimming particles in a thin film is considered in the absence

of background flow for a semidilute to dense suspension. Three volume fractions
of suspended particles are considered in the analysis, φ = 0.078, 0.16 and 0.24,
corresponding to 16, 32 and 50 squirmers in addition to the case of only one squirmer
inside the film. The thickness of the film is h = 3d. The horizontal length, l, and
width, b, of the numerical domain is l = b = 6d as shown in figure 1. The effect of
the swimming particle motion on the mass transfer in the thin film is investigated for
changes in the absorbtion rate at the particle surface Da, and the swimming Péclet
number Pe. In the analysis, changes in Pe reflect changes in the particle swimming
speed, Us. The Reynolds number Re also changes with swimming speed but remains
much less than one in real suspensions and therefore Stokes flow is considered here.
The fluid properties, such as the viscosity, ν, and the mass diffusivity, D, remain
constant throughout the analysis (constant Sc). To quantify the gain provided by
swimming, the results for finite Pe, swimming particles, are compared with the results
of the diffusion limited case represented by a stationary array of fixed spheres of the
same volume fraction, φ, with the same nutrient absorption rate applied at the particle
surface. The static array of particles is obtained for φ = 0.078, 0.16 and 0.24 by a
crystal configuration with 4, 4 and 5 rows aligned with the free-slip wall and 1, 2 and
2 columns. Each row contains equally spaced particles of 4, 4 and 5 particles per row,
respectively. The vertical profiles of the static array are shown in figure 4.

Snapshots of the nutrient concentration contours in the thin film for three different
absorption rates at the particle surfaces are shown in figure 3 for φ = 0.16 and
Pe = 100. The swimming particles are initially positioned in an equidistant array with
random orientations. The simulation times are long enough so that the results obtained
after an initial time interval are no longer influenced by the initial conditions. The
time to reach quasi-steady state in the solution of the mass transport equation is
slightly longer than the time to reach dynamical equilibrium for the range in Pe values
considered as shown in figure 9.

In the analysis, the effect of swimming motion on the mass transfer in the thin
film is determined by analysing spatial and temporal averages of both the particle and
fluid variables, as in the numerical work of Yeo & Maxey (2010) among others. The
mean or average values are calculated from an initial time t = to over a large time
interval, T , in the statistical steady-state regime. The mean value of the fluid variables
are calculated using a Heaviside function H(x, y, z) which has a value of H = 0 in the
particle domain and a value of H = 1 in the fluid domain,

〈A〉f (y)=

∫ T

to

∫
S

H(x, y, z, t)A(x, y, z, t) dx dz dt∫ T

to

∫
S

H(x, y, z, t) dx dz dt

. (4.1)

4.1. Collective particle behaviour
The vertical profile of the normalized particle volume fraction along the cross-section
is displayed in figure 4(a–c) for volume fractions of φ = 0.078, 0.16 and 0.24. The
particle volume fraction, φ(y), shown in the figure is the summation of the total
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FIGURE 3. Nutrient concentration in an active suspension for absorption rates of (a)
Da= 10, (b) Da= 100 and (c) Da= 1000 with Pe= 100 and φ = 0.16 in a plane orthogonal
to the film boundaries. The concentration contours are taken after a long time interval at
t = 240 where white represents cf = 1 and black represents cf = 0. The particles move in and
out of the visual frame of reference.

particle volume fraction along a horizontal cross-section, b× l, with a thickness of 1y
and is normalized by the total volume fraction, φ. For φ = 0.078 in figure 4(a), the
particles form two layers in the thin film with a gap region along the centreline. For
φ = 0.16 in figure 4(b), the particles begin to occupy the region in the centreline, with
a larger accumulation closer to the film surface. As the volume fraction increases to
φ = 0.24 (figure 4c), the squirmers become evenly distributed into three layers and the
preferential accumulation of particles closer to the surface has disappeared. The plots
also display the local concentration for a uniformly distributed stationary array of the
same volume fraction (dashed line).

The particle trajectories in the thin film show the suppression of vertical particle
motion after an initial transient phase whose average duration shows no variation
with the volume fractions considered in this study. During an initial time interval,
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FIGURE 4. (Colour online) Vertical profile of the normalized volume fraction in an active
suspension and a stationary array for (a) φ = 0.078, (b) φ = 0.16 and (c) φ = 0.24.

the particles move frequently between both surfaces. As the particles approach the
surface they rotate and reorient themselves, swimming away at an angle that is
almost equal to the approaching angle. The approaching particles may collide with
the surface depending upon the approach angle and alterations to the trajectory
by neighbouring particle interactions. After quasi-equilibrium is reached, which on
average is the duration of 5–10 collisions with the surfaces, the particle paths show
an increase in horizontal alignment and the mentioned reduction in the vertical motion.
The swimming particles have an overall tendency to accumulate in two or three bands,
three being the maximum number possible for a thin film of thickness h= 3d.

The vertical profiles of the fluid root-mean-squared (r.m.s.) velocity components in
the planar and vertical directions are shown in figure 5 for the three different volume
fractions under investigations. The results show that the overall fluid r.m.s. velocity
increases with volume fraction. The ratio between the planar r.m.s. velocity, uf ,rms, and
the vertical r.m.s. velocity, vf ,rms, also increases with the volume fraction, being larger
than 2 for φ = 0.24. This reflects the suppression of the vertical particle motion in
the film layer. This effect is even more apparent in the vertical profiles of the particle
r.m.s. velocities shown in figure 6(a). The values of the particle r.m.s. velocities show
that the vertical component is much less than one while the planar component is
around unity, which indicates that particles are preferentially oriented parallel to the
film boundaries.
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FIGURE 5. (Colour online) Vertical profile of the fluid r.m.s. velocity components, uf ,rms in
the planar direction and vf ,rms in the vertical direction, in an active suspension for volume
fractions of (a) φ = 0.078, (b) φ = 0.16 and (c) φ = 0.24.

0 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0(a) (b)

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

FIGURE 6. (Colour online) Vertical profiles of (a) the particle r.m.s. velocity in the planar
direction, up,rms, and the vertical direction vp,rms, and (b) the total viscous dissipation function,
〈Φ〉f Vf , normalized by the number of particles, N.
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Swimming speed Total energy per particle
φ 〈us〉p P= 〈Φ〉f Vf /N

0.005 1.07 17.6
0.078 0.97 17.8
0.16 0.93 18.7
0.24 0.82 20.2

TABLE 1. The mean particle swimming speed and the total energy requirement per particle
for the four volume fractions under consideration.

The vertical profile of the total mean viscous dissipation per particle, 〈Φ〉f Vf /N,
where Vf is the fluid volume is shown in figure 6(b). This is the energy for
swimming generated by the particle and transferred to the fluid. The dimensionless
viscous dissipation is calculated as Φ = 2D : D where D is the deformation tensor.
The corresponding total energy requirement per particle for swimming and the mean
particle swimming speed are reported in table 1 for four volume fractions, where
φ = 0.005 corresponds to one particle inside our periodic domain. As the volume
fraction increases, more energy per particle is required for the same swimming motion.
The viscous dissipation per particle increases as stronger shear layers form with
increasing numbers of swimming particles. The increase in the energy required by
the swimming particle for increasing volume fractions corresponds to a decrease in
the mean particle swimming speed, following the observations of Ishikawa & Pedley
(2007a) and Underhill et al. (2008).

4.2. Analysis of the nutrient uptake model
As mentioned earlier, theoretical and numerical studies of nutrient uptake typically
consider a constant nutrient concentration imposed at the surface of the micro-
organisms. Magar et al. (2003) and Magar & Pedley (2005) propose an alternative
boundary condition for nutrient uptake that takes into account both the absorption
of nutrients and nutrient diffusion inside of the cell. In this more sophisticated
model, the uptake of nutrients by the swimming particle depends upon the interior
nutrient concentration and it is assumed that the nutrient is consumed uniformly.
Using asymptotic expansion, the governing equations are solved in the limit of very
small and very large Péclet numbers. Their results show that the nutrient uptake
using the alternative boundary condition behaves very differently from the case of
constant nutrient concentration at the particle surface: the uptake is limited by the
internal consumption when the resistance to mass transport in the fluid is very small,
corresponding to large nutrient gradients in the fluid. The Sherwood number is lower
than the case with constant surface concentration and this difference becomes more
pronounced at very high Péclet numbers. In the analysis of an unsteady squirmer,
Magar & Pedley (2005) show that the reduction in the Sherwood number depends
upon the membrane permeability and the nutrient diffusivity and identify the need for
a study at intermediate values of Pe. Before considering the case of a suspension,
we wish therefore to discuss the consequences of assuming a kinetic model for the
nutrient uptake and show that the swimmer mass flux is decreasing at higher Pe,
unlike the case with imposed concentration.

The difference between the nutrient uptake model of Magar et al. (2003) and the
nutrient uptake model used in this study is that in the present analysis the uptake
rate occurs locally at the surface of the swimming particle. The local consumption
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FIGURE 7. Superposition of nutrient concentration contours in a dilute suspension with
φ = 0.005 for Pe = 1 (top frame) and Pe = 100 (bottom frame). Dark grey corresponds
to cf = 0 and white to cf = 1.
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FIGURE 8. (Colour online) Comparison of (a) the radial profile of the nutrient concentration,
cf , in the xy plane at θ = π/4 and (b) the local Sherwood number, Shθ , for changes in Pe with
φ = 0.005 and Da= 1000.

is dependent upon the nutrient concentration at the surface and is independent of the
diffusion and nutrient concentrations in the particle interior. The nutrient uptake model
adopted here can be seen as the limit of zero internal transport of the model proposed
by Magar et al. (2003).

In order to understand how the consumption of nutrients is affected by swimming
speed, nutrient concentration contours are shown in figure 7 for the case of one
swimming particle translating along the thin film centreline and Pe = 1 and 100.
The figure displays the different nutrient boundary layer and nutrient wake at the
back of the swimming particle at the two different swimming speeds. At Pe = 1,
diffusion smooths out the concentration gradients with higher nutrient concentrations
surrounding the particle surface when compared with the results for Pe = 100. At
the higher swimming speed, the role of diffusion is limited and the concentration
gradients in the nutrient wake are larger with lower nutrient concentrations that reach
the swimming particle. To better visualize the nutrient boundary layer, we display in
figure 8(a) the radial profiles of the nutrient concentration for the two values of Pe
at angle θ = π/4 from the front of the swimming particle. The figure shows that the
value of the nutrient concentration at the surface is smaller for Pe = 100 than for
Pe = 1, with steeper gradients away form the surface for high Pe. The effect of the
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FIGURE 9. (Colour online) The time development of the overall Sherwood number, Shtf /2bl,
at the thin film surface in a suspension with a volume fraction of φ = 0.078 for (a) Da= 100
and (b) Da= 1000.

lower nutrient concentrations near the particle surface on the local Sherwood number
Shθ is displayed in figure 8(b). Since the uptake of nutrients by the swimming particle
is dependent upon the nutrient concentration at the surface, lower concentrations
surrounding the swimming particle at Pe = 100 result in lower values of the local
Sherwood number, a finding consistent with the theoretical prediction by Magar &
Pedley (2005). The results show that for an isolated squirmer, the mass flux is slightly
higher at higher swimming speeds toward the front of the swimmer, with the greatest
reduction in mass flux occurring toward the back of the body, in the nutrient wake
region.

4.3. Nutrient absorption and concentrations
The mass flux at the thin film surface is created by the surface gradients that develop
as the swimming and stationary particles absorb nutrients in the fluid medium. The
time development of the overall Sherwood number at the thin film surface, Shtf , is
shown in figure 9 for particle absorption rates of Da = 100 and 1000 and a volume
fraction of φ = 0.078. The overall Shtf number is the sum of the dimensionless
flux over both film surfaces divided by the total film surface area, 2bl. Dynamic
equilibrium of the system is reached after an initial time interval in both the active
and stationary cases with an interval that decreases with increasing volume fraction.
The mass flux at the thin film surface increases with the particle absorption rate, Da,
and is higher for the active suspension than for the stationary array. This confirms that
swimming indeed provides a benefit in terms of nutrient uptake. The difference in the
mass flux for changes in the swimming speeds, or Péclet number, become apparent at
higher particle absorption rates. At Da = 1000, the mass flux at the surface is higher
for the lower swimming speed, Pe= 1, than for the higher swimming speed, Pe= 100.
This is one of the main findings in our study and will be explored in greater detail
later in § 4.4.

The vertical profiles of the mean particle mass flux, 〈Sh〉p, and the mean nutrient
concentration in the fluid, 〈cf 〉, are shown in figures 10 and 11 for two absorption rates
and φ = 0.16. The profiles for swimming particles with Pe values of 1 and 100 are
compared with the values for a stationary array of spherical particles. First, we observe
that the profile of the mass flux in the active suspension is not uniform (see figure 10),
with higher values occurring near the open surfaces that exceed the uniform mass flux
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FIGURE 10. (Colour online) Vertical profiles of the mean particle Sherwood number, 〈Sh〉p,
in a suspension with volume fraction φ = 0.16 for (a) Da= 100 and (b) Da= 1000.
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FIGURE 11. (Colour online) Vertical profiles of the mean nutrient concentration in the fluid,
〈cf 〉, with φ = 0.16 for (a) Da= 100 and (b) Da= 1000.

for a stationary array. The average uptake in the core region of the thin film is lower
than for a stationary array. Second, the reduction in the mass flux in the core region
increases for increasing absorbtion rate Da as less nutrient is available in the fluid.
Third, the differences in the particle uptake for changes in the swimming speed, Pe, is
more apparent at higher absorbtion rates. At Pe = 1, the mass flux in the core region
is slightly lower than that for Pe = 100 whereas it is significantly higher near the
open surfaces. This reduction in the spatial variation of the mass flux with increasing
swimming speed is attributed to an increase in nutrient mixing throughout the film.

The effect of the absorption of nutrients on the mean concentration is shown in
figure 11. The concentration profiles show that a region of nutrient depletion occurs
in the film core for both swimming and stationary particles. As the absorption rate
increases, the depletion zone expands in size in the vertical direction and approaches a
nutrient concentration of zero. Higher nutrient concentrations are located near the film
surface where the nutrients are replenished. The variation in the nutrient concentration
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FIGURE 12. (Colour online) Ensemble averages of the (a,c,e) mean particle uptake 〈Sh〉p and
the (b,d,f ) mean nutrient concentration in the fluid 〈cf 〉.

due to changing swimming speeds is more apparent at higher absorption rates,
reflecting the variations with swimming speed discussed above: at low swimming
speeds the nutrient concentrations are lower than those in the stationary case as higher
mass flux is reported. At Pe = 100, the nutrient concentrations in the fluid are higher
than when Pe= 1 but remain lower or equal to the nutrient concentrations observed in
the stationary case.

4.4. Ensemble averages
The ensemble averages for the mean particle mass flux, 〈Sh〉p, and the fluid
concentration 〈cf 〉, are shown in figure 12 for the investigated range in particle
absorption rates, Da, and the three volume fractions φ = 0.078, 0.16 and 0.24. The
results in figure 12(a–c) for the mean particle mass flux show that at lower absorption
rates, Da = 10, the mean uptake of the stationary and swimming particle cases are
basically the same. As the absorption rate increases, the mean mass flux for the
swimming particles increases, exceeding that of the stationary particles. The effect of
the particle swimming motion, or the Péclet number Pe, on the uptake becomes more
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FIGURE 13. (Colour online) The variation in the mean particle mass flux, 〈Sh〉p, with
changing volume fraction, φ, for (a) Da= 1000 and (b) Pe= 1 and 100.

evident at higher particle absorption rates. For all cases considered, the nutrient uptake
at lower swimming speeds is greater than that at higher swimming speeds, a result
further discussed in figure 14.

From the results, two mass transport regimes can therefore be identified. In the
first regime, for Da 6 10, the diffusion towards the particle surface is faster than
the absorption of nutrients by the particle. In this absorption rate limited regime,
the swimming motion of the particles has no impact on the nutrient uptake. As the
absorption rate increases, Da > 10, the process becomes limited by the diffusion and
advection time. In this regime, the particle swimming motion enhances the particle
mass flux in comparison with the stationary case. In reference to the trends in
figure 12(c), test simulations in a different domain size show that as the particle
absorption rate approaches infinite values, i.e. instantaneous absorption, no further
increases in the particle mass flux occur. Based on this observation we anticipate that
in this limit the time for absorption is much faster than the mass transport of nutrients
from the bulk fluid to the particle surface. Increasing the absorption rate further has
therefore no effect on the uptake at the particle surface.

The ensemble averages of the mean nutrient concentration in the fluid are given
in figure 12(b,d,f ) and show that for increasing nutrient absorption rates the nutrient
concentrations in the thin film decrease. The results in the figure show that lower
mean nutrient concentrations in the bulk fluid correspond to the suspensions with
higher particle mass flux values. As example, since the mean particle uptake are
higher for Pe = 1 than for Pe = 100, the results in the figure show that the nutrient
concentrations in the fluid are lower for Pe = 1 in comparison to Pe = 100. Finally,
it is important to note that the results for the three reference volume fractions show
the same trends for mean nutrient uptake and nutrient concentration in the fluid for
changes in Pe and Da.

The influence of the volume fraction on the particle mass flux in the thin film is
shown in figure 13(a,b) for changes in the swimming speed and the absorption rate,
respectively. The results in figure 13(a) show a decrease in the particle mass flux
with increasing volume fraction at a constant absorption rate of Da= 1000. The mean
particle uptake is always higher at lower values of the Péclet number for the range
in volume fractions shown. We show in figure 13(b) that the particle uptake increases
with increasing absorption rate for a fixed value of Pe. In summary, while the particle
uptake decreases with increasing volume fraction, the trends in the particle mass flux
with changing Pe and Da do not vary with the volume fraction.
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FIGURE 14. (Colour online) The variation in the mean particle mass flux, 〈Sh〉p, with Pe
for φ = 0.16 and Da = 1000. The open symbol reports the uptake of a stationary array of
particles at the same volume fraction, the limit Pe→ 0.

The variation in the particle mass flux with increasing swimming speed is studied
via the Sherwood–Péclet relationship. This is shown in figure 14 on a log plot for a
volume fraction of φ = 0.16 and an absorption rate of Da = 1000. The results in the
figure show that when Pe 6 1, the global particle mass flux increases with respect to
that of a non-motile suspension. As the Péclet number increases above Pe = 1, the
uptake decreases almost linearly. With increasing Pe, the convection time becomes
much shorter than the diffusion time and the gradients in the nutrient wake region
are not diffused resulting in a larger area of lower concentration. The mechanism
causing the reduction in the mass flux with increasing Pe was explored in § 4.2
for the case of a single squirmer and attributed to lower nutrient concentrations at
the swimming particle surface. In the nutrient absorption model, the consumption of
nutrients is determined by the local surface concentrations which then force a local
gradient along the particle surface. In the bulk fluid surrounding the particle, however,
the role of diffusion is limited at higher Pe values and regions of lower concentrations,
located primarily in the nutrient wake region, persist over a larger fluid volume having
a reducing effect on the particle uptake. Comparing the data in figures 13 and 14,
one can note that the differences in mean swimmer uptake observed for different
Pe decrease as the volume fraction φ increases. This effect can be explained by the
fact that the limited diffusion at higher swimming speeds is mitigated by the larger
mixing induced by more frequent particle–particle interactions in a more crowded
environment.

4.5. The distribution of the particle mass flux
The probability density function (p.d.f.), ρ, of the particle mass flux is shown in
figure 15 for three volume fractions and an absorption rate of Da= 100. At the lowest
volume fraction, φ = 0.078, the particle Sherwood number Shp is distributed over a
range in values where, for both Pe = 1 and Pe = 100, one peak in the distribution
occurs and closely corresponds to the mean shown in figure 15(a) by vertical lines.
As the volume fraction increases, the probability density as shown in figure 15(b–d)
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FIGURE 15. (Colour online) The p.d.f., ρ, of the particle mass flux, Shp, for a nutrient
absorption rate of (a,b,c) Da = 100 and (d) Da = 1000. The vertical lines display the mean
value of each distribution.

becomes bimodal for both Pe = 1 and Pe = 100. The two peaks in the bimodal
distributions are not equal, with a sharp peak in the lower Shp range and broader peak
in the higher Shp range. The histogram of the mass flux p.d.f.s in the core of the thin
film and in the outer fluid layers closest to the film surface, reported in figure 16,
confirms that the bimodal distribution reflects the spatial variation in the mass flux
observed within the thin film. The higher mass flux values occur in the fluid layers
closest to the film surface whereas the lower mass flux values occur in the core region
where nutrients are depleted. For increasing swimming speeds, the histogram of the
particle mass flux shows that enhanced nutrient mixing results in higher particle mass
flux in the thin film core.

The variance σ 2, the second moment of the p.d.f., ρ, of the particle mass flux
distributions are given in table 2 for Da = 100. The variance in the distribution
function for Pe = 1 is 1.3 times larger than the variance for Pe = 100 for all three
volume fractions. Furthermore, the values of σ 2 in the active suspension are of order
10−1 for the given absorption rate and become larger with increasing absorption rate,
again showing the same trend for all three volume fractions considered. In summary,
the analysis of the distribution function of the swimmer mass flux shows that nutrient
uptake is intermittent in dense suspensions of swimming cells, strongly dependent on
the particle position. This trend is however mitigated at higher swimming speeds: as
the advection in the fluid increases, the variation in the particle mass flux decreases.
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FIGURE 16. (Colour online) The spatial variation in the mass flux p.d.f., ρ, for φ = 0.16,
Pe= 1 and Da= 100.

Variance σ 2

φ 0.078 0.16 0.24

Pe= 1 0.077 0.209 0.240
Pe= 100 0.058 0.157 0.188
Fixed array 2.7× 10−6 2.2× 10−5 7.4× 10−5

TABLE 2. Values of the variance σ 2 of the swimmer nutrient uptake Shp for Da= 100.

We have shown in § 4.1 that vertical motions are significantly suppressed in semidilute
and dense suspensions and therefore squirmers can be trapped for relatively long times
in regions with low nutrient concentrations. Higher swimming speeds have therefore a
twofold effect: decrease the mean uptake rate by decreasing the time available for the
nutrient to diffuse to the swimmer surface, see discussion of figure 14, but also create
a more uniform uptake distribution among the population. The latter beneficial effect
can be more significant at volume fraction higher than those considered in this study.

5. Conclusions
A numerical study of the mass transport in a thin film with swimming particles

has been conducted using a fully resolved and novel IBM code, capable of resolving
particle interactions in the concentrated suspension regime. Only a few numerical
studies have been conducted for active suspensions in confined domains, with the role
of hydrodynamics yet to be fully explored for the wide range in swimming types,
domain sizes and swimming particle volume fractions.

The fluid flow in the thin film is generated by the swimming motion of the particles
that consume nutrients in the fluid. Here neutral steady squirmers are considered.
The uptake of nutrients by the swimming particles is represented by first-order
kinetics applied locally at the particle surface representing an enzymatic-like process
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that captures and transforms the nutrient material inside the cellular membrane. The
approach adopted in this study is in the limit of zero internal diffusion of the nutrient
uptake model first proposed by Magar et al. (2003) in a mass transfer study of an
individual swimming particle. This study extends previous mass transport studies of
swimming micro-organisms to concentrated suspensions and to an intermediate range
in both the Péclet and Damköhler numbers.

The results of the numerical study show that the vertical swimming motion in the
thin film is suppressed and that the swimming particles are mainly confined to swim in
the planar direction. The swimming particles have a tendency to accumulate into layers
with stronger accumulation in between the film centreline and the film surface at lower
volume fractions. At higher volume fractions, the preferential particle accumulation
closer to the surface disappears.

We have studied how the mean nutrient uptake varies with the absorption rate, the
swimming speed and the volume fraction, Sh(Pe, φ,Da). At lower absorption rates,
the process of nutrient uptake is rate limited and particle motion in the bulk fluid
has a negligible effect on the particle mass flux. As the absorption rate increases,
the process of nutrient uptake is limited by the diffusion and advection time: in this
regime swimming induces a significant increase in nutrient uptake as the particle mass
flux is also enhanced by the swimming particle motion from regions of lower to higher
nutrient concentration.

The effect of swimming particle motion on the particle mass flux becomes apparent
at higher nutrient absorption rates where we show a decrease of nutrient uptake with
increasing swimming speed when advection dominates the nutrient transport, Pe > 1.
This effect turns out to be mainly a consequence of our first-order kinetic uptake
model, assuming the mass flux proportional to the local nutrient concentration at the
cell surface (see Magar & Pedley 2005). By considering the case of very low volume
fractions we demonstrate that swimmers faster than the nutrient diffusion develop
sharper nutrient concentration gradients close to their body. In the nutrient wake
behind the swimmers, a larger fluid volume with lower nutrient concentration develops
thereby lowering the nutrient uptake at the particle surface. Since the model micro-
organisms tend to swim in layers in the horizontal direction, they become trapped in
the advection wakes of neighbouring particles which further reduces the mass flux.

An analysis of the distribution in the particle mass flux shows a bimodal behaviour
that can be attributed to significant spatial variations in uptake as opposed to temporal.
The squirmers swimming through the core region of the thin film have a much lower
mass flux than those moving through the fluid layers near the thin film surface. We
find that these large differences between particle uptake decrease at high swimming
speeds.

Finally, as the volume fraction of swimming particles in the thin film increases,
more energy is required for the same swimming motion and the particle mass flux is
reduced. The increase in energy required for swimming is attributed to the increase in
the near-field interactions between particles whereas the decrease in the mass flux at
larger volume fractions results from a higher accumulation of particles in the nutrient
depletion zone in the film core. Comparing the energy loss and the uptake gain
(table 1 and figures 12 and 14) it is clear that swimming is still a winning strategy
for micro-organism survival in the relatively dense suspensions considered here. In
the future, we aim to investigate how the response of the swimmers to the nutrient
concentration (chemotaxis) as well as mechanical effects such as gyrotaxis, gravitaxis
and different swimming modes alter the picture provided here.
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Appendix. Details on numerical method
To simulate the flow and concentration field around the swimming cells we make

use of an IBM (Peskin 2002; Mittal & Iaccarino 2005). The principle of IBMs is
that the cells, modelled as spheres here, are immersed in a Cartesian grid that does
not conform to their shape. Instead of imposing explicit boundary conditions on the
sphere/fluid interface, forces are added to the flow field in the immediate vicinity of
the interface such that the boundary conditions are fulfilled to a good approximation.
The IBM makes use of a fixed grid and no regridding is required for mobile particles.
In addition, the Cartesian grid for the fluid phase enables the use of computationally
efficient discretization schemes and flow solvers. The IBM is thus computationally
efficient as compared with traditional methods which employ an unstructured, body-
fitted grid. This explains why IBMs are getting increasingly popular since the method
was first introduced by Peskin in the 1970s (Peskin 1972). The challenge is to develop
IBMs that are not only computationally efficient, but also sufficiently accurate.

The currently employed IBM was originally developed by Uhlmann (2005) to
simulate the flow around mobile solid spheres. It has been modified by Breugem
(2010, 2012) such that it became second-order accurate in the spatial grid resolution.
The accuracy of the modified method has been demonstrated for many different flows
over a range of Reynolds numbers such as the flow through an array of spheres, the
drafting–kissing–tumbling interaction between two settling spheres in a closed cavity
and the normal approach of two spheres at finite distance (Breugem 2012). However,
since the numerical method makes use of a fixed Cartesian grid, it will eventually fail
to capture the flow in the intervening film and, hence, the lubrication force between
two particles just prior to a collision (Breugem 2010). For that reason lubrication force
corrections have been added to the right-hand side of (2.14) when two particles are
within a certain threshold distance from each other.

To determine the threshold distance at which lubrication corrections are activated,
simulations have been performed of two equal spheres in shearing and in normal
motion. The spheres were located in the centre of a sufficiently large computational
domain with appropriate boundary conditions at the domain boundaries (Breugem
2010). The imposed translational velocity on the spheres was us and −us, respectively,
with us = 0.1ν/d. This corresponds to a particle Reynolds number of 0.1 and the flow
was thus in the Stokes regime. In the simulations the gap width between the spheres
was varied. The gap width normalized with the sphere radius R is denoted by ε. The
Stokes amplification factor (λ) is defined as the drag force (Fd) normalized by the
Stokes drag force acting on a slowly moving sphere in free space (6πµRus):

λ(ε)= Fd/(6πµRus). (A 1)

Figure 17(a) shows the flow field around two spheres in shearing motion at
ε = 0.156 for a grid resolution of d/1x = 16. From the IBM force distribution on
the Lagrangian grid of the spheres the drag force on the spheres could be determined
(Breugem 2012). Figure 17(b) shows λ as function of ε, where each dot represents
a different simulation. The simulation results appear in good agreement with the
analytical solution for λ from O’Neill (1970) for freely rotating spheres in shearing
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FIGURE 17. (a) Flow field around two equal solid spheres in shearing motion at ε = 0.156.
The grid resolution used in the IBM simulation corresponds to d/1x = 16. (b) The Stokes
amplification factor λ as function of ε for two equal solid spheres in shearing motion. Dots
and dotted line: results from the IBM simulations at d/1x= 16. Solid line: analytical solution
from O’Neill (1970) for freely rotating spheres.

motion. The agreement is good over the whole range of ε, even for very small values
of ε. It is therefore concluded that our numerical method does not require a lubrication
correction for shearing motion at small gap widths. The drag force acting on two
freely rotating spheres in parallel motion remains finite in the limit of ε→ 0. In fact,
from the exact solution it follows that at ε = 0 the angular velocity at the point of
contact is exactly opposite to the translation velocity, meaning zero velocity of the
point of contact and no flow in the immediate neighbourhood of this point. This can
be understood from the fact that if the angular and translational velocities would not
cancel each other in the point of contact, the viscous shear within the gap width would
approach infinity for ε→ 0 and this would induce a torque on the particles until the
angular and translational velocities do cancel each other. The zero velocity of the point
of contact is the reason why the IBM can accurately capture the Stokes amplification
factor down to zero gap width; the grid resolution inside the gap does not matter in
this case.

Figure 18(a) shows λ for two equal spheres in squeezing motion for two different
grid resolutions, d/1x = 16 and 32. The simulation results are compared with the
analytical solution from Brenner (1961) for this case. For d/1x = 16 the simulation
results deviate from the analytical result for ε . 0.25, which corresponds to a gap
width . 21x. When the grid resolution is increased to d/1x = 32 the agreement
with the analytical result is good down to ε ≈ 0.025. The good agreement until
ε ≈ 0.025 is quite remarkable, since it corresponds to a gap width of ≈ 0.41x, which
is significantly smaller than the grid spacing. For smaller gap width the numerical
solution is unable to capture the analytical solution, which diverges to ∞ for ε→ 0.
It is concluded that for spheres in squeezing motion a resolution-dependent lubrication
correction is required when the gap width becomes small.

The lubrication correction for two equal spheres in squeezing motion is modelled as
(Ladd & Verberg 2001; Dance & Maxey 2003; Breugem 2010):

Flc =−6πµR us [λ(ε)− λ(εlc)] , (A 2a)
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FIGURE 18. (a) The Stokes amplification factor λ as a function of ε for two equal solid
spheres in squeezing motion. Dots and dotted line: results from the IBM simulations at
grid resolution R/1x = 8. Triangles and dashed line: results from the IBM simulation at
R/1x = 16. Solid line: analytical solution from Brenner (1961). (b) Idem as in (a), but now
with the lubrication correction of (A 2a) for small ε.

where us is half the relative velocity between the two spheres (along their line of
centres) and εlc is the threshold gap width at which the lubrication correction is
activated. For both d/1x = 16 and 32 we took εlc = 0.025 (the same value is used in
the simulations in the present work with d/1x= 24). λ(ε) is the asymptotic expansion
of Brenner’s analytical solution (Dance & Maxey 2003):

λ(ε)= 1
2ε
− 9

20
log ε − 3

56
ε log ε + 1.346+ O (ε) . (A 2b)

The lubrication force correction is added to the right-hand side of (2.14) and denoted
by flc (force per unit mass). Figure 18(b) shows the same simulation results as
figure 18(a), but now including the lubrication force correction. The agreement with
the analytical result is now good over the whole range of ε, in particular for the
highest resolution.

Similar to the case of spheres in shearing motion, no lubrication correction is
included in our model for a sphere moving parallel to a plane wall. Based on
simulations of a sphere moving normal to a plane wall, it was found that the
simulation results are in good agreement with Brenner’s analytical solution (Brenner
1961) for this case for ε & 0.1 (Breugem 2010). For ε 6 0.1 the lubrication correction
is modelled similar to (A 2a) with the expression for λ equal to the asymptotic
expansion of Brenner’s analytical solution (Jeffrey 1982; Breugem 2010):

λ(ε)= 1
ε
− 1

5
log ε − 1

21
ε log ε + 0.9713+ O (ε) . (A 2c)

The asymptotic expansions of λ for two spheres in squeezing motion and for the
head-on collision of a sphere onto a plane wall diverge to ∞ for ε→ 0. This will
actually prevent any collision. Note, however, that the asymptotic expansions have
been derived for a perfectly smooth and inelastic sphere/wall and are based on the
assumption that the Stokes equations still hold for the flow in the intervening film
when ε→ 0. From experiments it is known that surface roughness elements of the
sphere/wall cause actual sphere-sphere/wall contact when the gap width (εR) is of
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FIGURE 19. (Colour online) Illustration of the soft-sphere collision model combined with a
lubrication correction for the head-on collision of a sphere onto a plane wall. The parameters
εlc, ε1 and ε2 are explained in the text.

the order of the typical size of the surface roughness elements (Joseph et al. 2006).
This will hamper further drainage of the intervening film and the drainage process
will eventually stop when many roughness elements have made contact with each
other. This effect is modelled by fixing the lubrication correction at λ(ε) = λ(ε1) for
−ε2 6 ε 6 ε1, where ε1 = 1 × 10−3 and ε2 = 1 × 10−2 are empirical constants. For
ε 6−ε2 the lubrication force correction is turned off.

The lubrication correction model is combined with a soft-sphere collision model
(Van der Hoef et al. 2006) to compute the repulsive force between particles once solid
contact is made (ε 6 0). This is illustrated in figure 19 for a sphere colliding onto a
plane wall. In the soft-sphere collision model particles are allowed to slightly overlap
with each other. The solid contact force is computed from the overlap between the
particles and their relative velocity. The collision force is decomposed into a normal
and tangential component, where the normal component is parallel to the unit normal
on the particle interface at the point of particle contact. In the present study only the
normal contact force was taken into account. The normal component of the contact
force acting on particle a when in contact with particle b is parameterized as

Fr =−kδnab − η(uab ·nab)nab, (A 3)

where k is the spring stiffness, η is the damping coefficient, δ is the overlap between
the particles, nab is the unit normal and uab is the relative velocity between the
particles. Input parameters of the soft-sphere collision model are the dry coefficient of
restitution (for collisions in vacuum), ed, and the time duration of a collision given as
the number, Nc, of computational time steps, 1t. The collision time can be artificially
stretched and is chosen much larger than predicted by Hertz contact theory (Johnson
1985) to avoid severe constraints on the numerical time step. The simulations in the
present work are based on Nc = 8. For more details on the collision model the reader
is referred to Breugem (2010). The repulsive collision force is added to the right-hand
side of (2.14) and denoted by fr (force per unit mass).

The collision model combined with the lubrication correction model is illustrated
in figure 19 for a sphere colliding onto a plane wall. The overall numerical method
(collision model + lubrication correction model + IBM) has been thoroughly tested.
The constants ε1 and ε2 have been systematically varied in a large number of
simulations of a solid sphere colliding onto a plane wall in a closed cavity filled
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with a viscous fluid. The chosen values of ε1 and ε2 yielded a good agreement with
the experimentally observed behaviour of the coefficient of restitution as function of
the impact Stokes number (Legendre, Daniel & Guiraud 2005; Breugem 2010).
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