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Abstract

Well-resolved large-eddy simulations of passive control of the laminar-turbulent tran-
sition process in flat-plate boundary-layer flows are presented. A specific passive control
mechanism is studied, namely the modulation of the laminar boundary-layer profile by a
periodic array of steady boundary-layer streaks. This has been shown experimentally to
stabilise the exponential growth of Tollmien-Schlichting (TS) waves and delay transition to
turbulence. Here we examine the effect of the steady modulations on the amplification of
different types of disturbances such as TS-waves, stochastic noise and free-stream turbu-
lence. In our numerical simulations, the streaks are forced at the inflow as optimal solutions
to the linear parabolic stability equations (PSE), whereas the additional disturbances are
excited via volume forcing active within the computational domain. The simulation results
show, in agreement with experimental and theoretical studies, significant damping of un-
stable two-dimensional TS-waves of various frequencies when introduced into a modulated
base flow: The damping characteristics are mainly dependent on the streak amplitude. A
new phenomenon is also identified which is characterised by the strong amplification via
nonlinear interactions of the second spanwise harmonic of the streak when the streak am-
plitude is comparable to the TS amplitude. Furthermore, we demonstrate that control by
streaks can be effective also in case of stochastic two-dimensional noise. However, as soon
as a significant three-dimensionality is dominant, as in e.g. oblique or bypass transition,
control by streaks leads often to premature transition. Visualisations of the flow fields are
used to highlight the different vortical structures and their interactions that are relevant to
the various transition scenarios and the corresponding control by streamwise streaks.

1 Introduction

The reduction and control of the viscous drag force exerted on thin bodies moving in a fluid is
of great technical interest. Drag reduction can be achieved by delaying the onset of a turbulent
flow as well as quenching turbulence itself. Several active and passive methods to reduce the
drag associated to a turbulent flow and/or achieve a delay of laminar-turbulent transition in
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the boundary layer have been developed in the past. Due to the highly local nature of turbu-
lent events and the rapid nature of the breakdown a sensor-less (open-loop) strategy may be
preferable, since it prevents the necessity of large numbers of fast sensor/actuator combinations
(recent progress in feedback control of boundary layer instabilities can be found in e.g. [1, 2]).
Thus far, the success of the control strategies for boundary-layer flows is limited and for bypass
transition, i.e. transition in boundary layers subject to high levels of external perturbations,
none of the strategies has been successful.

Attention has been given to control via wall blowing/suction in the form of traveling waves.
Du and Karniadakis [3] first showed drag reduction for control in the form of spanwise traveling
waves in turbulent channel flow, actually implemented using volume forcing. These waves
sustain streaky structures which are not optimal for transition or to sustain turbulence and
could thus reduce the drag. More recently, Quadrio and coworkers [4, 5] examined the drag
reduction in turbulent channel flow by wall actuation in the form of streamwise traveling waves of
spanwise velocity perturbations. In these investigations a more feasible actuation is considered.
Considering also stability and transition, in the publication by Min et al. [6] blowing/suction at
the wall in the form of upstream traveling waves (UPTW) are applied in a turbulent channel
flow. Their two- and three-dimensional numerical simulations show that upstream traveling
waves in turbulent channel flow reduce the average friction coefficient to a (sub-)laminar level.
This is explained by the extra pumping provided by the wall-actuation [7], leading to negative
power savings for the proposed strategy. Recently, Bewley [8] has theoretically shown that for
any boundary control, the power exerted at the walls is always larger than the power saved by
reducing to sub-laminar drag. The net power gain is therefore always negative if the uncontrolled
flow is laminar. However, a positive gain can be achieved when the uncontrolled flow becomes
turbulent but the controlled flow remains laminar. The conclusion is that the optimal control
solution is to relaminarise the flow and thus rendering transition control a viable approach [9].
To this aim, control in the form of downstream traveling waves (DTW) is more promising as
previously suggested by the analysis in Refs. [10, 9]. These authors examine the linear stability
of channel flow modulated by UPTW and DTW and show that DTW can have stabilising effect
on the flow, while UPTW are destabilising.

In this paper we consider the delay of transition to turbulence in two-dimensional boundary
layers by means of spanwise modulations of the base flow. The study by Cossu and Brandt
[11] showed that Tollmien-Schlichting (TS) waves in the Blasius boundary-layer flow can be
stabilised by steady steamwise-elongated perturbations of the streamwise velocity, the so-called
streaks, of finite amplitude. In the presence of streaks, i.e. with spanwise modulation of the two-
dimensional bounday-layer flow, the unstable TS-waves evolve from two-dimensional waves to
spanwise modulated waves, referred to as streaky TS-waves [12]. They have similar phase speed
as their two-dimensional counterpart and are less unstable. The experiments by Fransson et al.
[13] confirmed the theoretical predictions and demonstrated that such a stabilising effect can
indeed lead to transition delay [14]. In the experiment, streaks are induced in the boundary layer
by cylindrical roughness elements placed close to the plate leading edge, with height of about
40% of the boundary layer thickness [15]. A study of the damping characteristics of streaks
on two-dimensional TS-waves in boundary layers under pressure gradient was also performed
by Bagheri and Hanifi [16] using the parabolised stability equations (PSE); similarly LES was
performed by Schlatter et al. [17].

In the quest for other possible transition mechanisms in streaky boundary layers, the devel-
opment of the TS-waves in the presence of streaks and their interaction have been studied in the
past. In particular, the nonlinear interaction of finite amplitude TS-waves with streaks received
most of the attention [18, 19]. Streaks, however, may experience a fast growth and reach finite
amplitude before the TS- waves and therefore the preliminary step taken by Cossu and Brandt
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[12, 12] is to consider the streaky boundary layer as a three-dimensional basic flow in which
linear three-dimensional waves develop. Tani and Komoda [18] considered the development of
viscous waves in a streaky boundary layer. For small TS amplitudes, three-dimensional waves
were detected with mode shapes similar to the Blasius TS-waves but with a distinct two-peak
(or M-shaped) structure in the rms streamwise perturbation velocity near the wall in the low
speed region. Unfortunately, no explicit measure of the growth rates of such waves was provided.
Kachanov and Tararykin [20] generated streamwise steady streaks by blowing and suction at
the wall and used a vibrating ribbon to generate TS-type waves. They found three-dimensional
waves having essentially the same phase speed as the Blasius TS-waves and with essentially
the same M-shaped structure mentioned above. Surprisingly, however, these streaky TS-waves
did not amplify as they would have done in the absence of the streaks in the same parameter
range. Arnal and Juillen [21] detected natural (not forced) TS-type waves riding on the un-
steady streaks induced by free-stream turbulence. Grek et al. [22] and Boiko et al. [23] forced
TS-waves with a vibrating ribbon in a boundary layer exposed to free-stream turbulence. Using
refined wave detection techniques they found unstable streaky TS-waves, which were, however,
less amplified than Blasius TS-waves. These authors attributed the growth rate defect to the
stabilising role of the two-dimensional averaged basic flow distortion induced by the streaks;
however, they also found that a mere two-dimensional stability analysis of the average velocity
profile was unable to predict a correct growth rate. An LES of a spatially developing boundary
layer including both TS-waves and free-stream turbulence has been performed by Schlatter et
al. [24].

More recent work considered also the development of modal instabilities in a streaky bound-
ary layer. The simulations of the interaction between streaks and TS-waves by Liu et al. [25]
and Schlatter et al. [17] show that breakdown occurs through a pattern of Λ-structures, similar
to the secondary instability of the TS-waves. However, the streaks set the spanwise length scale
which is much smaller than that of the natural secondary instability of TS-waves. Stability
analysis performed by Liu et al. [26] shows that, indeed, the streak can either enhance or dimin-
ish the overall stability of the boundary layer. The stabilising effect is a reduction in the growth
rate of the primary two-dimensional TS-wave; the destabilising effect is a secondary instability.
The analysis is consistent with Cossu and Brandt [12] who showed that steady streaks reduce
the growth rate of primary TS-waves. The simulations in Ref. [25], as well as those by Fasel
[27], demonstrate that unsteady streaks, too, reduce the growth rate of the primary TS-waves.
However, the role of unsteadiness is found to be more curious when considering the secondary
instability due to the interaction of the streaks and TS-waves. Fransson et al. [13, 14] studied
this interaction for steady streaks and demonstrated that the presence of streaks is always sta-
bilising and suppresses transition. The simulations by Liu et al., however, show that unsteady
streaks promote transition. Therefore, the unsteadiness of streaks is significant in promoting
breakdown.

The aim of this study is to investigate the details of the stabilisation process observed in
the presence of streaks, perform a parameter study on the response to modulations of different
scale, examine the robustness of the approach and verify its applicability in the case of bypass
transition. It is well known that boundary layers behave as noise amplifiers and the type of
disturbances growing are strongly dependent on the characteristics of the ambient noise. At
low levels of ambient disturbances, transition to turbulence is caused by the slow, viscous,
exponential amplification of Tollmien–Schlichting waves. The most unstable waves are mainly
two-dimensional and undergo secondary instabilities when they reach an amplitude of about
1% of the free-stream turbulence [28]. At moderate and high levels of free-stream turbulence,
the growth of the TS-wave is bypassed and low-frequency streamwise elongated structures,
the streaks, grow in the boundary layer. These break down to turbulence in the form of
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isolated spots initiated by inviscid instabilities associated to the shear layers induced by the
streaks [29, 30]. The amplification of streaks in the presence of streamwise vorticity is now well
understood, the so called lift-up mechanism [31], and is related to the non-normality of the
linearised Navier–Stokes equations [32].

In this context, to investigate the robustness of the stabilisation induced by spanwise mod-
ulations of the base flow we will perform numerical simulations in a flat-plate zero-pressure-
gradient boundary layer where the laminar-turbulent transition is induced by i) two-dimensional
TS-waves, ii) oblique three-dimensional waves, iii) two-dimensional and iv) three-dimensional
stochastic forcing inside the shear layer and v) free-stream turbulence. In the first case we show
how our numerical method is able to reproduce the experimental results and investigate the flow
structures induced by the nonlinear interactions of TS-waves and streaks. By using stochastic
forcing of given spectrum we examine the performance of the proposed control strategy to differ-
ent types of incoming disturbances under controlled conditions. Finally, we perform simulation
of transition in the presence of free-stream turbulence to validate the previous results in a more
realistic noisy environment.

2 Simulation approach and disturbance generation

2.1 Discretisation and computational box

The presented simulation results are obtained using a spectral method to solve the three-
dimensional, time-dependent, incompressible Navier–Stokes equations, namely the code sim-

son [33]. In the streamwise and spanwise directions, Fourier series are used whereas the wall-
normal direction is discretised with Chebyshev polynomials. The non-linear terms are evaluated
pseudo-spectrally, using the 3/2-rule for dealiasing in the wall-parallel directions. The periodic
boundary conditions in streamwise direction are combined with a spatially developing boundary
layer by adding a “fringe region” at the end of the domain. In this region, the outflowing fluid
is forced via a volume force to the prescribed inflow velocity field, which in this case consists
of a Blasius boundary layer profile (zero-pressure gradient) with superimposed optimal streaks
(see below). Further description of the fringe method is given in Ref. [34]. The time is advanced
with a four-step low-storage Runge–Kutta method for the nonlinear terms and all the forcing
contributions, and a second-order Crank–Nicolson scheme for the linear terms and boundary
conditions. The latter are chosen of Neumann-type at the upper free-stream boundary.

For all simulations presented in this paper, spatially evolving boundary-layer flow is con-
sidered with the inflow located at Reynolds number Reδ∗

0
= U∞δ∗

0
/ν = 300. This position

corresponds to Rex = 32000. Here, ν is the fluid viscosity, U∞ the free-stream velocity and δ∗
0

the displacement thickness at the inlet. The simulation box has dimensions Lx ×Ly ×Lz equal
to 2000 × 60 × 180 in the streamwise, wall-normal and spanwise directions, respectively, made
non-dimensional based on δ∗

0
. The physical domain thus extends to about Rex = 590000 or

Reδ∗ = 1300. Most results are obtained with a resolution Nx ×Ny ×Nz of 512× 121× 128 grid
points. With this resolution the use of large-eddy simulation (LES) is necessary to obtain accu-
rate results in both the transitional and turbulent regions. For this purpose the ADM-RT model
is employed [35]. With this model, the effect of the unresolved spatial scales is accounted for
by adding to the momentum equations a relaxation term proportional to the high-pass filtered
velocity field, i.e. −χHN ∗ui. Here, χ is a model coefficient which is set constant in the present
work, HN∗ symbolises the action of the high-order high-pass filter defined in three dimensions,
and ui is the grid-filtered velocity. Further details on the employed filters are given in Ref. [36].
The relaxation term acts as an energy sink and thereby inhibits the build-up of energy near the
numerical cutoff. The ADM-RT model was found to be well suited for the spectral simulations
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of transitional flows. In particular, the vortical structures during breakdown can be predicted
accurately in both the temporal and spatial setting [37], in addition to an accurate prediction
of turbulent boundary layers [38]. Note that there is a close connection between the use of the
relaxation term as part of governing dynamic equations and an explicit filtering of the velocity
field after each time step, see e.g. Ref. [39].
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Figure 1: Stability diagram showing the neutral curve for two-dimensional TS-waves; the region
enclosed by the solid line corresponds to linearly unstable parameters. The dashed line indi-
cates the computational domain with inlet at Rex = 32000 (◦), and the cross × indicates the
streamwise position where the volume forcing is applied. The dotted line is the fringe region
downstream of Rex = 590000.

2.2 TS-wave generation

Two-dimensional (2D) TS-waves used in Section 3 are forced at Rex = 60000 by a harmonic
volume force acting in the wall-normal direction at a non-dimensional frequency F = 120,
corresponding to ω0 = 10−6F · Reδ∗

0
= 0.036, see Figure 1. In this diagram, the region for

linearly unstable combinations of the frequency F and downstream distance measured as Rex

are enclosed by the solid line. The extent of the numerical domain, shown as the dashed
line in Fig. 1 for the given F , is thus crossing the stability boundary at two Rex, commonly
referred to as Branch I and II. For most of the cases presented further down the maximum root-
mean-square (rms) amplitude of the TS-waves at branch I (Rex ≈ 150000) is approximately
ATS = urms,max = 0.76% U∞. The validation of the forcing of the TS-waves is presented in
Figure 2, which displays the perturbation streamwise and wall-normal velocity profile slightly
after branch I in comparison with linear stability theory (LST). Figure 3 shows the growth rate
of the wall-normal maximum of the streamwise velocity fluctuation compared to results from
solving the (linear) parabolic stability equations (PSE). The TS-waves evolve nonlinearly into
a saturated state, therefore also a comparison with lower amplitude forcing is provided in the
figure. Good agreement with LST and PSE is obtained by the current LES for both the velocity
profile and the growth rate of the TS-waves. The three-dimensional (3D) waves used in Section
4 are forced in a similar way as the 2D waves; in addition to the harmonic time dependence
a spanwise dependence of the forcing amplitude is included. This will be further discussed in
Sec. 4.

If small-amplitude random noise is also introduced, three-dimensional secondary instability
of the two-dimensional waves is triggered, leading to K- or H-type transition shortly after branch
II. This nonlinear evolution and breakdown of the TS-waves is also correctly captured by the
current LES, as shown in Figure 4 where the classic subharmonic scenario by Herbert [40] is
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Figure 2: Comparison of the shape of the TS-waves obtained by LES and low-amplitude har-
monic forcing with linear stability theory (LST). a) streamwise velocity urms, b) wall-normal
velocity vrms at Rex = 216000 (branch I), LES, • LST.
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Figure 3: Comparison of streamwise evolution of TS-waves obtained by LES with parabolic
stability equations (PSE). Wall-normal maximum of urms for uncontrolled case with ran-
dom 3D disturbances undergoing laminar-turbulent transition, 2D nonlinearly-saturated
TS-wave, linear low-amplitude TS-wave (rescaled), ◦ linear PSE.

reproduced. In the plot, the evolution of the relevant Fourier components of the perturbation
fields is displayed and compared to PSE.

2.3 Noise generation

The simulations presented in Section 5 examine the transition behaviour in the presence of
stochastic noise introduced into the boundary layer. Similar to the forcing of the 2D and 3D
waves, the noise is forced within the computational domain at Rex = 60000 by a volume force
acting in the wall-normal direction close to the wall. Two frequency spectra of the noise are
shown in Fig. 5, specifying the noise cases considered as “large-scale” and “small-scale” in the
following. For the runs with 3D noise the cut-off spanwise scales are chosen as λz,max = 2.25δ99

and λz,max = 0.75δ99 for the large and small-scale noise, respectively. The actual amplitude of
the noise is determined for each case in such a way that transition to turbulence, i.e. the ap-
pearance of a turbulent patch, could be observed inside the computational box (Rex < 590000).
This will be further discussed in Section 5 and Table 2. A detailed description of the noise-
generation method and its practical implementation using temporal Lagrange interpolation is
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Figure 4: Evolution of various Fourier modes for H-type (subharmonic) transition [40].
current LES; symbols: PSE. • mode (ω0, 0), � (ω0/2, βcrit), ◭ (2ω0, 0), N (3ω0/2, βcrit).
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Figure 5: Frequency spectrum of large-scale and small-scale noise. The maximum
spanwise scale based on the local boundary-layer thickness δ99 at the position of forcing (Rex =
60000) for the 3D noise cases is chosen as λz,max = 2.25δ99 and λz,max = 0.75δ99 for the large
and small-scale noise, respectively.

given in Ref. [33]. It is interesting to note that a very similar forcing has been used in direct and
large-eddy simulations of spatially evolving turbulent boundary layers as an efficient method to
generate initial turbulence, mimicking the effect of a trip wire in windtunnel experiment, see
e.g. Refs. [41, 38]. In these cases, however, the amplitude of the forcing is chosen larger in order
to cause rapid transition to turbulence via the generation of hairpin vortices [42].

2.4 Free-stream turbulence generation

A boundary layer developing under the influcence of ambient free-stream turbulence (FST) is
considered in Section 6. In order to generate approximately homogeneous and isotropic free-
stream turbulence at the inflow plane, the approach introduced in Brandt et al. [29] is used: A
superposition of 800 eigenmodes from the continuous spectrum of the Orr-Sommerfeld/Squire
operators is computed to satisfy a given energy spectrum over a range of wave numbers. This
superposed disturbance velocity profile is then introduced in the fringe region using the Taylor
hypothesis translating spatial streamwise fluctuations into frequency. Further details are given
by Brandt et al. [29] and Monokrousos et al. [2].
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2.5 Streak generation

The aim of this paper is to quantify the influence of streamwise streaks onto the stability
and transition behaviour of a boundary layer. As detailed in the introduction, a number of
studies have been performed in experiments using various types of objects placed on the flat
wall [13]. In principle, for numerical simulations a similar approach could be chosen, including
such obstacles in the numerical domain, e.g. using a body-fitted grid or immersed boundary
techniques. However, due to the use of a spectral numerical scheme, we have chosen a different
approach for the current study: The laminar streaks, characterised by a three-dimensional
disturbance field, are introduced at the inlet as optimal disturbances computed from PSE,
subsequently evolving nonlinearly inside the domain.
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Figure 6: Streak development in the downstream direction. a) Streak development for • linear
PSE, streak B, streak C, streak D, streak E, streak G. The streaks are
normalised to unit amplitude at the inlet. b) Streak amplitude Ast according to eq. (1).

The complete velocity vector field obtained with the linear code developed by Levin and
Hennginson [43] is used to force the desired streaky perturbation at the inflow of the computa-
tional domain. These streaks are introduced in the fringe region by adding them to the laminar
Blasius profile UB. The streaks considered are optimally growing perturbations, solution of
the linearised boundary-layer equations, and are characterised by the spanwise wavenumber
βst = 2π10/Lz and the streamwise location of their maximum amplitude (Rex ≈ 185000). The
latter values are chosen to approximatively match the streaks in the experiments in Ref. [13].
The different values of the streak amplitudes considered are reported in Table 1. The streak
amplitude Ast is defined as:

Ast(x) =

[

max
y,z

(U − UB) − min
y,z

(U − UB)

]

/2U∞. (1)

Note that the streak of largest amplitude is susceptible to secondary inviscid instability [44].
The evolution of the streaks in an otherwise undisturbed laminar boundary layer is shown

in Figure 6. A validation of the implementation is given in Fig. 6a) comparing the streamwise
velocity disturbance arising from the developing streaks with the results obtained by PSE: For
lower streak amplitudes (i.e. Ast < 5% at the inlet) very good agreement is observed, indicating
that for such amplitudes the effect of nonlinearity on streak development is small. Fig. 6b) shows
Ast as a function of downstream distance Rex. As the streak is entering the computational
domain, it first experiences transient growth, until reaching a maximum amplitude. For all
streaks the maximum amplitude is reached at Rex ≈ 190000, approximately at the same position
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Table 1: Amplitudes Ast of the streaks used for the various simulations. Definition of streak
amplitude according to eq. (1). Case N corresponds to a case without streaks.

Streak Ast at inlet Ast,max Rex of maximum amplitude.

A 29% 39% 120000
B 20% 32% 150000
C 10% 19% 170000
D 5% 10% 195000
E 2.6% 5.1% 190000
F 1.7% 3.4% 185000
G 0.6% 1.2% 185000
N 0% 0% n/a

as Branch I for the TS-waves introduced above. Further downstream, the effect of viscosity will
lead to decay of the streak amplitude.

The downstream change of the cross-stream shape of the streak is illustrated in Fig. 7. At
the beginning of the domain, Rex = 32000 as in Fig. 7a), the streak only contains one spanwise
wavenumber βst, due to the linearity of the underlying PSE calculation. When comparing to
plot b) further downstream, one can note that in the nonlinear simulation the low-speed region,
caused by the lift-up of low-speed fluid from the wall, is widening toward the boundary-layer
edge for the large amplitude disturbance. At the same time, the region of high-speed fluid
near the wall increases its area. This effect, neglected in linear calculations, indicates that the
commonly used “shape assumption” for streaks does not hold at such amplitudes. The accurate
description of the developed state of a streak necessitates more than one wavenumber βst.
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Figure 7: Visualisation of the streak C at a) Rex = 32000 and b) Rex = 332000. Shown is the
streamwise disturbance velocity u − uBlasius, contour spacing 0.02U∞, negative disturbance is
dark, positive is light. The boundary-layer edge of the Blasius boundary layer is at δ99 ≈ 2.9δ∗.

3 Two-dimensional waves

The results presented in the following are obtained by averaging in time and in the spanwise
direction after the simulations have reached a statistically stationary state. The analysis of
the spectral contents has been performed by Fourier transforms in time and in the spanwise
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direction of a number of full velocity fields saved during one or two cycles of the fundamental
period of the primary TS-waves. The corresponding modes are denoted by (ω0, βst)-pairs in
the following. For all the results in this section, the TS-waves are introduced as described in
Section 2.2. The details of the streaks are discussed in Section 2.5

3.1 Linear TS-waves

The linear evolution of the TS-waves in the streaky boundary layer is considered first. The
results for TS-waves with frequency F = 120 are shown in Fig. 8: Starting from the case
with TS-waves evolving in a two-dimensional boundary layer (thick line in Fig. 8), streaks of
increasing amplitude (streaks B to F, see Table 1) have a stronger quenching effect on the
unstable waves; for sufficiently high amplitude of the streaks any growth of the TS-waves is in
fact suppressed by the presence of the streaks. This clearly confirms the findings by Cossu and
Brandt [11], which have also been reproduced experimentally by Fransson et al. [13].
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Figure 8: Energy integrated in the wall-normal direction contained in mode (ω0, 0) of the two-
dimensional TS waves at F = 120 in the presence of streaks. streak B, streak C,

streak E, streak F, no streak (case N). For streak amplitudes see Table 1.

Figure 9a) displays the behaviour of TS-waves of lower frequency in a longer domain. By
comparing with the streak amplitude in Fig. 9b) it is evident that the observed stabilisation is
related to the local streak amplitude. In the following we will therefore consider only waves with
frequency F = 120, with the assumption that the control effect of streaks of lower amplitude
can be related to that of waves of lower frequency. Lower frequencies will be amplified further
dowmstream and will ride on streaks of lower amplitudes; in other words, what is found at lower
streak amplitudes can also be observed for stronger streaks, only further downstream and with
waves of lower F . The stabilisation effect appears to be independent of the wave frequency.

The wall-normal disturbance profiles of the streamwise velocity belonging to the streaky
TS-waves averaged in the spanwise direction are reported in Figure 10. The typical M-shaped
structure [18], i.e. featuring two local maxima of the rms values close to the wall, observed in
previous numerical and experimental studies, is well captured by the current simulations.

3.2 Influence of the spanwise scale of the streak

Simulations of transition featuring TS-waves and streaks under controlled conditions have been
performed to investigate the effect of the streak spanwise scale on the stabilisation and possible
transition delay. It is observed that if the TS-waves reach sufficiently high amplitudes, i.e. of
the order of 0.5% of the free-stream velocity, and the streaks are characterised by the spanwise
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Figure 9: Streak C and 2D TS-waves of different amplitude and frequency. F = 120,
ATS = 2.575 ·10−5, F = 70, ATS = 1.692 ·10−4, F = 50, ATS = 1.000 ·10−3. a) Mode
(ω0, 0), thick lines are only TS-waves, thin lines controlled with streak C. • position of branch
I and II according to LST. b) Streak amplitude urms,max. For this plot the fringe region is not
cut away to indicate the end of the computational domain.
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Figure 10: Waveforms of the streaky TS-waves compared to the corresponding normal TS
waves ( ) at Rex = 482000 (streak C, TS-wave with F = 120, see Fig. 8). The amplitude
of the streaky waves is rescaled by 110 to account for the lower growth rate.

scale of the unstable secondary instability modes, turbulent breakdown is indeed promoted by
the presence of the steady streaks. If, on the other hand, the streak spacing is chosen too
narrow, the coupling between TS-wave and streak is low leading to a reduced damping effect.
Therefore, the streak spanwise wavenumber used in the following results is chosen about three
times larger than that of the most unstable wavenumber of secondary instability. This scale
roughly corresponds to that already used in the experiments by Fransson et al. [13].

3.3 2D waves with small-amplitude noise

The uncontrolled reference case is given by the two-dimensional forcing at F = 120 exciting
two-dimensional TS-waves, and an additional low-amplitude random forcing superimposed onto
the harmonic signal. The amplitude of the random forcing is more than one order of magnitude
lower than that for the TS-wave. The resulting flow fields are shown in Fig. 11: Initially, the
forced TS-waves decay, until they reach branch I (compare Fig. 8), after which an amplifica-
tion is initiated. In Fig. 11a) and b) this is evidenced by an increasing size of the spanwise
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oriented vortices, visualised by isocontours of negative λ2 [45], the second largest eigenvalue
of the Hessian of the pressure. Shortly after branch II (corresponding to Rex ≈ 400000), the
two-dimensional TS-waves show clear signs of a three-dimensional secondary instability in the
form of so-called spanwise Λ-vortices. The exact characteristics of this is dependent on the
details of the small-amplitude noise forced together with the harmonic TS-waves: Either pure
K-type (fundamental), H-type (subharmonic), or de-tuned transition scenarios can be obtained
[46, 28, 32]; the two pure scenarios differ in the alignement of the Λ-vortices: K-type transition,
Fig. 11a), features an aligned formation of Λ-vortices, whereas a staggered pattern is character-
istic for pure subharmonic H-type transition. De-tuned scenarios contain a (possibly irregular)
mixture of the features of the both the pure K- and H-type scenarios. In Fig. 11b) such a flow
state is visualised, resembling the pure staggered H-type scenario. The latter scenario is found
to be more unstable than K-type transition for most frequencies [28] , which is confirmed by
the present results showing slightly earlier transition in Fig. 11b) than in case a). Note that
transition in Fig. 11b) is induced by superposing small-scale noise of random nature in both
time t and span z on top of the TS-waves, whereas K-type transition in Fig. 11a) is obtained if
the noise is random in z but constant time.

a)

b)

c)

Figure 11: Top view of the three-dimensional flow structures for uncontrolled case N, a) steady
and b) unsteady 3D noise (base-line cases). Green isocontours represent the λ2 = −0.00008
vortex-identification criterion [45], red and blue isocontours are positive and negative distur-
bance velocity u′ = ±0.07, respectively. Flow from left to right. c) Three-dimensional impres-
sion of the K-type breakdown: Transparent yellow: λ2 = −0.00008, green λ2 = −0.0002, blue
and red u′ = ±0.1.

Next we study cases which feature streaks in addition to the TS-waves. The transition
delay obtained in the presence of the steady streaks is displayed in Figure 12. The skin-friction
coefficient cf , Fig. 12a), remains at the laminar value for the two cases with streaks of largest
amplitude (streaks C and D), an increase of cf by a few percent being only observable where
they reach their peak amplitude. The explanation for the observed stabilisation is provided
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in Figure 12b) where the shape factor H12 associated to the base flows under consideration is
reported. The presence of the streaks progressively reduces the value of H12 in the initial laminar
region thus stabilising the flow. Figure 12c) shows the level of streamwise velocity perturbation
in the boundary layer, accounting for the presence of the streaks. For large amplitudes of the
latter, urms,max is dominated by the steady contribution, so the curves basically display the
streamwise streak development. Conversely, in the absence of streaks the pertubation consists
mainly of TS-waves and the breakdown can be identified by the sharp rise in the fluctuation
level at higher Rex. For intermediate values of the streak amplitudes, both the initial amplitude
of these spanwise modulation and the breakdown further downstream can be seen.
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Figure 12: a) Skin friction coefficient cf , b) shape factor H12, and c) urms,max averaged in time
and spanwise direction. Streak C, streak D, streak E, streak F, case
N (uncontrolled).

Results of the Fourier analysis are presented in Figure 13 for streaks C, D and E. For the
largest streak amplitude, streak C considered in Figure 13a), the fundamental steady streak can
be seen as the only dominant mode (0, βst). Both the two-dimensional and oblique TS-waves
are quickly damped, and the first harmonic of the streak (0, 2βst) remains as the second largest
mode. For this the mode associated with the TS-wave (ω0, 0) does not experience any significant
growth. In this case, the flow is well described by the linear evolution of TS-waves in a spanwise
modulated boundary layer as in the analysis by Cossu and Brandt [12].

On the other hand, the simulations with streaks of lower amplitudes, cases D and E,
Ast = 5% and 2.6% respectively, (Figs. 13b) and c)) highlight a new physical phenomenon
observed at those low streak amplitudes when streaks and TS-waves have similar strength.
Thus, more complex nonlinear interactions between both disturbances can take place. Ini-
tially, the (0, βst) streaky mode is dominating, reducing the growth of the streaky TS-waves
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Figure 13: Energy integrated in the wall-normal direction for selected Fourier modes. From a) to
d): Streaks C, D, E, G, respectively. Steady streak (0, βst), TS-wave (ω0, 0), first
harmonic of streak (0, 2βst), first harmonic of streaky TS-wave (ω0, βst), oblique mode
(ω0, βst/3), sum of all displayed modes.

(ω0, 0 . . . 2βst). Further downstream, Rex > 4 · 105, however, a significant growth of oblique
modes (ω0, βst) is seen. This induces, by nonlinear interactions, a strong amplification of the
steady (0, 2βst) mode, i.e. a doubling of the initial streaks is observed (see also the visualisation
in Figure 16b) further down). Towards the end of the domain, growth of the mode (ω0, βst/3)
can be observed, eventually leading to breakdown further downstream, as partially shown in
Figure 16b) below). Note that the streak doubling occurs also without the presence of the noise
(see below), but in that case it is not followed by turbulent breakdown. The latter is associated
to the growth of oblique modes of fundamental frequency and wavenumber close to the natural
secondary-instability wavenumber, i.e. the mode (ω0, βst/3).

The lowest streak amplitude, Fig. 13d) still features some growth of the (0, 2βst) mode,
however, laminar-turrbulent transition and the associated amplification of the energy of the
higher modes is occurring shortly downstream of Rex ≈ 450000. In terms of the modal picture,
this case is very similar to the uncontrolled case (not shown).

3.4 Flow visualisations

Visualisations of the instantaneous flow field are shown in Figure 14 for seven streak amplitudes,
streaks A, C, D, E, F, G and N, and with the same boundary-layer excitation (TS-waves and
three-dimensional steady noise, leading to K-type transition). Note that Fig. 14g) is the same as
in Fig. 11a). In these top views of the three-dimensional flow, green isosurfaces indicate vortical
structures identified by using the λ2 criterion, whereas isosurfaces in blue and red visualise low-
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a)

b)

c)

d)

e)

f)

g)

Figure 14: Top view of the three-dimensional flow structures for streaks A, C, D, E, F, G, N (un-
controlled), from a) to g). Green isocontours represent the λ2 = −0.00008 vortex-identification
criterion, red and blue isocontours are positive and negative disturbance velocity u′ = ±0.07,
respectively. Flow from left to right.

and high-speed streaks, respectively. In the case of streak A, Fig. 14a), breakdown occurs well
within the computational domain. Streak A is indeed unstable to linear perturbations [44].
The relevant vortical structures at the late stage of transition are quasi-streamwise vortices
aligned in a staggered pattern and following the spanwise oscillations of the low speed streak.
The scenario observed is the same as that arising from the sinuous secondary instability of a
steady streak examined by Brandt and Henningson [47]. This scenario has been identified by the
latter authors as the most likey to occur in the case of steady streaks of amplitudes Ast larger
than approximately 26% of the free-stream velocity. Conversely, streak C is not strong enough
to undergo direct secondary instability leading to transition. However, it is strong enough to
substantially quench the growth of the TS-waves. In agreement with the experimental findings,
a clean spanwise-modulated base flow can therefore be seen in Figure 14b); the slow downstream
decay of the streak amplitude is also evident. Further decreasing the streak amplitude, nonlinear
development of the TS-waves is observed. For the case in Figure 14c) using streak D with steady
random noise, this leads to the formation of aligned Λ-structures, associated with the streak
doubling discussed above. Considering streak E in Figure 16d) amplification of oblique modes
is observed at the end of the computational domain, triggering transition of the new streaky
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base flow, dominated by the doubled mode (0, 2βst), close to the outflow. For streaks C and D,
however, breakdown is not occurring within the computational domain. The streaks of lowest
amplitude (streaks F and G), conversely, are not able to reduce the TS-waves enough to prevent
transition: turbulent flow can indeed be seen at the end of the computational domain in Figs.
14e) and f). The last plot, Fig. 14g), displays the uncontrolled case. Aligned Λ-structures,
typical of the K-type scenario, can clearly be observed. In summary, Figure 14 depicts the
various possible transition mechanisms in a boundary layer with streamwise streaks: From
the classic K-type scenario (at low streak amplitude) to bypass transition of high-amplitude
streaks. In between these limiting cases, stabilisation and transition delay is achieved by means
of spanwise modulations of the base flow by means of moderate amplitude streaks.
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Figure 15: Energy integrated in the wall-normal direction for selected modes for streak E. a)
clean TS-wave, b) steady noise, c) unsteady noise. Line caption see Figure 13.

The case of richest nonlinear interaction between streaks and TS-waves of the same order
of amplitude, leading to the streak doubling, is further examined in Figures 15 and 16, showing
both the modal development and visualisations. Three cases are considered: clean TS-wave
without additional small-amplitude noise (not leading to breakdown in the uncontrolled case),
steady noise (leading to K-type transition without streaks), and unsteady three-dimensional
noise (H-type transition without streaks). Noise obviously needs to be added to trigger laminar-
turbulent transition even in the presence of streak E, otherwise all disturbances are decaying
at the end of the domain, see Fig. 15a). The streak doubling is however clearly observed in the
clean case as well, evidenced by the strong growth of the harmonic of the streak. This particular
growth is initially independent of the type of the additional noise, see Figs. 15a)-c). We can
therefore conclude that this feature is neither affected nor triggered by the presence of steady
or unsteady noise. The streak doubling is associated to the periodic tilting of the streaky TS-
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waves into Λ vortices with the spanwise wavenumber of the streaks βst. This spanwise length
scale is however much smaller than the one associated to the natural secondary instability of
the TS-waves. Similar results have also been obtained in the simulations and stability analysis
by Liu et al. [25, 26].

In the presence of noise, transition can be observed at the end of the computational domain
for both steady and time-dependent small-amplitude forcing: Λ and hairpin vortices can be
distinguished in the flow, see Figs. 16b) and c). In the case of time-dependent noise transition
occurs much earlier, however still later than in the uncontrolled case, compare to Fig. 11c).
The streak doubling is present also in this case even though it is not so evident in the present
figure, but can clearly be identified via Fourier transform, Fig. 15c). The results confirm that
for the parameter settings considered here the subharmonic breakdown is the most rapid one.
The computations presented have also been performed with unsteady noise and the results give
a picture of the effect of the streaks on the subharmonic transition scenario (and associated
delay) similar to the effect on the transition induced by the three-dimensional steady noise.

The figure also shows another important finding: The noise forced upstream obviously
survives during the streak doubling process and subsequently determines the transition scenario
observed further downstream.

a)

b)

c)

Figure 16: Top view of the three-dimensional flow structures for streak E (same contour levels
as in Figure 14). a) clean TS-wave, b) steady noise, c) unsteady noise.

4 Three-dimensional waves: Oblique modes

In the previous section, we have observed that two-dimensional perturbations are effectively
damped by the presence of streaks, and consequently a transition delay can be achieved for
both K- and H-type transition scenarios. This was in full agreement with the initial study by
Cossu and Brandt [11] and the experimental confirmation by Ref. [13]. However, before we
move to fully three-dimensional and stochastic disturbances, an intermediate step considering
the oblique transition scenario is taken. In order to assess the possibility to affect this specific
transition scenario by means of streamwise streaks, and to clarify the various influences, a
parametric study is carried out where both three-dimensional and two-dimensional forcing is
applied in the flow.

To this end, a flow case similar to the baseline simulation presented in Sec. 3, Fig. 11 is
considered: TS-waves are forced with fixed amplitude, together with oblique waves of increasing
amplitude. Compared to the previous section, the domain width has been chosen zL = 72δ∗

0
,
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a)

b)

c)

d)

Figure 17: Top view of the three-dimensional flow strucutres for cases with TS-waves and
oblique mode (ω0,±0.5βst). a) to d): Increasing amplitudes of the oblique mode Aow = 0.005,
0.01, 0.015, 0.02. Isolevels as in Fig. 11.

i.e. a factor of 2.5 less wide; the spanwise resolution has thus been reduced by a factor of 2
compared to the other runs.

The oblique waves are forced in a similar way as the TS waves through a volume force
located at Rex = 60000, where the following temporal and spanwise dependency was chosen,

fow(z, t) = Aow cos(βowz) sin(ω0t) . (2)

Note that fow(z, t) is further modified to include a Gaussian streamwise and wall-normal lo-
calisation [33]. The resulting oblique mode thus has the Fourier components (ω0,±βow). The
non-dimensional frequency F = 120, corresponding to ω0 = 10−6F ·Reδ∗

0
= 0.036 has been kept

for both the TS-waves and for the oblique modes. The spanwise wavenumber of the latter has
been chosen to match βow/βst = 0.5, i.e. their width is twice the streak spacing. Using the
current setup with zL = 72δ∗

0
, a total of four spanwise periods of the oblique modes fit into the

computational box. The amplitude of the TS-waves is kept the same as in Section 3, while the
amplitude of the oblique modes Aow is gradually increased from 0.005 to 0.02 with a spacing of
0.005.

Re
x

E
ne

rg
y

1 2 3 4 5

x 10
5

10
−5

10
−4

10
−3

10
−2

Figure 18: Energy evolution of selected spectral components corresponding to the case with
smallest amplitude of the oblique mode in Fig. 17a). fundamental TS-waves (ω0, 0);

oblique mode (ω0, βow); steady modes with wavenumber doubled (0, 2βow); first
harmonic of the streaky TS-waves (2ω0, 2βow).

In a first step, the interaction of TS-waves and oblique modes is considered. Fig. 17 shows
four snapshots corresponding to increasing amplitude of the oblique modes. In Fig. 17a) the
dominant primary disturbance is given by the spanwise TS-waves, which is modulated by the
spanwise wavenumber of the oblique modes further donwstream. Due to the fundamental fre-
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quency ω0 of the oblique modes, the classical K-type scenario is recovered. Transition to tur-
bulence is observed towards the end of the computational box.

As the amplitude of the oblique modes is increased, these waves start to interact with
each other through a nonlinear mechanism resulting in the growth of a new steady mode with
double the spanwise wavenumber [32]. This streak mode is thus associated with the Fourier
components (0, 2βow), and referred to as secondary streaks. This also explains the above choice
of 2βow = βst, i.e. the spacing of the secondary streaks is matching the streak width used
for control purposes. In Figs. 17b) to d) the generation of these secondary streaks through
a sequence of Λ-vortices is obvious. The effect of these streaks onto the primary TS-waves
is now as described in the previous section: The growth of the TS-waves is quenched and
transition to turbulence cannot be observed any longer. The final flow is remarkably similar to
the visualisation shown in Fig. 14b): The TS-waves have been completely stabilised, and the
only remaining boundary-layer disturbance is given by the streamwise streaks.

a)

b)

c)

d)

Figure 19: Top view of the three-dimensional flow strucutres for cases with TS-waves, oblique
mode (ω0,±0.5βst), and control with streak C. Same amplitudes and isolevels as in Fig. 17.

Fig. 18 shows the streamwise evolution of different Fourier components, allowing us to get
additional insight into the departure from the classical K-type transition and on the mechanism
which the streak doubling relies on. In the first part of the domain, the forced modes (TS-waves
and oblique waves) can be clearly seen as the only dominant modes. The oblique mode itself is
strongly damped and its amplitude decreases exponentially. However, as long as its amplitude
is relativly large, nonlinear interactions are possible, resulting in the growth of the steady mode
(0, 2βow). The TS-waves, whose branch I and II can be clearly recognised, are therefore affected
by the streaks, even though their amplitude is such that a stabilisation cannot be achieved.
However, as Cossu and Brandt [11] pointed out, these waves are not bi-dimensional, but they
have a spanwise periodicity which agrees with the width of the streaks. In short, new oblique
waves, with frequency of the TS-waves and spanwise wavenumber of the streaks, amplify along
the domain, as can be observed in Fig. 18. Exactly the same nonlinear interaction leads to
new steady modes with wavenumber doubled, i.e. the streak doubling observed in the previous
section.

In a next series of simulations, in addition to TS-waves and oblique modes, also the streaks
are introduced into the domain. These streaks are introduced in the fringe region with a
spanwise wavenumber βst, exactly in the same way as in Sec. 3. For the case in Fig. 19a), the
streaks are clearly damping the TS-waves, and transition is removed completely. For a slightly
higher amplitude of the oblique modes, Fig. 19b), the (intentional) phase shift of the secondary
streaks and the control streaks annihilates both streak modes, leaving an essentially undisturbed
boundary layer further downstream. However, higher amplitudes of the oblique waves shows a
destabilising role of the control streaks: Amplitudes higher than Aow = 1% proved to be able
to trigger transition in the controlled case. Also, increasing the mode strength is effective on
moving progressively the transition point upstream. It should be noted that oblique modes of
sufficient amplitude are of course able to trigger transition even in the case without external
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Table 2: Parameters of the two- and three-dimensional noise forcing applied at Rex = 60000.

Noise type urms vrms wrms

2D coarse 0.183 0.0332 0.00685
2D fine 0.026 0.00625 0.00455
3D coarse 0.096 0.0074 0.0182
3D fine 0.0655 0.0065 0.0145

streaks, however the chosen amplitudes Aow were below that threshold. What the results here
show is that strong streaks in a boundary layer are susceptible to instability due to three-
dimensional modes, and thus may lower the transition threshold in flow cases that include a
significant fraction of 3D disturbances.

5 Two- and three-dimensional noise

In this section, the influence onto boundary layer transition of stochastic noise together with
streamwise streaks is examined. As opposed to the previous sections 3 and 4, the boundary-
layer disturbances are not in the form of a harmonic forcing, but rather stochastic as described
in Section 2.3. The noise is introduced inside the computational domain at Rex = 60000.

To allow for a general comparison of the influence of noise onto transition, two categories
are considered: The dimensionality of the noise (two- and three-dimensional) on the one hand,
and the (temporal and spatial) scales of the noise on the other hand. The large-scale noise is
centred around modes of spanwise length scale LN = 9 (only for the 3D cases) and time scale
tN = 200 (corresponding to a non-dimensional frequency F = 100), whereas the small-scale noise
is characterised by LN = 3 and tN = 20. For the 2D cases, a small amplitude three-dimensional
disturbance is added with parameters Lnoise = 9 and tnoise = 200 similarly to the TS-wave cases
discussed above. The frequency spectrum of the noise is shown in Fig. 5 in Section 2.3.

The amplitude of the noise is determined for each of the four cases in such a way that
transition to turbulence, i.e. the appearance of a turbulent patch, could be observed inside
the computational box (Rex < 590000) for the uncontrolled setup (no streaks). The same
noise parameters were then used to investigate the interaction of the noise in the presence
of streamwise streaks. The final parameters for each of the cases with noise are listed in
Table 2. Depending on the nature of the noise (two- or three-dimensional, scales), different
amplitudes had to be chosen: 2D, fine-scale noise proved to be more efficient for reaching
transition, requiring urms,noise ≈ 2.6%. On the other hand, 2D large-scale noise was found to be
the least effective in provoking transition only with the significantly larger amplitude of 18.3%.
The amplitudes required for the three-dimensional forcing lie in between, giving rise to urms

amplitudes of around 5 to 10%.

5.1 Two-dimensional noise

First, we consider noise that is purely two-dimensional, i.e. without spanwise variation. Note
that a small-amplitude spanwise-dependent part is added to enable three-dimensional instabil-
ities to grow. As can be seen from Table 2, the amplitude for coarse noise necessary to trigger
transition is about 7× larger than that for small-scale noise. Directly connected to this different
amplitudes is the predominant transition scenario observed in the flow. Sample visualisations
are shown in Figs. 20a) and c). It becomes clear that 2D small-scale noise in fact leads to the
appearance of strong, spanwise uniform waves, similar to TS-waves, compare Figs. 20c) and
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11a). These waves oscillate with an approximate frequency of F = 200, corresponding to the
highest growth rate contained in the noise spectrum. The initial amplitude of the TS-waves
is sufficient to lead to non-linear breakdown within the computational box. Transition occurs
through the classical sequence of Λ-vortices, shear-layer rollup and hairpin vortices. Turbulent
spots are seen to originate through the whole domain, i.e. they are not directly generated at
the disturbance strip. On the other hand, large-scale 2D noise, Fig. 20a) does not excite any
growing instability in the boundary layer for the considered Reynolds numbers. This is due to
the fact that two-dimensional waves of low frequency F < 80 are still strongly damped and do
not trigger non-modal lift-up mechanism either. Moreover, the disturbance slit is comparably
narrow (order 10δ∗

0
) which does not match the wavenumber α for a TS wave. Therefore, very

intermittent turbulent spots have to be triggered close to the forcing position, which explains
the large amplitudes necessary. A spot initiation further downstream (e.g. above Rex ≈ 300000)
was observed only very seldomly. These turbulent spots then travel downstream while extending
in space as seen in the snapshot provided in Fig. 20a).

a)

b)

c)

d)

Figure 20: Top view of the three-dimensional flow structures for cases with 2D noise, a), b) large-
scale, c), d) small-scale. Same isocontour levels and colours as in Fig. 11. a), c) uncontrolled
(no streaks). b), d) controlled with streak C (maximum amplitude Ast = 19%).

The efficiency of the imposed streamwise streaks to damp the amplification of disturbances
in the boundary layer is naturally strongly dependent on the nature of the growth mechanism
and the respective transition scenario. In the previous sections 3 and 4 the damping abilities of
streaks have been demonstrated for cases with dominant two-dimensional waves. Consequently,
for the case which leads to TS-wave dominated transition (2D small-scale noise), transition delay
can indeed be observed when streamwise streaks are added, see the visualisation in Fig. 20d).
However, as opposed to cases with clean TS-waves in Section 3 no complete stabilisation of the
boundary layer can be achieved; intermittent turbulent spots are appearing further downstream
leading to transition. It is important to note that the turbulent spot is no longer triggered by
secondary instability of the two-dimensional TS-wave as for the uncontrolled case, but appears
as an instability of the strong streaks. This streak instability appears to be similar to the one
being discussed further down in conjunction with three-dimensional waves, see e.g. Fig. 24.

Quantitative data for integral parameters of the boundary layer during transition is shown
in Figures 21 and 22 for two-dimensional noise forcing. It can be seen that the large-scale forcing
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Figure 21: Transition induced by 2D noise. a) and b): Large-scale noise, c) and d): small-scale
noise. Skin friction coefficient cf and shape factor H12 averaged in time and spanwise direction.

Streak C, uncontrolled (no streak).

gives rise to very strong peaks at the forcing position Rex = 60000 visible in for instance in the
skin friction cf , Fig. 21a) and the maximum streamwise velocity fluctuation, urms,max, Fig. 22a).
For all uncontrolled cases, the shape factor at the inlet is close to the laminar value H12 ≈ 2.59,
and then slowly decreases as the flow transitions, reaching to values of H12 ≈ 1.4 typical for
turbulent flow at these Reynolds numbers. In a similar way, the skin-friction coefficient cf

remains initially at the laminar level, until the transition process is taking over. The level of
streamwise velocity fluctuations urms,max, Figs. 22a) and b) experiences clear growth with Rex,
until a peak at about urms,max ≈ 0.16 is reached, and the flow settles in a turbulent state.

The introduction of streaks in the presence of large-scale forcing leads to amplified growth
of the fluctuations in the boundary layer and thus to transition promotion, see Fig. 21a). As
mentinoned above, the instantaneous views reveal that the large-scale forcing leads directly to
the isolated appearance of turbulent spots (Fig. 20b). When streaks are present they interact
with the large-amplitude noise forcing, generating turbulent patches more frequently and just
downstream of the disturbance strip. It was however never observed that the breakdown would
occur above Rex ≈ 300000. This means that if a TS-wave was forced which amplifies further
downstream, it is efficiently damped by the streaks. One can conclude that the transition
promotion observed in this case is mainly caused by the large amplitude of the noise. However,
for the present setup of the numerical experiment, lower amplitude of the large-scale 2D noise
would not lead to transition in the uncontrolled case, and consequently no transition delay could
be determined from our data. The presence of the streaks also leads to slightly elevated friction
levels close to the inlet, and a reduced shape factor H12 ≈ 2.4 consistent with the mean-flow
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Figure 22: Maximum streamwise fluctuations urms,max as a function of the downstream distance
Rex. only noise (“uncontrolled”), undisturbed streaks (no noise), streak C
(Ast = 19%), streak D (Ast = 10%). Top row: 2D noise, bottom row: 3D noise. Left:
large-scale noise, right: small-scale noise.

modification associated with the streaky base flow.
The statistical results pertaining to transition induced by two-dimensional small-scale noise

forcing are shown in Figs. 21c) and d) as well as 22b). The introduction of streak C leads
to a reduction of skin friction for Rex > 150000. The shape factor, although initially lower
due to the presence of the streaks, remains at laminar values for a longer time. Similarly, the
fluctuation level within the boundary layer is also found to be diminished. The presence of
the streak is thus able to delay transition. As discussed above, the visualisation in Figure 20d)
clearly shows that the presence of the streaks is in fact damping the waves which were created
by the disturbance strip. The intermittent appearance of turbulent spots is occuring over the
whole domain, mainly due to an instability of the streak.

5.2 Three-dimensional noise

Completely three-dimensional noise is considered next. In this case, no dominant spanwise
waves are forced. As before, two spectral ranges in both spanwise and temporal scale of the
noise are considered, i.e. low frequency and high frequency. The rms amplitudes used are in
the range 5-10% (see Table 2), i.e. somewhat larger than the small-scale 2D noise. Snapshots
of the velocity fields for both controlled and uncontrolled cases are shown in Fig. 23.

For the cases with 3D noise, the dominant instability mechanism is non-modal growth based
on the lift-up mechanism, generating streamwise streaks. Again, a dependence of the arising
flow structures on the scales of the disturbances is observed: Fine scales tend to decay quickly,
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a)

b)

c)

d)

Figure 23: Top view of the three-dimensional flow structures for cases with 3D noise, a), b) large-
scale, c), d) small-scale. Same isocontour levels and colours as in Fig. 11. a), c) uncontrolled
(no streaks). b), d) controlled with streak C (maximum amplitude Ast = 19%).

whereas larger scales lead to a flow with significant streamwise streaks, which later become
unstable developing a growing wave packet [48] and finally break down into triangle-shaped
turbulent spots. This behaviour is clearly demonstrated in Fig. 23a). Note that the arrow-head
shaped turbulent spot is wrapped around the spanwise periodic boundaries. A blow-up of the
two instabilities located in the middle of the domain is given in Fig. 24. These flow structures
appearing in these cases are clearly similar to observations in bypass transition induced by
ambient free-stream turbulence [29] and to an impulse response on a steady streak [48]. As a
comparison, Figs. 24c) and d) are taken from Schlatter et al., Figs. 8c) and 12d).

For the fine-scale noise, the observed flow behaviour is in principle similar, however due
to the faster decay of the boundary-layer disturbances strong streaks are formed less regularly
and tend to reach sufficient amplitude further downstream. For the present case, the turbulent
spots seem to arise at positions where the noise disturbance has been able to generate a packet
of localised streaks, and the spots stem from an instability of the streak itself [47].

Quantitative data of cf , H12 and urms,max are shown in Figs. 22c) and d), and Fig. 25. As
for the 2D cases, the uncontrolled simulations feature an essentially laminar behaviour, with a
gradual change towards turbulent values due to the intermittent generation of turbulent spots.
Note that for the large-scale noise both cf and the shape factor show a small departure from
the laminar values due to the appearance of streaks with growing amplitude.

Introducing large-amplitude streaks at the inlet, i.e. a spanwise periodic base flow, does not
lead to any transition delay, independent of the scales of the noise. To the contrary, turbulent
spots can be observed more frequently and they appear further upstream, see Fig. 23b) and
d). As for the uncontrolled case, the transition scenario is a secondary instability of the streak,
characterised by a growing wave packet riding on the streak [48]. Owing to the larger amplitude
of the streaks in the case with superimposed steady streaks at the inlet, the streak breakdown
occurs further upstream. In the bottom row of Fig. 22 these cases with 3D noise are shown; the
breakdown location is clearly moving upstream as soon as streaks are introduced. Similarly, the
integral parameters shown in Fig. 25 exhibit the same behaviour. It is interesting to note that
an increase of the streak amplitude directly leads to an upstream movement of the transition
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a) b)

c) d)

Figure 24: a) and b) Blow-up of two regions in the middle of Fig. 23 identifying the flow
structures just prior to breakdown into a turbulent spot. c) Flow structures for a nonlinear
impulse response on a steady streak, and d) incipient turbulent spot in bypass transition [29].
The latter two pictures are taken from Figs. 8c) and 12d) in Ref. [48].

location, which clearly supports the finding that a streak instability is the dominant cause of
breakdown.

The visualisations provided in Figs. 23b) and c) do not show major qualitative differences
compared to the uncontrolled cases: the spot precursors are similar to the blow-ups presented
earlier, resembling a sinuous streak instability. Notice however that in the presence of strong
streaks – irrespective of whether they are actively introduced in the flow or naturally arise due
to e.g. free-stream turbulence, turbulent spots do not feature a clear triangular shape as they
would in a calm boundary layer [49].

It can be concluded that the passive control mechanism based on a spanwise modulated base
flow (streamwise streaks) and the subsequent damping of the growth of TS-waves is efficient for
transition scenarios based on the modal growth of essentially two-dimensional disturbances, as
demonstrated in Section 3. On the other hand, if transition is induced by non-modal growth
mechanisms related to bypass transition, the addition of a strong base-flow modulation leads
to premature transition, as the general disturbance level in the boundary layer is enhanced.

6 Free-stream turbulence

In boundary layers with ambient free-stream turbulence (FST) intensities Tu of about 1% or
less, laminar-turbulent transition is dominated by the classical scenario, i.e. exponential growth
of Tollmien-Schlichting (TS) waves [32]. As the TS-waves reach amplitudes of around 1% of the
free-stream velocity U∞, they experience resonant three-dimensional amplification and break
down into a turbulent spot by formation of Λ and hairpin vortices. However, in the presence
of higher levels of FST, transition occurs more rapidly, bypassing the classical scenario. The
new scenario, denoted bypass transition, is characterised by the formation of streamwise streaks
of alternating high and low streamwise velocity, whose amplitude grows downstream and can
reach values on the order of 0.1U∞ prior to breakdown [23, 29].

In this section, two different aspects of a boundary layer under free-stream turbulence are
considered. In a first part, Sec. 6.1, it is investigated whether the streamwise streaks induced by
free-stream turbulence are causing a change in the growth rates of TS-wave inside a boundary
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Figure 25: Transition induced by 3D noise. a) and b): Large-scale noise, c) and d): small-scale
noise. Skin friction coefficient cf and shape factor H12 averaged in time and spanwise direction.

Streak C, streak D, uncontrolled (no streak).

layer. The second aspect, discussed in Sec. 6.2, is whether an external forcing of boundary-
layer streaks might be used to delay transition induced by free-stream disturbances (i.e. bypass
transition).

6.1 Interaction of TS-waves and free-stream turbulence

In the following, the effect of FST on the behaviour of TS-waves is studied, including modified
growth rates, change in transition location, and transitional flow structures in comparison with
both pure bypass and classical (e.g. K-type) transition. As usual, the TS-waves are introduced
as harmonic volume forcing at Rex ≈ 60000 as described in Sec. 2.2; the free-stream turbulence
is forced in the fringe region according to Section 2.4. The two control parameters at hand
are the amplitude of the TS-waves ATS and the free-stream turbulence intensity Tu. For the
TS-waves, two different amplitudes are considered: ATS = urms,max = 0.76% and ATS = 1.52%
(measured at branch I, Rex = 150000, F = 120). Small-amplitude steady, spanwise random
noise is also added to trigger K-type transition after branch II (Rex = 387000) in the case
Tu = 0, as discussed for the baseline case, Fig. 11 in Sec. 3. The turbulence intensity Tu has
been varied from 0 to 4.7%U∞, measured at the inlet, Rex = 30000.

In Fig. 26, instantaneous flow visualisations for a fixed TS-wave amplitude ATS = 0.76%
and different values of Tu are presented. For the case with Tu = 0%, Fig. 26d) the baseline
simulation is recovered, Fig. 11a). On the other hand, the case with Tu = 4.7%, Fig. 26a), is
clearly dominated by the free-stream turbulence: The flow field shows the appearance of streaks
and the localised breakdown to turbulence on isolated streaks [29, 24]. The intermediate cases
are however most interesting: For Tu = 2%, Fig. 26c), the TS-waves can still be seen as a
distorted signature after branch I. The overall transition location does not appear to change
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from these instantaneous snapshots. The breakdown scenario for that case appears to be a
mixture between the roll-up of Λ vortices (due to TS-waves) and intermittent turbulent spots
due to the presence of the streaks linked to the external turbulent flow. This condition can
somehow be seen as the one where the switch from one scenario to another happens. It is
interesting to note how these simulations show a similar behaviour as those where the effect
of oblique waves was investigated in the uncontrolled case. This is not unexpected since both
perturbations, oblique waves and free-stream turbulence, mainly result on the development of
steaks. However while the former are steady, the latter change with time and appear randomly
throughout the box.

Increasing the turbulence level slightly to Tu = 3%, see Fig. 26b), the signatures of the
TS-waves cannot be distinguished any longer. In addition, the amplitude of the streaks inside
the boundary layer, generated by the interaction with the external turbulence, has clearly
increased. What is most important, however, is that the transition location appears to have
moved downstream towards the end of the computational box. This means that the TS-waves
have been effectively stabilised by the action of the free-stream turbulence when Tu is low.
The mechanisms for boundary layer transition, wavepackets of high-frequency perturbations on
individual streaks, are still those observed for breakdown induced by three-dimensional noise.

a)

b)

c)

d)

Figure 26: Top view of the three-dimensional flow structures for ATS = 0.76%. a) to d) FST
turbulence intensity Tu = 4.7%, 3.0%, 2.0%, 0%. Green isocontours represent the λ2 = −0.0008
vortex-identification criterion, red and blue isocontours are positive and negative streamwise
disturbance velocity u′ = ±0.07, respectively (in a) slightly higher contour levels than other
cases). Flow from left to right.

Quantitative data for these flow cases are shown in Fig. 27. The initial reduction of the
shape factor H12 in the laminar region with increasing Tu clearly shows the stabilising effect
of the streaks [11]. For instance, for Tu = 2% the shape factor is reduced to approximately
2.5 at Rex = 3 · 105. The later dramatic reduction towards turbulent values H12 ≈ 1.5 is
due to transition. The initial reduction in shape factor, however, is caused by the non-modal
growth of streaks in the boundary layer, as evidenced in Fig. 27b) by the increase of urms,max.
In agreement with studies on bypass transition [29], breakdown to turbulence occurs when the
mean fluctuation level inside the boundary layer reaches values on the order of 10-15%. On the
other hand, comparing solid lines (ATS = 0.76%) with dashed ones (ATS = 0%) in Fig. 27, it
can be inferred that the initial streak growth is mainly unaffected by the presence of TS-waves.
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It is only for higher Rex that a difference between solid and dashed lines can be observed.
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Figure 27: a) and b): Evolution of the shape factor H12 and the wall-normal maximum of the
streamwise fluctuation urms, respectively, for cases with FST and TS-waves, ATS = 0.76%. Ar-
rows indicate decreasing turbulence intensity, Tu = 4.7%, 3.5%, 3%, 2.5%, 2%, 1%, only
TS-wave forcing (Tu = 0%), only FST (ATS = 0%).
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Figure 28: Variation of the downstream position of the transition point γ = 0.5 as a function of
the turbulence intensity Tu, no TS-waves (ATS = 0%, pure bypass transition), ATS =
0.76%, ATS = 1.52%. The region to the right of each line corresponds to turbulent flow;
the region to the left indicates laminar flow.

In Fig. 28 the variation of the transition location (defined as the point where the inter-
mittency reaches γ = 0.5) is shown for different turbulence intensities Tu and TS amplitudes
ATS. The solid line shows the case where no TS-waves are introduced and it thus represents
pure bypass transition. No transition is observed within the simulation domain for Tu lower
than 3%. However, when TS-waves are introduced into the flow with the given amplitudes, the
exponential amplification of the TS-waves allows secondary instabilities close to branch II to
take place, leading to transition.

There are a few important conclusions that can be drawn from this figure: First, it is clear
that for fixed Tu the presence of TS-waves always leads to transition promotion. This effect is
weak for higher Tu and the different curves tend to fall on top of each other. This region is,
in fact, dominated by the bypass-transition scenario rather than classical transition, and the
TS-waves, still destabilising, play just a secondary role in the breakdown. For Tu lower than
3%, on the other hand, transition is increasingly dominated by the modal growth of TS-waves
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and the corresponding breakdown. Here, the stabilising effect of the streaks onto the TS-waves
become clear: The streaks formed by lower levels of FST actually damp the growth of the TS
and lead to transition delay compared to the case without FST. This is particularly clear for
ATS = 0.76% and Tu = 3%. Under these conditions, visualised in Fig. 26b) the free-stream
turbulence is able to produce streaks strong enough to damp the TS-waves, but sufficiently
weak to not trigger premature bypass transition: A transition delay of about 20% is achieved.
This result agrees with the findings of Ref. [23] who performed experiments with both FST and
TS-waves and found that the TS growth rate within a streaky flow is reduced, as long as the
TS-waves and FST are at modest amplitudes. On the other hand, it is also clear from Fig. 28
that TS-waves never have a stabilising effect on FST induced bypass transition.

6.2 Control of bypass transition

In this section, it is examined whether introducing streamwise streaks into a boundary layer
might be useful as a passive control method to delay transition due to free-stream turbulence.
As in the previous section, the free-stream turbulence and the streaks are added in the fringe
region (see Sections 2.4 and 2.5). Two levels of ambient turbulence intensity are considered:
Tu = 3% and 4.7%. As can be seen in Fig. 27, the former FST level leads to transition towards
the end of the simulation domains, whereas the latter level is high enough to trigger breakdown
at Rex ≈ 2 · 105 in the middle of the domain.

Figures 29 and 30 display some instantaneous flow fields for the two levels of Tu. The
uncontrolled (i.e. pure bypass transition cases) are shown as subfigures a): Streaks grow in a
non-modal way throughout the boundary layer, until turbulent spots intermittently appear as
isolated instabilities on individual streaks, as expected for bypass transition. The remaining
cases correspond to runs in which streaks of moderate amplitude are included at the inlet of
the domain. The different streak amplitudes correspond to streaks B, C and D in Table 1.
If not subject to free-stream turbulence, all of these streaks would be stable. A clear trend
can already now be observed: the higher the amplitude of the added streaks, the earlier the
transition location.

The same conclusion can also be drawn from the evolution of the skin-friction coefficient cf

and the shape factor H12, displayed in Fig. 31. The transition promotion is more relevant for
lower levels of Tu, for which the natural streaks have a lower growth rate. At Tu = 3% the
transition point moves to Rex = 3.5 · 105 compared to the uncontrolled case where turbulent
spots develop only seldomly within the box (the friction coefficient cf remains close to its
laminar value). As the turbulence intensity Tu increases, the differences between the cases is
less evident, but the same conclusion basically holds as it can be seen from the skin friction
evolution in Fig. 31b).

The evolution of the maximum streamwise fluctuation, urms,max, shown in Figs. 31e) and f),
allows an interesting interpretation of the mechanism on which the breakdown relies. This par-
ticular quantity is usually used in order to measure and represent the strength of the streamwise
streaks in the boundary layer. In Fig. 31e), also the data for the cases without free-stream tur-
bulence are displayed for reference (referred to as “undisturbed streaks”). The initial behaviour
of urms,max for cases with the same streak amplitude Ast and with/without free-stream turbu-
lence is very similar. As the downstream position Rex is increased the external disturbances
start to penetrate the boundary layer. Compared to the uncontrolled case, the growth of the
streamwise perturbation inside the boundary layer is always larger in case of control, leading
to the conclusion that external FST is mainly adding to the existing streaks in the boundary
layer, causing a strenghening of the existing streaks. An opposite cancelling effect could not be
observed in the averaged sense. Finally, it can be observed that the breakdown to turbulence

29



a)

b)

c)

d)

Figure 29: Top view of the three-dimensional flow structures under the influence of free-stream
turbulence with Tu = 3.0 as well as streaks forced in the fringe region. a) to d): no streaks
(“uncontrolled”), streak D, streak C, streak B.

a)

b)

Figure 30: Top view of the three-dimensional flow structures under the influence of free-stream
turbulence with Tu = 4.7 as well as streaks are forced in the fringe. a) no streaks (“uncon-
trolled”), b) streak B.

occurs roughly at the position with the same level of urms,max ≈ 0.15U∞.
On the other hand, a closer inspection of the instantaneous flow visualisations in Figs. 29

and 30 shows that the streaks are more straight and much longer if already introduced in
the fringe region with sufficient amplitude. A blow-up of the vortical structures just prior to
breakdown taken from Fig. 29c) is provided in Fig. 32: The growing instabilities which lead to
transition in this case closely resemble the ones observed for high-amplitude streaks also found
in theoretical and numerical studies [44]. The sinuous-type instability is clearly dominant, and
clearly develops as a wavepacket on the streaks [48]. The varicose scenario, possibly related to
the streamwise interaction of low- and high-speed streaks as proposed by de Lange and Brandt
[30] would not be active in the present cases as the streak length is greatly increased.

One can thus conclude that transition to turbulence is promoted when adding streamwise
streaks (e.g. experimentally by vortex generators or roughness elements, numerically by includ-
ing them as boundary conditions) and therefore it is not a successful passive control method.
As soon as the level of ambient free-stream turbulence is sufficiently high (say Tu > 3%), pre-
mature transition is triggered. This finding is in good agreement with the results of the earlier
sections in this paper, namely those related to the oblique (three-dimensional) waves, Sec. 4 and
the stochastic noise, Sec. 5. In both of these cases, the dominant instability mechanism changed
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Figure 31: Transition induced by free-stream turbulence, Tu = 3.0% (left column) and Tu =
4.7% (right column). Top row: Skin friction coefficient cf , middle row: Shape factor H12 and
bottom row: urms,max averaged in time and spanwise direction. Streak B (just for Tu = 4.7),

Streak C, streak D, uncontrolled (no streak), urms,max for undisturbed
streak.
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Figure 32: Instantaneous flow structure taken as a blow-up of Fig. 29c).

from a secondary instability of a primary TS-wave to streak instability (bypass transition) and
the control approach investigated is counterproductive.
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7 Conclusions

Passive control of the laminar-turbulent transition process in flat-plate boundary-layer flows is
studied using well-resolved and well-validated large-eddy simulation (LES), based on a high-
order relaxation method. The specific control mechanism consists of modifying the laminar
boundary-layer profile by a spanwise periodic array of steady boundary-layer streaks. This
method has been shown in theoretical [11] and experimental studies [14] as an effective way to
stabilise two-dimensional Tollmien-Schlichting (TS) waves in a boundary layer. In our numerical
simulations, the use of LES allowed large computational domains both in the streamwise and
spanwise direction and an extensive parameter study. The streaks are forced at the inflow
as optimal solutions to the linear parabolic stability equations (PSE), whereas the additional
disturbances are excited via volume forcing active within the computational domain.

We examine the effect of the steady modulations on the amplification of different types of
disturbances such as TS-waves, stochastic noise and free-stream turbulence. We are indeed
able to confirm the stabilising effect of finite-amplitude steady streaks on the evolution of two-
dimensional TS-waves. If small-amplitude random background noise of steady and unsteady
nature is excited in the flow in addition to the primary TS disturbances, transition to turbu-
lence is triggered in a natural way. However, when steady streaks are introduced upstream,
transition is no more observed within our computational domain. The effect of varying the
streak amplitude is analysed, and a new phenomena is outlined at low streak amplitudes (or
for lower TS frequencies) where more complicated nonlinear interactions are possible. The in-
teraction between TS-waves and streaks of comparable amplitudes leads indeed to a significant
growth of oblique modes (ω0,±βst). This, in turn, induces a strong amplification of the steady
(0, 2βst) mode, i.e. a doubling of the initial streaks is observed. Our results also indicate that
streaks of larger spanwise scales, of the order of those of the secondary TS instability, promote
the transition process: transition delay is observed for streaks of spanwise size of the order
of the boundary layer thickness. Furthermore, we confirm that control by streaks can also be
effective to delay transition in case of stochastic two-dimensional noise. In this case, the tran-
sition process is still dominated by the linear amplification of TS waves and therefore spanwise
modulations of the boundary layer flow are an effective control approach.

The response of the boundary layer to fully three-dimensional excitations has not been
considered in previous experimental studies and it is therefore analyzed here to verify the
robustness of the control strategy using streaks. We demonstrate that, as soon as a significant
three-dimensionality is dominant, as in e.g. oblique or bypass transition, control by streaks
leads often to premature transition. It is finally confirmed that the streaks generated randomly
in a boundary layer subject to free-stream turbulence have a damping effect on TS-waves, in
agreement with experimental studies by Boiko et al. [23]. However, the addition of streamwise
streaks cannot delay bypass transition per se. To summarise, control by means of streaks appear
to be effective only in low-disturbance environments where boundary layer transition is initiated
by the amplification of, mainly two-dimensional, TS waves. In noisy environments and in the
presence of significant three-dimensional disturbances, when transition is caused by the streak
secondary instability, the addition of steady spanwise modes is promoting transition. In this
case, one may need to resort to opposition-control type of approach to cancel incoming high-
amplitude streaks. Such an approach would however require knowledge of the flow state and a
feedback loop between sensors and actuators.

Throughout the paper, various visualisations of the transitional and turbulent flow fields
are used to highlight the different vortical structures and the interactions that are relevant
to the different breakdown scenarios and to the control by streamwise streaks. When the
flow spanwise modulation prevents laminar-turbulent transition, the occurence of Λ-vortices
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is observed. Conversely, the flow structures observed just prior to breakdown consist in all
cases of a wavepacket traveling on the low-speed streaks; the appearance of staggered vortical
structures, typical of sinuous streaks instability, is clearly documented here.

Acknowledgments Computer time provided by SNIC (Swedish National Infrastructure for
Computing) is gratefully acknowledged.

References

[1] S. Bagheri, L. Brandt, and D. S. Henningson. Input-output analysis, model reduction and
control of the flat-plate boundary layer. J. Fluid Mech., 620:263–298, 2009.

[2] A. Monokrousos, L. Brandt, P. Schlatter, and D. S. Henningson. DNS and LES of estima-
tion and control of transition in boundary layers subject to free-stream turbulence. Int. J.
Heat Fluid Flow, 29(3):841–855, 2008.

[3] Y. Du and G. E. Karniadakis. Suppressing wall turbulence by means of a transverse
travelling wave. Science, 288:1230–1234, 2000.

[4] C. Viotti, M. Quadrio, and P. Luchini. Streamwise oscillations of spanwise velocity at the
wall of a channel for drag reduction. Phys. Fluids, 21(115109), 2009.

[5] M. Quadrio, P. Ricco, and C. Viotti. Streamwise-traveling waves of spanwise wall velocity
in a turbulent channel flow. J. Fluid Mech., 627:161–178, 2009.

[6] T. Min, S. M. Kang, J. L. Speyer, and J. Kim. Sustained sub-laminar drag in a fully
developed channel flow. J. Fluid Mech., 558:309–318, 2006.

[7] J. Hoepffner and K. Fukagata. Pumping or drag reduction? J. Fluid Mech., 635:171–187,
2009.

[8] T. R. Bewley. A fundamental limit on the balance of power in a transpiration-controlled
channel flow. J. Fluid Mech., 632:443–446, 2009.
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