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Non-modal analysis determines the potential for energy amplification in stable flows.
The latter is quantified in the frequency domain by the singular values of the resolvent
operator. The present work extends previous analysis on the effect of base-flow modifi-
cations on flow stability by considering the sensitivity of the flow non-modal behavior.
Using a variational technique, we derive an analytical expression for the gradient of a
singular value with respect to base-flow modifications and show how it depends on the
singular vectors of the resolvent operator, also denoted as the optimal forcing and opti-
mal response of the flow. As an application, we examine zero-pressure-gradient boundary
layers where the different instability mechanisms of wall-bounded shear flows are all at
work. The effect of the component-type non-normality of the linearized Navier-Stokes
operator, which concentrates the optimal forcing and response on different components,
is first studied in the case of a parallel boundary layer. The effect of the convective-
type non-normality of the linearized Navier-Stokes operator, which separates the spatial
support of the structures of the optimal forcing and response, is studied in the case of
a spatially evolving boundary layer. The results clearly indicate that base-flow modi-
fications have a strong impact on the Tollmien-Schlichting (TS) instability mechanism
whereas the amplification of stream-wise streaks is a very robust process. This is ex-
plained by simply examining the expression for the gradient of the resolvent norm. It is
shown that the sensitive region of the Lift-up (LU) instability spreads out all over the
flat plate and even upstream of it, whereas it reduces to the region comprised between
branch I and branch IT for the T'S waves.

1. Introduction

Unstable open flows can be classified into two distinct classes according to the linear
evolution of perturbations in space and time (e.g. Huerre & Rossi 1998): noise amplifiers
and hydrodynamic oscillators. If the perturbations initially amplified eventually decay in
time or are convected away (usually downstream of the disturbance source, so that the
flow returns to its basic state), then the flow behaves as a noise amplifier. These flows
are sensitive to external perturbations and the characteristics of the latter determine
the type of waves amplifying in the flow. Spatially developing jets or attached boundary
layers are prototypes of noise amplifiers. Oscillator flows, on the contrary, display an
intrinsic dynamics: they beat at a well defined frequency, the features of the amplifying
perturbations are determined solely by the control parameters and do not depend on
external noise. The flow past a cylinder is probably the most classic example of oscillator.
Oscillators and amplifiers are related to different stability properties. In a local approach,
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an absolutely unstable flow is a necessary condition for an oscillator-type behavior while
an absolutely stable but convectively unstable flow relates to a noise amplifier. In a global
approach, unstable flows coincide with oscillators while globally stable flows behave as
noise amplifiers when governed by non-normal operators.

Analysis of normal mode solutions is sufficient to investigate the stability of a given
flow configuration at large times. The least stable among the flow eigenvalues provides
this information. However even stable flows can undergo significant perturbation energy
growth owing to the non-normality of the linearized Navier-Stokes equations. To assess
the energy growth of stable flows, a non-modal or input-output approach is therefore
required (Schmid & Henningson 2001). This type of analysis can be carried out in the
time or frequency domain. In the first case, it aims at initial conditions yielding the
largest possible energy growth over a finite time horizon (Butler & Farrell 1992; Reddy
& Henningson 1993) whereas in the second case it aims at the largest possible response
to time-periodic external forcing (see also Farrell & Ioannou 1996; Jovanovic & Bamieh
2005): both approaches reflect the non-normality of the governing operator and yield a
measure quantifying energy amplifications in the flow, the singular values of the governing
operator.

Besides the correct tools and concepts, when theoretically studying the stability of fluid
systems, a relevant definition of a base flow is the first important step. In the review by
Chomaz (2005), it is explained how small perturbations of non-normal operators may
displace the eigenvalues in a significant manner. These perturbations will have a larger
impact if they occur in the overlap region between the adjoint and direct eigenmodes.
Bottaro, Corbett & Luchini (2003) examined the worst case, i.e. the change in base-flow
with the most destabilising effect on the eigenvalues for the plane Couette flow. Such
base-flow variations were interpreted as differences between the laboratory flow and its
ideal, theoretical counterpart. Later studies considered transition to turbulence initiated
by base-flow defects (see e.g. Gavarini, Bottaro & Nieuwstadt 2004). The concept of
sensitivity to base-flow modifications of a given eigenvalue, introduced for parallel shear
flows in Bottaro et al. (2003), was extended to the global approach by Marquet, Sipp &
Jacquin (2008) and Pralits, Brandt & Giannetti (2010). In order to identify the ”engine”
of the instability Giannetti & Luchini (2007) determined the sensitivity of the eigenvalue
to a spatially localized feedback. Global instabilities are generated by a self-exciting
mechanism and regions with a larger sensitivity play the same role as the ”wavemaker”
of the asymptotic theory in slowly developing flows (Chomaz, Huerre & Redekopp 1991).

The objective of the present paper is to extend similar concepts to the case of noise
amplifiers. The starting point of the analysis is that the essential dynamics of the flow
cannot be captured by the eigenvalues of the governing operator, which characterize
well the behavior of hydrodynamic oscillators. Therefore we analyze the singular values
of the system (Sipp et al. 2010), thus centering our investigation on the non-modal
behavior of the flow. The central concept in this paper is the sensitivity of the singular
values with respect to base-flow modifications. This type of analysis also includes modal
stability, in some sense: if a mode becomes unstable, the singular value becomes infinite
at the neutral point. Particular attention will be paid to the different sources of non-
normality of the linearized Navier-Stokes operator. As introduced by Chomaz (2005)
and Marquet et al. (2009) in the context of unstable eigenvalues, this operator displays
two sources of non-normality: the component-type non-normality, which concentrates
the direct and adjoint eigenmodes on different components of the velocity field and the
convective-type non-normality which separates the spatial support of the eigenmodes,
typically upstream for the adjoint eigenmode and downstream for the direct eigenmode.
As shown by Monokrousos et al. (2010), similar features are observed also for the singular
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vectors of the equations governing the behavior of linear perturbations in boundary layer
flows. We will analyse how the sensitivity of the singular value with respect to base-flow
modifications depends on the type of non-normality.

As an application, we focus on the Blasius boundary layer, where the traditional insta-
bility mechanisms observed in wall-bounded shear flows are present. In these flows, the
non-modal behavior stems from the Lift-up (LU) and Orr mechanisms and from the con-
vective dynamics of the Tollmien-Schlichting (TS) waves. The LU mechanism (Landahl
1980) is associated to the component-wise transfer of energy from the cross-stream veloc-
ity components (stream-wise vorticity) to the stream-wise velocity, the component-wise
non-normality. It is most effective for low-frequency streamwise-elongated perturbations
and manifests itself with the appearance of high- and low-speed streaks alternating in
the span-wise direction. The Orr mechanism is also related to component-wise transfer
of energy and is most evident for two-dimensional waves that can gain some energy by
leaning against the mean shear (Farrell 1988).

The article proceeds as follows. First (§2), we introduce the resolvent, its singular
value decomposition and the sensitivity of a singular value with respect to base-flow
modifications. In §3, we analyse the case of a parallel boundary layer, where only the
component-type non-normality is at play. First conclusions will be drawn concerning
the sensitivity of the LU and TS instabilities. The spatially evolving boundary layer,
where both the convective-type non-normality and the component-type non-normality
are present, is examined in §4. The paper ends with a discussion of the main results and
some concluding remarks (§5).

2. Gradient of the resolvent operator
2.1. Optimal forcing and eigenvalue problem

We consider the evolution of small amplitude perturbations about a steady base-flow in
the presence of a divergence-free forcing term f’. Let x, y and z be the stream-wise,
crosstream and span-wise coordinates with U = (U, V,W) and u’ = (v/,v,w’) the
stream-wise, crosstream and span-wise components of the base-flow and perturbation
respectively. The linearized equations describing the evolution of perturbations read

o'+ (U-V)u' + (0 - V)U = —Vp' 4+ Re 'V +f’ (2.1)
Vv .-u' =0.

To investigate the linear stability of a stable flow, e.g. a spatial boundary layer that
acts as an amplifier of external noise, we assume the forcing term to be harmonic in time
with a real forcing frequency w = 27/T and a complex spatial structure f = (f, g, h)T,
f’ = fe'!. A similar decomposition is used for the flow perturbation, where (u, p) is the
spatial distribution of the perturbation sustained by the forcing f. In a compact form,
the relation between the forcing and the velocity perturbation can be formally written

u=RwU)f, R=PTSw,U)'P, S=iwM+L(U). (2.2)

Here M = PPT with P as the prolongation operator, R is the resolvent operator, and &
and L define the linearized Navier—Stokes operator. The prolongation operator P acts on
a velocity vector u = (u,v,w)” to give the velocity-pressure vector Pu = (u,v,w,0)7,
while the extraction operator P acts on a velocity-pressure vector q = (u,v,w,p)” to
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give the velocity vector PT'q = u. The stability operator £ is defined as follows

C—D+0,U 0,U 0.U Oa

o 0,V C—D+0,V 2.V d, 23)
0. W 0, W C-D+a.W 0. '
e 9, 0. 0

where C = U9, + V9, + W0, is the convection operator and D = Re~ (92 + (’“)5 +0?) is
the diffusion operator.

To measure the growth of the perturbation we choose the kinetic energy in the flow
domain Q, E(u) = [, u’u dQ = (u, u). The symbol # indicates the trans-conjugate
and (a, b) denotes the inner product of two fields a and b. The gain between the forcing
f and the perturbation u is given by

(w,u) (Rf,Rf) (RIRf,f)

¢= £f) (., f) (£, (24)

where the last equality is obtained by introducing the operator R, the adjoint operator
of the resolvent operator R with respect to the inner product introduced above. It is
given by Rt = PT(S")~1P, where ST is the adjoint linearized Navier-Stokes operator
defined by ST = iw M + L. Here:

—-C—-D+0,U 0,V O W —0y
rt— o,U —C—-D+0,V oW —0y (2.5)
0.U 0.V —C-D+0,W -0,
_8x _89 _82 0
Let us now consider the eigenvalue problem
'R,T R fi = 01-2 fi. (26)

Since the operator R R is symmetric, the eigenvalues are real and positive and the
eigenvectors f; are orthogonal with respect to the energy inner product. The set of eigen-
vectors {f; };>1 (right singular vector of R) forms thus an orthonormal basis of the forcing
space if normalized so that (f;,f;) = 1. The perturbation u;, left singular vector of R,
induced by the forcing f; is given by u; = R f;. The optimal forcing f; corresponds to the
largest eigenvalue o7 of Eq. (2.6) and it maximizes the gain G(f). The resolvent norm
corresponds to the square-root of the largest eigenvalue o of Eq. (2.6), equivalent to the
largest singular value of R. In the following, we will use this quantity to measure the
non-modal behavior. It depends on the frequency w, on the Reynolds number Re and
on the base-flow U: 02(w, Re, U). The optimal energy gains o2, optimal forcings f; and
optimal responses u; will form the basis of the optimization procedure introduced here.
Using Krylov-subspace methods, it is now possible to compute the largest eigenvalues of
system (2.6) (Monokrousos et al. 2010; Sipp et al. 2010), as well as of its counterpart in
the time domain (Barkley et al. 2008; Blackburn et al. 2008) for flows in more complex
geometries.

2.2. Sensitivity to generic base-flow modifications

In this section we are interested in determining the sensitivity of any eigenvalue o2 with
respect to any base-flow modification §U = (06U, §V, §W). For a small amplitude base-flow
variation, the eigenvalue variation §o? can be written as

§0* = (Vyo?,6U) (2.7)
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where (-, ) is the inner product defined above and Vyo? designates the sensitivity func-
tion to a modification of the base flow.

To obtain an analytical expression of this function we use a Lagrangian technique
where the objective of the optimization is the eigenvalue o2 and the constraints are given
by the eigenvalue problem (2.6) yielding the optimal nonmodal behavior. To do this, we
first rewrite the eigen-problem (2.6) as

S(U)q="7Pf, §'(U)a=Mq, o’f =P"a (2.8)

where U is the control variable and a is introduced to split the eigenvalue problem. This
is necessary since we need to differentiate the resolvent with respect to the base flow and
an explicit expression for the inverse of the system matrix, appearing in the resolvent
operator, is not available. We introduce the Lagrange multiplier or adjoint variables
{ff,qf,a’} and define a Lagrangian function K({c,f, q,a}, {f7,qf,al}, U)

K=0*-(q", S(U)q-Pf) - (al, SI(U)a—Mq) - (f', o’ f —P"a).

In the expression above, the second and third term on the right hand side respectively
define q as the response to the optimal forcing f and a as the solution of the adjoint
problem with forcing q. The last term ensures that f is an eigenfunction of R R with
gain o2,

The gradient of the gain o2 with respect to base-flow modifications is derived by
considering variations of the Lagrangian K. Imposing the stationarity of the Lagrangian
with respect to the adjoint variables yields the state equations, while the stationarity of
the Lagrangian with respect to the state variables yields the equations to be satisfied by
the adjoint variables. Since the operator R R is Hermitian, and thus self-adjoint, these
equations are exactly the ”direct” equations if the adjoint variables are chosen so that
{qf,al,fT} = {a,q,f} and if (fT, f) = 1. Therefore, the adjoint variables do not need to
be computed since they are directly known from the state variables. The derivative of
the Lagrangian with respect to the control variable gives the sensitivity function

Vy o? = 20°R{(Vf) u* — (Vu) f}. (2.9)
In expanded format, this gradient reads:

Vuo® =20°R (u* 0. f +v* 0y f + w 0. f — fO,u* — gOpv* — hOw™)  (2.10)
Vyo? = 20°R (u*0,g + v*0yg + w* 0.9 — fO,u* — gd,v* — hdyw™) (2.11)
Vwo? = 20°R (u*0.h + v*0,h + w*0.h — fo,u* — gd,v* — hd,w*). (2.12)

Here * indicates the complex conjugate of a scalar quantity. We recall that the optimal
forcing is normalized so that (f,f) =1 and the optimal response verifies (u,u) = 2.

We note that the analysis presented here can be equivalently performed in the time
domain. An outline of the derivation of the gradient of the norm of the evolution operator
with respect to base-flow modifications is reported in appendix A.

The sensitivity as given in (2.9) assumes arbitrary variations of the base flow. Such
information is of interest because it gives the base-flow modifications leading to the
largest variation of the energy gain. In other words it gives an upper bound on the
energy variation that can be achieved by any base-flow modification. Yet, such variations
should be interpreted with caution since they do not satisfy the Navier-Stokes equations.
To gain further physical insight, it may be useful to enforce additional constraints on the
type of variations allowed.
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2.3. Sensitivity to divergence-free base-flow modifications

We focus here on the derivation of a divergence-free sensitivity field, denoted by Vyo2,
such that for any divergence-free base-flow variation §U the following equality holds

60* = (Vuo?, 8U) = (Vuo?,sU). (2.13)

The divergence-free sensitivity vector field can be written as the derivative of the scalar v:
Vyo? =0y, Vyo? = —0,19. It is straightforward to show that the function ¢ satisfies
—AY = 0,(Vya?) —9,(Vyo?) (2.14)

with V¢-n = n,Vyo? —n, Vyo? imposed on all boundaries of the computational domain
except on the lower boundary (see figure 5) where a symmetry boundary condition ¢ = 0
is applied. Note that the definition of this sensitivity field is only of interest in a non-
parallel context, since the divergence-free constraint is automatically satisfied in the
parallel framework.

2.4. Sensitivity to steady forcing and blowing/suction

We focus here on the derivation of a sensitivity field for base-flow deviations satisfying
the Navier-Stokes equations. They are produced either by introducing a two-dimensional
forcing F in the base-flow momentum equations or by non-homogeneous boundary condi-
tion at the wall, U,,. Marquet et al. (2008) has investigated the same problem for globally
unstable flows. The sensitivity of the singular value is determined here in a similar way
by first solving the following adjoint base-flow equations

—(U-WV)U' — (UT. V)U' = —VP" + Re'V?U' + Vyo? (2.15)
V.U =o0.

where (U, PT) are the adjoint base-flow fields whose boundary conditions are detailed
in Marquet et al. (2008). The sensitivity to steady forcing is then determined by

Vro? = Ul (2.16)

while the sensitivity to wall blowing/suction is
1
Vu,0?=—-Pin+ R—(VUT) ‘n (2.17)
e
where n is a vector normal to the wall and pointing in the outward direction.

2.5. Sensitivity and non-normality of the linearized Navier-Stokes operator for
wall-bounded shear flows

All terms involved in the gradient (2.9) are equal to the product of a component of the
optimal forcing (f, g or h) with a component of the optimal response (u, v or w). Follow-
ing Chomaz (2005) and Marquet et al. (2009), it is observed that the non-normality of
the linearized Navier-Stokes operator (here the resolvent operator R) makes the optimal
forcing and optimal response orthogonal. Two types of non-normalities can be distin-
guished: the component-wise non-normality, which concentrates the optimal forcing and
response on different components, and the streamwise non-normality, which separates
the spatial supports of the structures, upstream for the optimal forcing and downstream
for the optimal response. As shown by Monokrousos et al. (2010), the LU instability is
characterized by an optimal forcing concentrated on the crosstream g and spanwise h
components while the optimal response is only on the streamwise component u. Inspec-
tion of the streamwise component of the sensitivity (2.10) immediately indicates that
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the LU perturbation is only weakly sensitive to streamwise base-flow modifications. This
result is in agreement with the observations in Cathalifaud & Luchini (2000); Zuccher
et al. (2004) and can be deduced a priori. Streaks are ubiquitous in shear flows. On the
other hand, the sensitivity should be much stronger for TS waves, since the streamwise
and crosstream components of both the optimal forcing and response structures have
large magnitudes (e.g. Monokrousos et al. 2010). In addition, owing to the convective-
type non-normality, the optimal forcing is located upstream while the optimal response
downstream. This means that the gradient is non-zero only in the region where the opti-
mal forcing and response overlap. Hence, the stronger the convective non-normality, the
weaker the gradient. This mechanism should act both on the LU instability and the TS
instability, rendering the picture quite complex in open flows. For this reason, we first
(§3) analyze the gradients in a parallel approach where we can focus on the effect of the
component-type non-normality on the gradients of the LU and TS instabilities. Later in
84, we consider a spatially developing boundary layer where both the component-wise
non-normality and the convective non-normality are present.

It is worth mentioning that the gradient provided in eq. (2.9) is formally identical to
the sensitivity of an eigenvalue of the linearized Navier—Stokes problem with respect to a
modification of the base flow given in Marquet et al. (2008), once the adjoint and direct
modes are replaced by the optimal forcing and response.

2.6. Numerical method

The equations defining the forced problem for a parallel base-flow are discretized using
Chebyshev collocation method in the y-direction (Weideman & Reddy 2000). For most of
the computations presented we used n, = 121, with n, the number of collocations points.
Tests were performed with n, = 201 to validate the accuracy of the results. Homogeneous
boundary conditions are applied to the forcing and velocity, f and 1, at the wall (y = 0)
and in the free stream (y = 30 boundary-layer displacement thickness 6*).

The results for a spatially-evolving boundary layer discussed in section 4 are obtained
by a finite element approach. The spatial derivatives are discretized with Taylor-Hood
finite elements (P2 elements for the velocity field and P1 elements for the pressure).
The mesh consists of 3.82 x 10° triangles and their size in the boundary layer re-
gion (—0.5 < = < 1.25,-1/600 < y < 0.02) is Az = 1/6000 except near the el-
lipitcal leading-edge where Az = 1/108000. This results in a maximal number of de-
grees of freedom equal to about 25 millions. The base flow is obtained with the New-
ton method while the computation of the largest singular values takes advantage of
Krylov methods (ARPACK package, see www.caam.rice.edu/software/ARPACK/). All
matrix inversions are performed by a direct LU multifrontal solver (MUMPS package,
see http://graal.ens-lyon.fr/MUMPS/).

3. Sensitivity of perturbations in a parallel boundary-layer flow

The zero-pressure gradient boundary layer flow is a spatially developing flow. However,
owing to the weak downstream growth of the shear layer, its stability has been tradition-
ally studied under the assumption of parallel flow. To study the evolution of perturbations
of a parallel base flow U = U(y) is a computationally easier task that enables to con-
duct a complete parameter study. Despite the approximation made, such analysis has
shown to provide useful indications for the fully non-parallel flow. Thus the sensitivity
results are first detailed for the parallel boundary layer with focus on the component-wise
non-normality. The spatially evolving flow is examined in the next section in the global
framework, where focus is on the analysis of the streamwise non-normality.
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FIGURE 1. (a) Maximum optimal response o2 versus the spanwise wavenumber § for forc-
ing frequency w = 0, Blasius flow at Res = 400. The bottom plot displays the stream-wise

wavenumber « pertaining to the largest response for each value of 8 and w = 0. (b) Maximum

optimal response o2 versus forcing frequency w for two-dimensional forcing 8 = 0. The bottom

plot displays the wavenumber « pertaining to the largest response.

We present results for a parallel Blasius boundary layer at Reynolds number lower
than Res« = 500. Above this critical value the Blasius velocity profile is locally convec-
tively unstable and the analysis detailed in the previous section cannot be performed.
The reader should then refer to the formalism developed by Bottaro et al. (2003). The
Reynolds number is defined here using the free-stream velocity U, the boundary layer
displacement thickness §* and the kinematic viscosity v, Res« = U”T‘s*.

The maximum over all streamwise wavenumbers « of the energy amplification,
02 (w, B; Res+) = max, 0%(w, o, B; Res- ), is reported in figure 1 for the Reynolds number
Res~ = 400. The analysis focuses on the LU and TS mechanisms separately and considers
an optimization over the streamwise scale of the disturbance to more easily compare with
the global analysis presented next. The results for time-independent modes (LU) are dis-
played in 1(a), whereas two-dimensional modes are illustrated in 1(b). Similar results can
be found in Corbett & Bottaro (2000); Schmid & Henningson (2001) for the analysis of
the optimal transient growth. The largest amplification for LU is obtained for spanwise
wavenumber of the forcing § = 0.12, while the TS waves are more receptive to forcing at
frequency w = 0.13 for the Reynolds number considered. The real values of « associated
to the maximum responses shown in the top part of figure 1 are displayed in the lower
panels of the same figure 1. Not surprisingly, the steady LU mechanism is associated to
streamwise-independent perturbations while the streamwise wavenumber of the optimal
TS-waves increases with the forcing frequency.

The profiles of the optimal forcing and response for the two growth mechanisms under
investigations are shown in figure 2. The largest amplification is due to the Lift-up mech-
anism and indeed the optimal forcing displayed in figure 2(a) has the form of streamwise
independent vortices and induces an optimal flow response organized as streamwise ve-
locity streaks, seen in figure 2(b). For the T'S-modes the optimal excitation is mainly of
streamwise momentum and located close to the critical layer, where the base-flow veloc-
ity is equal to the phase speed of the T'S wave. The flow response has the typical shape
of these modes (see figures 2¢ and d).

The sensitivity of the optimal harmonic excitation to variations of the base-flow
Vuvo?(y;w,a, 3), i.e. the gradient of the largest singular value of the resolvent opera-
tor with respect to base-flow modifications, is shown in figure 3. As a measure of the
sensitivity, function of the wall-normal coordinate y, we choose the cross-stream maxi-
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FIGURE 2. (a) Optimal forcing for w = 0, 8 = 0.1 and Res~ = 400 in the crosstream y — z
plane and (b) corresponding wall-normal profile of optimal response. (¢) Wall-normal profile of
the optimal forcing for w = 0.13 and 8 = 0 with optimal response in (d). The dashed-dotted
line in (c) indicates the location of the critical layer. Solid line: streamwise velocity w; Dashed
line: wall-normal velocity v; Dashed-dotted line: span-wise velocity w, when 3 # 0.

mum and normalize it with the corresponding energy gain, i.e. max, |0 =2Vyo?(y)|. This
quantity is displayed in figure 3(a) for streaks and TS-waves and the wavenumber «
maximizing the amplification o2 shown in figure 1. The results indicate that the sensi-
tivity is stronger for the case of time-dependent disturbances and exhibit a peak where
the flow response is also largest. The sensitivity is much weaker for time-independent
streaky forcing. The variation of the sensitivity with the Reynolds number is explored
in figure 3(b). Here the sensitivity Vio? is reported to document also the absolute val-
ues of the gradient. The sensitivity for streaky disturbances, depicted by filled symbols,
is only slightly increasing with Res, while the energy gain o2 scales as Re?;* (Schmid
& Henningson 2001). The sensitivity of the TS disturbances, initially weaker, becomes
clearly dominant, about three order of magnitudes larger, as approaching the critical
Reynolds number (branch I). The data suggest that at higher Reynolds numbers weak
modifications of the base-flow can have a significant impact on the excitation of TS-like
disturbances while streamwise streaks are more difficult to alter. In a parallel flow, small
defects can easily make the flow linearly unstable as shown by Bottaro et al. (2003) for
Couette flow.

The wall-normal profiles of the sensitivity to base-flow modifications Vo2 (y) for the
two dominant instabilities in Blasius flow are reported in figure 4. Results are shown for
w=0,8=0.1 and w = 0.13, 8 = 0. Further, the shape of the sensitivity profiles do not
show significant variation with the Reynolds number; the profiles displayed correspond
to modifications that would induce an increase of the flow response. To affect the LU
mechanism, base-flow modifications are required throughout the flow, see figure 4(a).
Reduction of the mean velocity at the boundary layer edge and increase in the free
stream both contribute to an increase of the boundary layer thickness, as in the case of
adverse pressure gradient which is known to promote streak amplification. In figure 4(b),
it is seen that a decrease of the base flow velocity at the height of the critical layer,
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FIGURE 3. (a). Normalized sensitivity 0 2Vyo? of the optimal forcing with respect to base-flow
modification for Blasius flow at Res« = 400. Top: wall-normal maximum of the sensitivity

versus w for TS-instabilities, 8 = 0. Bottom: wall-normal maximum of the sensitivity versus (3
for LU-instabilities, w = 0. (b). Reynolds-number behavior of the sensitivity for forcing with
w = 0.13, 8 = 0, open symbols, and w = 0,5 = 0.1, filled symbols.
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FIGURE 4. Wall-normal profile of the gradient of the optimal response to base-flow modification
Vyo? for parallel Blasius flow, Res« = 400 (a) w = 0 and 8 = 0.1; (b) w = 0.13, 8 = 0 and
a = 0.315. The thin dashed line depicts the Blasius profile, while the dashed-dotted in line in
(b) indicates the location of the critical layer.

followed by an increase on the sides, would induce a stronger time-periodic response in
the flow. Such a base-flow modification may be induced by a small object placed at the
distance from the wall where the local velocity is the phase speed of the least stable wave.
The results are in qualitative agreement with the findings in Pralits et al. (2000) who
considered sensitivity of TS waves to external disturbance source within the framework
of the parabolized stability equations. Note, finally, that the region of highest sensitivity
is located closer to the wall for time-dependent forcing than for steady excitations. This
strongly suggests that the amplification of streaks is much less sensitive to base flow
modifications that can be created from the wall.

The weak sensitivity of streaks to base-flow modifications demonstrated above can
also be inferred by considering the linearized stability equations for parallel base flow
and streamwise independent disturbances (o« = 0). In this limit the Orr-Sommerfeld
equation becomes independent of the base flow. The latter appears only on the right-
hand-side of Squire equation (in particular its wall-normal derivative). This implies that
a small variation of the base flow can only have a small effect on the eigenfunctions of
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FIGURE 5. Computational domain used for the spatially developing boundary layer.

the Squire problem. The non-modal behavior can be explained by the forcing of Squire
modes from eigenfuncions of the Orr-Sommerfeld equation and therefore the effect of any
variation of the base flow can be expected to be small. In addition, the most involved
modes are those least stable, those with lower variations in the wall-normal distribution,
which are less affected by localized modifications.

Streak non-modal amplification in boundary layers is triggered by disturbances in the
free stream in an unbounded domain. It is possible to show how streaks can be induced
by free-stream modes associated to the continuous spectrum of the stability equations
(Grosch & Salwen 1978; Brandt, Schlatter & Henningson 2004; Zaki & Durbin 2005).
These are modes oscillating periodically in the free stream and decaying to zero inside the
shear layer. The continuous spectrum is formed at infinity and therefore its eigenvalues
cannot be affected by base-flow modification that can be created in practice by actuation
at the wall. Although the eigenfunctions are dependent on the specific base-flow profile,
their decay rate is determined in the free stream and therefore one cannot diminish
the modes’ capability to act as forcing term for streamwise-velocity perturbation. Note
however that optimal disturbances in spatially-evolving boundary layers over finite-length
domains are located closer to the shear layer as discussed in section 4 and in Monokrousos
et al. (2010).

4. Sensitivity of perturbations in a spatially evolving boundary layer

In this section, we investigate the stability and sensitivity of a spatially evolving bound-
ary layer. As opposed to previous global stability analysis dedicated to the development
of perturbations in boundary layers, we consider a flow configuration where the lead-
ing edge of the flat plate is included in the computational domain. Analysis of single
frequency-wavenumber vortical modes impinging on an elliptic leading edge have been
recently considered by Schrader et al. (2010). The computational domain is shown in
figure 5: The flat plate is located at y = 0 and extends from x = 0 to z = 1.25 with
an elliptical leading edge of aspect ratio 3 as depicted in the inset of the figure. The
inlet boundary is located upstream of the leading edge at x = —0.5 whereas the outflow
boundary is at the end of the flat plate where x = 1.25. An upper boundary is placed at
y = 0.25 and a lower boundary connects the inlet to the leading edge. All lengths have
been made non-dimensional with a reference length [ shorter than the flat-plate length.
This choice will be explained later.



12 L. Brandt, D. Sipp, J. O. Pralits, O. Marquet

0.05F

-0.05f

1 L L L L L L 1 L L L 1 L L L 1
017537 0 04 0.8 12

X

FIGURE 6. Characteristics of the base-flow computed at Re = 6 x 10°. (a) Pressure coefficient
and (b) displacement thickness as a function of the streamwise coordinate z. For comparison,
the dashed line indicates the Blasius boundary layer solution.

To compute the base flow a uniform velocity profile, u = u. = 1,v = 0, is imposed
at the inlet, the free-stream velocity u~, being used as the reference velocity. Symmetric
boundary conditions are applied on the upper and lower boundaries, no-slip boundary
conditions are applied on the wall and an outflow boundary condition, commonly used in
finite-element computation, is enforced on the outlet boundary: (p —1/Red,u = 0, 9,0 =
0). The Reynolds number based on the reference length and velocity is fixed to Re =
6 x 10°. Figure 6 displays the characteristics of the base flow. The pressure coefficient
shown in figure 6(a) exhibits strong variations around the leading edge. On the flat plate
(x > 0) the presence of the leading-edge induces a favorable pressure gradient until
x =~ 0.1. Further downstream we observe a slight adverse pressure gradient indicating
that the boundary layer is not strictly a zero-pressure-gradient boundary layer. The local
displacement thickness 0* is depicted in Figure 6(b) and is compared to the analytic
expression 1.72Re~/2\/z obtained for the asymptotic Blasius similarity solution. At
the beginning of the flat plate the displacement thickness is equal to 1.710~% which
corresponds to a Reynolds number based on the displacement thickness of Res« = 106.
At = = 1 the latter is equal to 1317 and reaches 1465 at the outlet x = 1.25. Despite
the slight adverse pressure gradient observed on the flat plate, the development of the
boundary layer is very close to the Blasius solution. In the following the displacement
thickness at the station @ = 1 will be denoted 6 = ¢*(z = 1) for convenience and the
frequency F' = 10° - w/Re will be used to present the results.

4.1. Optimal forcing and response

The stability of the boundary layer is not investigated in the whole computational domain
but in a restricted domain extending up to z = [ = 1, the reference length. Thus we
define the optimal energy gain o? as the ratio of the energy of the optimal response in
the restricted domain x < 1 with the energy of the optimal forcing in the whole domain.
This choice ensures that the following results are free from any numerical effects due to
the outflow boundary condition. Indeed numerical tests have been carried out to check
that the base-flow pressure coefficient, the spatial distribution of the optimal forcing and
response, as well as the optimal gain, vary by less then 1% when limiting the domain to
x =1.125.

The optimal gains o2 have been computed for two types of perturbations: steady three-
dimensional perturbations (F' = 0,8 # 0) and harmonic two-dimensional perturbations
(F # 0,8 =0). Oblique perturbations (F' # 0,5 # 0) have not been investigated in the
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sional (LU) perturbations (8 # 0) and (b) the harmonic two-dimensional (TS) perturbations

(F # 0).

present study. Figures 7(a) and (b) show the optimal gains obtained for both types of
perturbations, as a function of the spanwise wave number (3§ and of the frequency F
respectively. The largest amplification for steady three-dimensional perturbations o2 ~
900 is obtained for the spanwise wavenumber 5§ = 0.94 while two-dimensional harmonic
perturbations display a maximum gain of o2 ~ 222 for the frequency F' = 88. In the
present study the three-dimensional steady perturbations are thus more amplified than
the two-dimensional harmonic perturbations. This is not a general feature and for larger
Reynolds number we would expect different results. Indeed Akervik et al. (2008) and
Monokrousos et al. (2010) have given similar curves o%(F) but for a boundary layer flow
configuration where the leading edge was not included in the computational domain. In
the latter study where the inlet and outlet Reynolds numbers were equal to Res- = 1000
and 1834 respectively, it was found that the two-dimensional harmonic perturbations
were more amplified than the three-dimensional steady perturbations. Therefore we can
expect that for larger Reynolds number the two-dimensional harmonic perturbations
would have larger gains. Before turning to the description of the forcing and response
structures, it is worth mentioning that these large gains correspond to a pseudo-resonance
of the linearized Navier-Stokes operator: they cannot be explained solely by the presence
of a particular eigenvalue in the spectrum of this operator near the forcing frequencies
F =0 or F = 88 as shown in (Akervik et al. 2008; Alizard et al. 2009).

To describe the spatial structures of the optimal forcing and response we will use the
energy density of the perturbation. For a scalar field f, the energy density is defined
by df(z) = f01(|f|2)dy while for a vector field £ = (f,g,h) it is defined by de(x) =

f01(|f|2 + |g|* + |h|?)dy. Figure 8 shows the energy density of the optimal forcing and
response as a function of the streamwise coordinate x. The case of three-dimensional
steady perturbations is depicted in Figure 8(a) for the wavenumber 5§ = 0.94 while the
case of two-dimensional harmonic perturbation is shown in Figure 8(b) for the frequency
F = 100.

For the three-dimensional steady perturbation the spatial distribution of the optimal
forcing and response associated with the dominant singular value is depicted in figure 9.
For clarity the vertical coordinate has been non dimensionalized by §. The evolution of
the local displacement thickness §* and boundary layer thickness dg.g9 is indicated in
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FIGURE 8. Density functions of (a) the three-dimensional steady (LU) optimal perturbation at
36 = 0.94 and (b) the two-dimensional harmonic (TS) perturbation at F' = 100 as a function
of the streamwise coordinate. The red and black lines depict the optimal forcing and response
respectively. For each case, the solid lines indicate the density energy while the dashed, dashed—
dotted and dotted lines are used for the streamwise, cross-stream and span-wise components.
The vertical lines in (b) delimit the convectively unstable region.
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FIGURE 9. Optimal three-dimensional steady (LU) perturbation for 5§ = 0.94. (a): spanwise
component h of optimal forcing. (b): stream-wise component u of optimal response.

the figure by the dashed and solid lines respectively. The optimal forcing is represented
in figure 9(a) by iso-contours of its spanwise component while the optimal response is
shown in figure 9(b) by isocontours of the streamwise velocity. First we note that the
structures are weakly varying in the streamwise direction, which relates to the o = 0
perturbations described in §3. On the flat plate (x > 0) the optimal forcing is domi-
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FIGURE 10. Optimal two-dimensional harmonic (TS) perturbation for F' = 100. (a): stream-wise
component f of optimal forcing. (b): stream-wise component u of optimal response. The vertical
thin solid lines denote the location of branch I and branch II, as defined by local stability theory.

nated by the cross-stream velocity components while the response is concentrated in the
stream-wise component. This is a footprint of the component-type non-normality of the
linearized Navier-Stokes operator which can be explained in the present case by the LU
instability mechanism: streamwise vortical structures induce streamwise velocity streaks.
In addition, the optimal forcing, strongest near x = 0.25, tends to be located in the
upstream part of the flat-plate while the response is largest downstream of the flat plate.
This stems from the convective-type non-normality, separating the spatial supports of
the optimal forcing and response. Interestingly, the optimal forcing remains at significant
amplitudes even upstream of the flat plate (x < 0). In this region the optimal forcing
and response are dominated by their cross-stream components, indicating that the LU
instability mechanism is not yet at play. Instead, the optimal forcing creates streamwise
vorticity by stretching and tilting upstream disturbances through the shear induced by
the leading-edge (see also Schrader et al. 2010). This vorticity would trigger streaks only
when impinging on the plate.

For the two-dimensional harmonic waves the spatial distribution of the optimal forcing
and response pertaining the dominant singular value are depicted in figure 10 for F =
100. Here we focus our attention on this frequency even if it is not exactly the optimal
frequency because branch I and II, as determined by local stability theory, are both within
the optimization domain. We note that the disturbance consists of a series of waves of
characteristic streamwise scale related to the wavenumber a considered in the analysis
of a parallel boundary layer (§3). The flow response is clearly localized downstream of
the flat plate and reaches a maximum around x = 0.90. This station is very close to
the location of branch II , x = 0.88 for F' = 100, where the nature of the local stability
changes from convectively unstable to stable. On the other hand the optimal forcing is
localized upstream and reaches a maximum around x = 0.25, slightly upstream of the
location of branch I, z = 0.29 for F' = 100, where the local stability of the flow changes
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from stable to convectively unstable. This shows that the strong convective non-normality
of the underlying global operator is here closely related to the local stability of the flow.
We also emphasise that the optimal forcing drops off very quickly upstream of branch
I, and therefore harmonic forcing located upstream of the flat plate is very inefficient at
triggering TS waves. Similarly, the optimal response weakens downstream of branch II.
These features markedly differ from those described for the LU instability. Finally the
footprint of the component-type non-normality is seen on the structure of the optimal
forcing which is dominated by its streamwise component while the optimal response
is equally distributed on its streamwise and cross-stream components. The streamwise
forcing is dominant because the forcing is leaning against the shear of the base flow. Thus
the well known Orr mechanism is also at play to efficiently initiate the TS instability as
explained in Akervik et al. (2008).

4.2. Sensitivity to base-flow variations

Before presenting the sensitivity field in the global framework, we note that instead of
depicting the field Vo2, we have chosen to show the quantity 62 o ~2 Vyo?. If we con-
sider a base-flow variation of small amplitude e, localized on a area §2 around the location
(0, Y0), equation (2.7) shows that the variation of the singular value is approximated by
do? = €62 Vyo?(xo,90). The chosen quantity is thus the rate of variation of the energetic
gain divided by the amplitude of a base flow variation localized on a surface §2.

The sensitivity to base-flow variation of the TS perturbation previously described
is first investigated. Figure 11 displays the density of sensitivity fields as a function
of the streamwise coordinate x. First we focus on the sensitivity to generic base-flow
variations which is depicted in Figure 11(a). This sensitivity field is largest in the region
of the flow located between branch I and branch II indicating that TS perturbations are
only sensitive to base-flow variations in the convectively unstable region. This results is
reminiscent of the streamwise distribution of the optimal forcings and responses shown
in figures 8(b). Roughly speaking the sensitivity is defined as the product of the optimal
forcing and response so that it can only be strong in the region where these overlap. For
TS perturbations, the sensitive region corresponds to the convectively unstable region.
Moreover we observe that TS perturbations are slightly more sensitive to cross-steam
variations than to streamwise variations. This result should be interpreted with caution.
Indeed although generic base-flow variations are allowed they may be not physical since
they do not satisfy the governing equations.

To gain more physical insight, we therefore focus our attention on divergence-free base-
flow variations and compute an appropriate sensitivity field as explained in section 2.3.
Results are displayed in Figure 11(b). We see that the sensitivity to cross-stream vari-
ations has vanished while the sensitivity to streamwise variations is almost unaltered.
This result is interesting in terms of flow control since only divergence-free base-flow
variations may be produced. Consequently, even if the sensitivity to generic base flow
variation is strong in the cross-stream direction, this cannot be exploited for flow control.
Figure 12 depicts the streamwise component of the divergence-free sensitivity field. The
spatial distribution is shown in Figure 12(a) while a wall-normal profile is represented
in Figure 12(b) for comparison with the parallel results shown in Figure 4(b). This field
is weakly varying in the streamwise direction but exhibits strong variations in the cross-
stream direction. These variations are quite similar to those found in the parallel case.
The sensitivity profile in Figure 12(b) strongly resembles the wake defect that would be
observed behind an object placed at y = 0.65".

The sensitivity of the LU perturbation is presented in figures 13(a) and (b), where we
display the density functions for generic and divergence-free base-flow variations. First



y/o

Effect of base-flow vam’a%?n in noise amplifiers 17

0.6 0.6
VA
I\
04 / \ 04
I ~\ -~
4 \-‘ / \
Iy . /
: \i \
3 Iy d 3 1
: % \
i g / \
i ‘; / \
17 !
02 . 02
il § / !
I \ / !
v !
I I \ - ’ |
/ \ / \
’ \ \
ol it N ol i bl N
05  -0.25 0 0.25 0.5 0.75 1 1.25 05  -0.25 0 0.25 0.5 0.75 1 1.25
x x
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component of the sensitivity fields (a) 620 ?Vyo? and (b) 620 ?Vyo?2. F = 100.

4
e
24 0 24
2_
1} y/6"
0_
05

FIGURE 12. Sensitivity of TS perturbations to divergence-free base-flow variations. (a) Spatial
distribution of the stream-wise component of the field 620~ 2Vyo?. (b) Wall-normal profile
of the sensitivity at the station x = 0.7. The y coordinate is here normalized with the local
displacement thickness 6" (z = 0.7). F' = 100.

we emphasise that LU perturbations are much less sensitive to base-flow variations than
TS perturbations. For instance, the sensitivity of the LU instability to divergence-free
variations is three-orders of magnitude lower than the sensitivity of the TS instability, as
for the parallel boundary layer. Secondly we observe that the cross-stream component is
largely dominant when generic variations are considered but this is again no more valid
when allowing only divergence-free modifications. Therefore, in the following discussion
we focus on the results displayed in Figure 13(b). The LU sensitivity exhibits a very sharp
peak on the leading edge of the flat plate, the amplitude being two order of magnitude
larger than everywhere else in the flow. As seen in the inset of figure 13(b) and in figure 14,
the location of this peak exactly corresponds to the position of the elliptic leading edge.
Interestingly the sensitivity upstream of the flat-plate (z < 0) and on the flat-plate
(z > 0) are of comparable magnitude. Upstream of the flat plate the LU perturbation is
only sensitive to streamwise base-flow variations while modifications of the cross-stream
component can affect the disturbance amplification above the flat plate.

Asin §3, these findings may be explained by inspection of the expression of the gradient
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FIGURE 14. Sensitivity of LU perturbations to divergence-free base-flow variations. Spatial dis-
tribution of 620 2Vyo? close to the leading edge of the flat-plate. The colors indicate the
magnitude of the field and the lines show the directions. Note that here the x and y coordinates
are normalized with the displacement thickness §. 36 = 0.94.

given in (2.9). Note that the sensitivity with respect to the spanwise component of the
base flow W is zero both for TS and LU disturbances. This can be seen directly from the
expression of the gradient for two-dimensional perturbations and for disturbances of zero
frequency. In the latter case, the optimal forcing and response can be written in the form
(f,g,ih) and (u,v,iw) and hence the gradient with respect to W is zero since it is given
by the real part of a purely imaginary (see eq. 2.9). In both cases, for symmetry reasons,
positive or negative distortions should be equivalent since the flow is homogeneous in the
spanwise direction. However, Vo2 should be considered for oblique waves when both
F and (8 are non-zero.

4.3. Comparison of local and global analysis

In this section, we compare the results from the local and global analysis. For this, we
have extracted from the global results the wall-normal profiles of the optimal forcing,
optimal response, gradient at the streamwise station corresponding to Res« = 400. The
data for the LU case (F = 0,36 = 0.94), are represented in figure 15, while those for the
TS case (F = 100, 8 = 0) are reported in figure 16. The spanwise wavenumber of the LU
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FIGURE 16. Same as in the figure 15 for the TS perturbation F' = 100. The frequency non-di-
mensionalized by the local displacement thickness is equal to wd*/Us = 0.133. These figures
may qualitatively be compared to the local results of figures 2(c, d).

instability, non-dimensionalized with the local displacement thickness, is $0* = 0.283,
while the frequency of the TS instability is wé*/Usx = 0.133. The results in figures 15
and 16 may therefore be compared to those of figure 2. It is seen that in the LU case the
optimal forcing and response in the spatially evolving boundary layer are located closer
to the wall than in the case of the parallel boundary layer. In the global approach, the
perturbation evolution is monitored over a finite-length domain and although a forcing
located further outside the boundary layer would certainly be more effective, it will
also require longer distances to interact with the shear-layer close to the wall. This
would imply a larger growth but further downstream, outside our optimization domain.
In a parallel flow, conversely, there is no limitation on the distance travelled by the
disturbances before reaching the largest energy amplification. In the case of TS waves,
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FIGURE 17. Wall-normal profiles of the streamwise component of the sensitivity o 2Vyo? for
(a) the LU instability , (b) the TS instability shown in the previous figures. These figures may
be qualitatively compared to the local results of Figures 4(a, b).

the local and global results qualitatively agree. Similar trends may be observed for the
sensitivity displayed in figure 17: while the profiles qualitatively agree with those for a
parallel flow for the TS waves, the gradient is closer to the wall in the global approach.
This result is directly related to the differences in the wall-normal location of the optimal
forcing and response mentioned above.

4.4. Towards flow control: sensitivity to steady forcing and blowing/suction

As a first step towards feasible passive control of perturbations in boundary layers we in-
vestigate two different ways to produce base-flow modifications: a two-dimensional steady
momentum forcing and a blowing/suction on the plate.

The sensitivity fields to steady forcing introduced in section 2.4 have been computed for
the TS and LU perturbations and in both cases the streamwise component is dominant.
Figure 18(a) thus displays the density of this component as a function of the streamwise
coordinate. As noted previously, the TS perturbation is much more sensitive than the
LU perturbation. In particular, the TS perturbation is mainly sensitive to forcing located
between branch I and branch II while the LU perturbation is also sensitive to forcing
located upstream of the flat plate. As opposed to the divergence-free sensitivity field, we
do not observe any sharp peak around the leading edge in the case of LU perturbations.
Figure 19 shows the spatial distribution of the streamwise component of the sensitivity for
both LU ad TS perturbations. To interpret these figures let us consider a force acting in
the direction of the base flow and localized on a area §% centered around (z,y) = (0.7,0.4).
If the amplitude € of this force is small, the energy of the TS perturbations is expected
to decrease as 02 ~ 1.5 02 € showing that a small steady forcing may have a dramatic
effect on the development of TS perturbations. At the same time, the energy of the LU
perturbations would decrease as 602 ~ 0.0102%€.

Finally, the sensitivity fields to wall-normal blowing/suction is depicted in Figure 18(b).
The tangential components are not shown since their effect is negligible. At a first look
this may seem inconsistent with the results obtained for the sensitivity to steady forcing
where modification of the stream-wise components are dominant. However, in boundary-
layer flows, wall-normal blowing and suction induce efficiently mainly variations of the
stream-wise component of the base flow. The result for the TS perturbation is displayed
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FIGURE 18. (a) Density of the streamwise component of the sensitivity to steady forcing
52072Vro? and (b) sensitivity to wall normal blowing/suction §*0~?Vy, o as a function
of the streamwise coordinate. The solid and dashed lines depict the results for TS (F = 100)
and LU (85 = 0.94) perturbations respectively. Note that the values on the left axis pertains
the sensitivity of theTS disturbance whereas the values on the right the sensitivity of the LU
disturbance, the latter being significantly smaller.

by the solid line in Figure 18(b). It indicates that suction around = 0.5 should be
applied to reduce the perturbation energy. For the LU perturbation the localisation of
the blowing is less pronounced. Since the LU perturbation is also much less sensitive,
suction distributed on the whole flat plate should be chosen to achieve a significant
reduction of the perturbation energy growth. Finally we note that a peak is reached
around 2 = 0.3, i.e. further upstream than in the case of steady forcing (compare with
Figure 18a).

5. Concluding remarks

A theoretical formulation to study the base-flow sensitivity of fluid problems charac-
terized by significant non-modal amplification of linear perturbations is proposed. These
base-flow variations can be seen as defects from ideal configurations as well as the result
of passive manipulation of the flow. Using a variational technique, we have derived the
analytical expression for the gradient of the resolvent norm of the system with respect to
the base-flow modifications. We have shown that this gradient depends on the combina-
tion of the optimal forcing and the optimal response, in analogy to the sensitivity of the
eigenvalues that is largest in the overlap region between direct and adjoint eigenmodes
(Chomaz 2005). Therefore, in parallel to the concept of wave-maker introduced for glob-
ally unstable flows (hydrodynamic oscillators), we consider the region in space where the
largest amplification of external noise of given frequency is occurring in globally stable
systems. This is located within the region of largest sensitivity to base-flow modifications.

Results are presented for the Blasius boundary layer, classic example of noise amplifier
where the different instability mechanisms of shear flows are at work. We investigate how
the sensitivity of the resolvent norm varies for the two sources of non-normality present,
component-wise (LU) and convective (TS). The results show that very weak modifications
of the base-flow can have a significant impact on the TS waves, easily leading to more
unstable flows. Conversely, the sensitivity of elongated perturbations exploiting the LU
mechanism is weaker, almost independent of the Reynolds number and larger further up



22 L. Brandt, D. Sipp, J. O. Pralits, O. Marquet

y/o

0.5 -0.25 0 0.25 0.5 0.75 1 1.25

y/o

-0.5 -0.25 0 0.25 T 0.5 0.75 ] 1.25

FIGURE 19. Sensitivity to steady forcing. Stream-wise component of the field 62/0?V ra? for
the (a) LU and (b) TS perturbations.

in the boundary layer and upstream of it. When imposing divergence-free distortions we
observe that modification of the stream-wise component of the base flow is dominant,
whereas variations of the wall-normal velocity component has little impact on either
instability. The findings presented can be explained just by examining the gradient of
the resolvent norm with respect to base-flow modifications in the limit of small spanwise
wavenumbers and low frequencies. Finally, we considered also the effect of steady forcing
and wall blowing/suction on the instability (both acting via a base-flow modification)
to demonstrate the potential of the current approach for the design of passive control
strategies.

For the case of boundary-layer flows, where two distinct instability mechanisms are at
work, it is relevant to examine how variations of the base-flow that are optimal for one
type of disturbances can affect the other. To this aim, we have considered modifications
of the base-flow which are optimal to enhance/reduce the LU or the TS mechanism and
studied the resulting flow behavior in the wave-number plane. Our results, not shown
here, show that variation of the base flow reducing the LU amplification can easily lead to
increase amplification of T'S waves. Conversely, weak variations of the shear layer close to
the wall can largely affect the TS amplification while have no effect on the LU (as deduced
by the largest magnitude of the sensitivity to T'S). Note indeed that it is necessary to scan
the entire parameter space to be sure that a distortion stabilizing perturbation at some
(wo, Bo) did not produce an amplification increase in a different region in wave-number
space.

We examined the analytical expression of the sensitivity to gain physical understanding
on the instability mechanisms and about the potential that variations of the base flow
may have. The sensitivity gradient alone provides information on the effect of small
amplitude base-flow modifications on the non-modal behavior. However, it is important
to note that the gradient can also be used to determine the change in the base-flow
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velocity profile of specified finite magnitude that has the largest effect on the singular
values of the system, see Bottaro et al. (2003) for the corresponding modal analysis.

In conclusion, the analysis presented here is relevant for all open flows, which are glob-
ally stable, such as spatially evolving incompressible boundary layers forming on airfoils.
The present paper introduces therefore sensitivity analysis tools for noise amplifiers. Note
finally that in our approach we target directly the non-modal flow behavior and the for-
mulation can be extended to design active control strategies aiming at the flow non-modal
disturbance growth. This could be a viable alternative in the case of non-parallel flows
with large streamwise non-normality.

The authors wish to thank Antonios Monokrousos and Dan Henningson for fruitful
discussions.

Appendix A. Sensitivity analysis in time domain

The derivation reported above for the forced problem can be extended to consider the
largest transient growth in time of an optimal initial condition. In this case, the largest
singular value of the linear evolution operator is the target of the sensitivity analysis.
The main steps and the final result are briefly outlined here.

The relation between the optimal initial condition u;, (¢ = 0) and the response Uyy; (ts)
at given time ¢ = t; can be formally written

Wout = T (tp, Uwy,, T =PTE(;, U)P, € =exp(t;L£(V)). (A1)

The evolution operator 7 is defined as the matrix exponential of the stability operator
L. The optimal initial condition is defined as the eigenfunction associated to the largest
eigenvalue of the symmetric operator

T win = A wy, (A2)
and it maximizes the gain G(u;,) = W
as described above, targeting modification of the largest singular value of the evolution
operator,

Kr =X = (al, wour — Tuin ) — (al

T

. Defining a Lagrangian in the same way

ar — TTuout ) - (f: ) )\2uin —ar ) )
the sensitivity function VA2 is, in analogy to the case of the resolvent norm,
Vu A2 = 22R{(Vu,) wlyy — (Viour) ™ win}, (A3)

where the optimal initial condition is normalized so that (u;,, u;,) = 1 and the response
at final time is (Wour, Uout) = A2
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