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A B S T R A C T

We discuss how a variable fluid viscosity affects the nonmodal stability characteristics of the pressure driven
flow between two parallel walls maintained at different temperatures. In this work, we specify the fluid viscosity
to be a function of the fluid temperature. We employ an Arrhenius model to model the viscosity of water, and
Sutherland’s law to model the viscosity of air. We impose a stable density stratification, and find that strong
density stratification can suppress optimal transient growth regardless of how strong the viscosity variation is.
Some studies have been inclined to neglect viscosity stratification, since the changes in levels of optimal growth,
when compared to the uniform viscosity case, are often not too significant. In this article, we show significant
localisation of optimal perturbation energy in the less viscous region, a feature that is not observed in uniform
viscosity flows. This can have a bearing on the route to turbulence in these systems.

1. Introduction

Flows involving fluids with variable viscosity are commonly en-
countered in a wide range of scenarios that are of fundamental and
applied interests. The fluid viscosity being non-uniform may be due to
factors such as temperature, pressure and composition; such conditions
are frequently observed in chemical, food and petroleum industries. For
issues of practical interest such as drag reduction, heat transfer, and
turbulent mixing, varying fluid properties may imply vastly differing
characteristics than from the case with a homogeneous fluid (Gad-el-
Hak, 2001; White and Mungal, 2008). It has been shown that the skin
friction coefficient and drag reduce, and heat transfer increases when
temperature dependent viscosity is considered (Lee et al., 2013; 2014).
The need for a more inclusive analysis has gained relevance recently as
it has been shown that the mean flow quantities are altered in turbulent
flows due to variations in viscosity (for e.g. see Zonta et al., 2012a;
2012b; Talbot et al., 2013; Taguelmimt et al., 2016). These studies
suggest that the effect of viscosity is not necessarily limited only to the
smallest scales of motion (Voivenel et al., 2016). Thus consequences of
such results find relevance in turbulent modelling (Zonta, 2013; Pecnik
and Patel, 2017).

The work of Yih (1967) was among the earliest to investigate ex-
ponentially growing modal instabilities in a plane shear flow when the
viscosity of the fluid is not uniform. When the fluid viscosity is a
function of space, it may either promote stabilisation or destabilisation

of the system (Ranganathan and Govindarajan, 2001; Govindarajan
et al., 2001). In certain cases, viscosity stratification may leave the
stability characteristics unchanged. Variations in viscosity (and fluid
properties) are commonly encountered in systems involving non-New-
tonian fluid flow and multiphase flow. The review by Govindarajan and
Sahu (2014) describes a wide range of instabilities in the systems with
varying viscosity, and emphasises that the nature of the viscosity stra-
tification is crucial to determine the instability characteristics.

It has been established that nonmodal mechanisms play a pivotal
role in the transition to turbulence in parallel shear flows (Schmid and
Henningson, 2001; Schmid, 2007). From modal stability analysis, we
can accurately predict the asymptotic behaviour of disturbances at long
times. However, as the linear system is non-self adjoint, and therefore
the eigenfunctions of the linearised system are nonnormal, initial per-
turbations can grow transiently even when the system does not support
any exponential instabilities. The transient growth can be large enough
such that nonlinear effects can no longer be neglected and the flow
might become turbulent. Earlier studies on shear flows with variable
viscosity report that the optimal transient growth does not change
drastically, with mild stabilisation/destabilisation observed (Chikkadi
et al., 2005; Nouar et al., 2007; Ren et al., 2019; Sameen and
Govindarajan, 2007). Based on these results, it is tempting to conclude
the effect of viscosity stratification for nonmodal dynamics to be not
very significant. However an analysis of a viscosity stratified flow based
on a volume-averaged quantity like the optimal transient growth does
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not necessarily provide a full picture as the optimal perturbations
themselves may be considerably different.

In this article, we consider nonmodal stability characteristics of a
parallel flow of a fluid with temperature dependent viscosity through a
channel with walls maintained at different temperatures. This config-
uration is one of the systems investigated by Sameen and
Govindarajan (2007), where they examined changes in characteristics
of modal stability, secondary instabilities and nonmodal stability as the
system parameters are varied (see also Sameen et al., 2011). Here, our
main focus is on the spatial structure of the optimal perturbation, which
has not been examined in the earlier studies mentioned above. We are
interested in the distribution of the perturbation energy in the channel,
and how it evolves in time. With variable viscosity, we find the optimal
structures to be strongly localised in the less viscous region of the
channel.

The layout of the paper is as follows. The system under considera-
tion is described in Section 2, and this is followed by a discussion of the
problem formulation in Section 3. The results of this study are then
presented in Sections 4 and 5. In Section 6, we summarise the results
and offer some concluding statements.

2. Description of system

2.1. Flow configuration

In this study, we examine the pressure driven flow between two
parallel walls of a fluid whose viscosity is dependent on the fluid
temperature. The walls are assumed to extend indefinitely along the
streamwise x and spanwise z coordinates, and are maintained at fixed
temperatures Tl (lower wall) and Tu (upper wall). The distance between
the two walls is 2d, and we specify the wall-normal coordinate y to be
zero at the channel centreline. When the temperature difference

T T Tu l is non-zero, effects of variable viscosity come into play.
We fix =T 295 K,l and use ΔT to specify the extent of the viscosity
stratification. Gravity acts along the negative y coordinate. The flow
configuration is depicted schematically in Fig. 1.

2.2. Governing equations

The nondimensional governing equations for the system, using the
Boussinesq approximation, are as follows:

+ = + + +u u u p RiT
Re

µ u u1 [ ( )],t i j j i i i j j i i j2 (1)

=u 0,j j (2)

+ =T u T
RePr

T1 .t j j j j (3)

Above, ui is the Eulerian velocity, μ is the viscosity, T is the temperature
and p is the pressure. The nondimensional parameters that characterise
the flow are the Reynolds number Re≡ ρ0U0d/μ0, the Prandtl number

Pr≡ μ0/ρ0κ and the Richardson number Ri g Td U/ 0
2.Given a fluid,

ρ0 is the reference density, κ the thermal diffusivity, γ the thermal ex-
pansion coefficient and μ0 the reference viscosity. g is the acceleration
due to gravity and U0 is the reference velocity scale, defined in the
following subsection in terms of bulk velocity. The channel half-width d
is the reference length scale; after nondimensionalisation, we have
y [ 1, 1] with the walls located at = ±y 1.

2.3. Steady laminar base flow

For the steady base state, the dimensional temperature T̄d varies
linearly between the two walls, i.e. = + +T T T y¯ 0.5 ( 1)d l . Using ΔT as
the reference scale for nondimensionalising temperature variables, we
obtain the nondimensional mean temperature as = +T y¯ 0.5( 1). In the
present study, non-zero values of ΔT imply that variable fluid viscosity
is considered for a given case. To be able to distinctly account for
temperature effects due to gravity, the Richardson number Ri is used. In
this study, therefore, it is emphasised that =T 0 K only implies that
viscosity is constant across the channel. The steady state viscosity
profile µ̄d is found using T̄d; in this study, we use an Arrhenius model
and Sutherland’s law to model the viscosity of water and air respec-
tively. For fair comparison, we choose μ0 to be the average viscosity
across the channel. The nondimensional base state viscosity profile is
then given by:

=µ
µ
µ

¯
¯

.d

0 (4)

Under steady state conditions, the flow is unidirectional along the
positive x direction with a velocity profile U that is a function of the
wall-normal coordinate y alone. When the fluid viscosity is not con-
stant, the steady base flow is obtained by solving the streamwise mo-
mentum equation:

= +
y

µ U
y

0 d
d

¯ d
d

,
(5)

where is the nondimensional mean pressure gradient in the stream-
wise direction. Note that there is also a hydrostatic pressure due to the
mean temperature gradient. The flow obeys no-slip conditions at the
walls, i.e., ± =U ( 1) 0. As the viscosity is not constant, the maximum
velocity in the flow Um occurs away from the channel centreline at

=y ym. Using these conditions, we get the expressions for ym and U as
follows:
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The details of the derivation of the expressions above are given in
Appendix A.

The average velocity is 2Um/3 for a plane Poiseuille flow with a
uniform fluid. To ensure fair comparison between the cases with visc-
osity stratification, we specify the base flows to have the same average
velocity. As a result, the reference velocity scale U0 is defined as:

=U U y U y
U

2
3

1
2

d ( ) .m

m
0 1

1 1

(8)

The definitions of Re and Ri are based on U0. By choosing U0 and μ0 as
the reference scales, we ensure that the bulk Reynolds number Reb is

Fig. 1. Base flow configuration: Fully developed flow between two infinitely
extending parallel plates, separated by a distance 2d, and maintained at dif-
ferent temperatures.
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constant for different viscosity stratifications. Subsequently, we have
=Re Re4 /3,b as it would be for the constant viscosity case. The steady

flow about which we perturb the system, employing expressions in
Eqs. (7) and (8), is then given by:

=U U
U

¯ .
0 (9)

3. Problem formulation

3.1. Perturbation equations

To examine the stability of the base state F̄ , we perturb the system
such that it is of the form = +f x y z t F y f x y z t( , , , ) ¯ ( ) ( , , , ). The mean
and the perturbed flows both obey the governing equations given by
Eqs. (1)–(3). The evolution equations for the perturbation are obtained
by subtracting the equations for the base flow from those of the per-
turbed flow. Further, we assume the perturbations are to be in-
finitesimally small when compared with base flow quantities, and the
terms that are quadratic in the perturbation quantities are neglected to
yield a linearised set of equations. The fluid temperature perturbation θ'
is governed by a linearised advection-diffusion equation. For the visc-
osity perturbation μ', we relate it to θ' results using a Taylor’s expansion
about the mean temperature T̄ . In the linear limit, we have

=µ µ
T
¯ . (10)

For parallel shear flows, the linearised momentum equation and
continuity equation can be recast as the Orr–Sommerfeld–Squire set of
equations to eliminate the pressure (Drazin and Reid, 2004). In this
study, we work with a generalised Orr–Sommerfeld–Squire set of
equations that account for viscosity and density stratifications. As-
suming periodicity in the homogeneous directions, the perturbation
dynamics can be analysed in Fourier space, with α the streamwise
wavenumber and β the spanwise wavenumber; the disturbances take
hence the form = +f x y z t f y t e( , , , ) ^ ( , ) x zi( ). Then the linearised
equations governing the disturbance evolution can be written in a
simplified block form as follows:

=
t

v L L
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0 1 0
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Above, the state vector defining the perturbation is = vq̂ [ ^ ^ ^ ]T ; v̂
and ^ are the normal components of the perturbation velocity and
vorticity respectively. In addition, note that = D k2 2 with =D y/
and = +k2 2 2. The different operators are defined below.
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In the operators shown above, the primes denote derivatives with re-
spect to normal coordinate y. These operators define the forcing due to
different components of the state vector. At the wall, where the flow
obeys no slip condition with constant fluid temperature, the different
components of the state vector are subject to the following boundary

conditions:

± = ± =

± = ± =

v t Dv t

t t t

^ ( 1, ) ^ ( 1, ) 0,
^ ( 1, ) ^ ( 1, ) 0, 0 (12)

When viscosity stratification is neglected, Lvv^^ and L ^ ^ reduce to the
Orr–Sommerfold and Squire operators respectively (Drazin and
Reid, 2004); furthermore, =L 0^ ^ and =L k Riv̂ ^ 2 when =µ̄ 1. In the
terms involving the mean viscosity µ̄ and its derivatives, one can im-
mediately see that the choice of reference viscosity plays an important
role in defining the linearised operator. Therefore the choice of the
average viscosity in the channel as the reference viscosity is most ap-
propriate for purposes of comparisons between different mean tem-
perature gradients. Likewise, fixing the mass flow rate also serves to-
wards ensuring a fair comparison between different cases investigated.

If the perturbation is assumed to evolve in time as
=f y t f y e^ ( , ) ˜ ( ) ,ti an eigenvalue problem can be formulated from

Eq. (11); the eigenvalue ω is the complex temporal frequency. There
exists an exponential modal instability if there exists an eigenvalue
whose imaginary part is greater than zero, i.e., ωi>0. The unstable
mode grows exponentially until the nonlinear terms become important,
and subsequently causes transition of the flow to a new state. For the
case where the viscosity is defined by the Arrhenius model, the modal
stability characteristics have been discussed in detail by Sameen and
Govindarajan (2007).

3.2. Nonmodal stability analysis

In parallel shear flows, transition can occur due to small perturba-
tions even when there exist no exponential instabilities for the pre-
scribed values of the governing parameters (Schmid and Henningson,
2001; Schmid, 2007). The linearised operator in equation (11) is non-
normal, as a consequence of which perturbations can exhibit transient
algebraic growth. These perturbations depicting transient behaviour are
a combination of multiple nonnormal eigenfunctions of the linearised
operator. The growth can be strong enough such that the perturbation
evolution is no longer linear, and the flow has transitioned to a new
state. Nonmodal stability analysis characterises the transient behaviour
of perturbations while solving Eq. (11) as an initial value problem.

To quantify the transient behaviour, a choice must be made for an
objective functional, based on which optimal perturbations can be
evaluated. We choose the gain in terms of the total perturbation energy
G as the objective functional to be maximised for the nonmodal ana-
lysis, defined as follows:

=G
E k k t
E k k

( , ; )
( , ; 0)

.x y

x y (13)

Above, E gives the total energy of the perturbation with both kinetic
and potential contributions (Kaminski et al., 2014), which is of the form
given below.

= + + +E
k

k v v v v Rik y1
8

( ^*^ D^*D^ ^*^ ^*^)d .2 1

1 2 2
(14)

The potential energy of the perturbation is due to ^ and depends on the
strength of the background stratification. For a given set of parameters,
the global optimal perturbation is the initial condition leading to the
largest amplification Gmax, when considered over all wavenumbers and
time. The time when this transient growth is obtained is called the
optimal time Topt. The wavenumbers defining the optimal perturbation
are denoted as αopt and βopt.

3.3. Numerical methods and validation

For discretisation along the wall-normal coordinate y, we use a
Chebyshev collocation method with 81 Chebyshev polynomials
(Weideman and Reddy, 2000). Higher resolutions did not change the
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answer to at least 8 decimal places. We evaluate the optimal gains by
the singular value decomposition method (Schmid and Brandt, 2014).
Upon turning off the viscosity stratification and setting =Ri 0, we re-
cover the eigenspectra for the plane Poiseuille flow (Appendix A.7 in
Schmid and Henningson, 2001). The spectrum for the density stratified
channel flow is recovered when ΔT alone is set to zero. To validate that
the code incorporates viscosity variations faithfully, we have re-
produced the stability boundaries obtained by Wall and Wilson (1996)
in Fig. 2. In their work, the effect of gravity is not considered, i.e.

=Ri 0.

4. Viscosity stratification in water

In this section, we first employ an Arrhenius law to model the
viscosity of water:

=µ C e¯ ,d
C T

1
/ d̄2 (15)

where =C 0.00183 Nsm1
2 and =C 1879.9 K2 . For all the results, we

select the reference Reynolds number to be 2000; this gives us
=Re 2666.67b for the full channel. The results do not change qualita-

tively for other values of Re. As would be appropriate when the fluid is
water, we fix the Prandtl number =Pr 7. For the range of parameters
considered, exponentially growing instabilities are absent.

The nondimensionalised viscosity profiles (µ̄) and the corre-
sponding mean velocity profiles (Ū ) are evaluated using Eqs. (4) and (9)
respectively; µ̄ and Ū are shown in Fig. 3 for different temperature
gradients. A notable feature in the profiles is that viscosity stratification
leads to a greater mass flux in the less viscous half of the channel. This
suggests that the effective bulk Reynolds number, defined by average
values of velocity and viscosity, in each half would be different. For
instance, when =T 25 K, the effective bulk Reynolds number is
3233.51 and 2224.83 for the upper and lower channel halves respec-
tively. In the following subsections, we examine how this contrast is
reflected in the optimal perturbation characteristics.

4.1. Nonmodal stability characteristics

While varying Ri over a range of values spanning a few decades, the
optimal perturbations are evaluated for different values of ΔT. To
highlight the effect of viscosity stratification, we choose three re-
presentative values of the dimensional temperature gradient ΔT – 0 K,
10 K and 25 K. Although we have performed calculations with a larger

range of ΔT, the discussion of the results is restricted to these values of
ΔT in the interest of brevity. In Fig. 4, the optimal perturbation char-
acteristics are plotted as a function of Ri.

In Fig. 4(a), regardless of the value of ΔT chosen, we show that the
optimal transient growth Gmax decreases with increase in Ri. This can be
attributed to stable stratification inhibiting strong vertical motion. On
the other hand, as the viscosity difference between the two walls be-
comes larger, Gmax increases for a given Ri. We report that the increase
in optimal growth is much more prominent at larger values of ΔT. When
comparing with the case =T 0 K, there is about 60% increase in Gmax
for =Ri 0.001 when =T 80 K. However, the change is not as drastic
when ΔT is lower; at =T 25 K, the increase in Gmax ranges from 4% to
13% as Ri is varied. For the values of ΔT chosen, the values of optimal
transient growth Gmax are shown not to vary significantly when the
fluid has non-constant viscosity.

The optimal time Topt, as shown in Fig. 4(b), generally decreases
with increasing strength of density stratification, and does not change
markedly with ΔT. For a wide range of values of Ri, the optimal dis-
turbances are streamwise-independent, with = 0opt (Fig. 4 (c)). As the
strength of the density stratification increases, we now find the optimal
perturbations to be oblique, with αopt≠0. In Fig. 4(d), on increasing
ΔT, we see the spanwise wavenumber of the optimal perturbations βopt

taking on larger values. This directly translates to the perturbation
structure becoming finer with smaller length scales. At Ri≈0.004, the
kink in the Topt curves corresponds to a new optimal perturbation
emerging with a different optimal spanwise wavenumber βopt. In this
range of Ri, there exist multiple perturbations having different wave-
numbers yielding very similar transient growth, but over different op-
timising times.

The values of Gmax suggest that sub-critical transition is a strong
possibility in such systems for a range of values in Ri.
Jerome et al. (2012) demonstrated using a simplified model that the
lift-up mechanism is still largely responsible for the transient growth of
perturbations, with the temperature perturbations serving as correc-
tions. When the optimal perturbation is streamwise independent, the
transient growth of perturbation energy is driven primarily by the lift-
up mechanism (Landahl, 1980; Brandt, 2014). For oblique optimal
perturbations, the energy amplification would be a combination of the
Orr mechanism and the lift-up mechanism. However the corresponding
Gmax values may be too low to cause transition of the flow.

The total perturbation energy (TE), as given by Eq. (14), has two
contributions – the kinetic energy (KE) and the potential energy (PE). In
Fig. 5(a), we report the PE contribution to the total (TE) at the initial
time as a function of Ri; note that, at =t 0, TE= 1. The potential energy
is seen to account for more than 90% of the initial perturbation energy
for a significant range of Ri. This suggests that the optimal perturba-
tions are driven by buoyancy during the early stages of their evolution

Fig. 2. Validation of code: Viscosity given by =µ T cT( ) exp( ), and =Ri 0.
Solid line (black): present study, stars (red): data from Wall and Wilson (1996).
(Colour in online version)

Fig. 3. Mean flow profiles (nondimensional) for different imposed temperature
gradients. (a) Viscosity profile as given by the Arrhenius model for water, and
(b) the corresponding mean velocity profile.
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(see also Jose et al., 2015; 2018). At the optimal time, see Fig. 5(b), we
instead display the fraction of total energy ( =KE KE/TEf ) that is due to
the kinetic energy of the fluid motion. The figure clearly indicates that
the TE is almost entirely due to the KE contribution at later stages of the
perturbation evolution. This is consistent with the fact that the lift-up
mechanism is dominant even in flows with temperature/density fluc-
tuations (Jerome et al., 2012).

4.2. Structure of optimal perturbations

In the previous subsection, it was shown that the optimal growth
Gmax does not change significantly with the introduction of variable
viscosity effects. However this does not shed light on the structure of
the optimal perturbation as Gmax is a volume averaged quantity. From
the trends shown by the optimal wavenumbers, we can expect changes
in the perturbation structure. In the case of uniform viscosity, the op-
timal perturbations have symmetry about the channel centreline
(for e.g. see Fig. 2 in Brandt, 2014). Here, we take a closer look at the
structure of the optimal perturbations in the variable viscosity channel
flow.

From the visualisation in Fig. 6, one can immediately see the effect
of variable viscosity on the optimal perturbation structure. Fairly strong
localisation is seen in the regions where the viscosity of the fluid is
lower than the average viscosity in the channel. In such regions, vor-
tical structures would persist for a longer period of time. Hence an in-
itial perturbation that has its energy concentrated in the low viscosity
region can be expected to be more efficient in driving the system to-
wards transition. The perturbation energy does not redistribute to other
regions in the channel in time in the linearised setting that governs the
disturbance evolution here. However this points to the existence of a
stronger localised streak at the optimal time as the overall optimal
transient growth for the variable and the constant viscosity cases do not
differ greatly. Therefore the fact that the two channel halves have

Fig. 4. Characteristics of the optimal perturbation for different ΔT: (a) optimal transient growth Gmax, (b) optimal time Topt, (c) optimal streamwise wavenumber αopt,
(d) optimal spanwise wavenumber βopt. Viscosity defined by Arrhenius model for water.

Fig. 5. Perturbation energy contributions. (a) At =t 0, PE. (b) At =t T ,opt KEf

(= KE/TE). Viscosity defined by Arrhenius model for water.
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different effective bulk Reynolds number finally emerges in the form of
localisation of the optimal perturbation.

Following the above discussion, it is clear that a measure would be
desirable to quantify how much of the perturbation energy is localised
within a specific region of the channel. To define this specific region,
there are innumerable options. Here we choose to divide the channel
into two equal halves at the centreline, with one half having a lower
average viscosity than the other. We define <TEµ as the fraction of
perturbation energy in the low viscosity half of the channel. In Fig. 7,
we plot the values of <TEµ at initial and optimal times as a function of
Ri. Note that when =T 0 K, the optimal perturbations are symmetric
about the channel centreline as =<TE 0.5µ for all values of Ri. With
increase in viscosity stratification, it is seen that the fraction of per-
turbation energy in the low viscosity half becomes larger. In addition,
there is negligible difference between these values at the initial and
final times for the two values of ΔT considered. The localisation appears
to become stronger as the effect of the background stratification in-
creases in strength. The channel can also be divided at the point =y y ,m
where the velocity of the mean flow is maximum. An analysis of the
distribution of perturbation energy in the sub-channels so formed also
show similar trends as discussed above. The sub-channel with the lower
average viscosity accounts for the greater proportion of the perturba-
tion energy.

To get a better appreciation of what the localisation implies to the
perturbation dynamics, we compare the optimal perturbation evolution
to that of a mirrored initial condition qmir while fixing the steady base
state. The mirrored initial condition is simply a reflection of the optimal
perturbation about the channel centreline, and is defined as

=q y q y( ) ( )mir opt . Therefore when the optimal perturbation has greater
energy in one half of the channel for the viscosity stratified system, the
mirrored initial condition will have more energy in the other half of the
channel. For analysing the linear evolutions of different initial condi-
tions, we examine how the perturbation energy (TE) and their dis-
tribution in the less viscous half ( <TEµ ) changes with time. It must be
noted that the mirrored initial condition will not allow for the pertur-
bation to attain the same peak in TE as the optimal perturbation.

When the localisation of the optimal perturbation is not very pro-
minent, as is the case with Ri≈0.001 (see Fig. 7), there are no sig-
nificant differences in the peak values of TE. In Fig. 8(a), with =Ri 0.01,

we present a case where the peak values of TE obtained are noticeably
different. This difference becomes more pronounced with a stronger
localisation of the optimal perturbation. The time evolution of the
perturbation energy in the channel half of lowest base-flow viscosity,

<TEµ is displayed in Fig. 8(b) for different initial conditions. If <TEµ is
either lesser than or greater than 0.5, depending on the initial condi-
tion, it continues to be as such during the entire period of transient
growth. This is due to the fact the dynamics under consideration is
restricted to be linear. The inclusion of nonlinear effects might have
significant bearing on this feature, as can be surmised from the findings
of earlier studies on turbulent flows (for e.g. see Zonta et al., 2012a;
2012b).

5. Viscosity stratification in air

In this section, we consider the working fluid to be air whose
viscosity is modelled by Sutherland’s law (Sutherland, 1893):

=
+

= +

µ T
T S

µ
T

T S

¯
¯

¯ ,

where ( ).

d a
d

d

a
ref

ref
ref

3/2

3/2
(16)

In the above, =T 273.15ref K, =S 110.4 K and
= ×µ 1.716 10 Nsmref

5 2; this gives us = ×1.458 10 kg/ms Ka
6 . In

contrast to the case with water, the viscosity of air is greater at higher
temperatures. Consequently, as the upper wall is at a higher tempera-
ture, the upper half of the channel is more viscous. This translates to the
average velocity in the lower half being greater than in the upper half.
However, it should be noted that, for a given temperature difference
between the walls, the change of the viscosity of air is not as pro-
nounced as in water. For instance, when =T 25 K, the ratio of the

Fig. 6. Optimal perturbation at (a) =t 0 and (b) =t Topt when =Ri 0.01,
=T 25 K. The colour denotes streamwise vorticity. Optimal perturbation

characteristics: = 0,opt = 3.4058,opt =T 53.4036,opt =G 612.7978max . Viscosity
defined by Arrhenius model for water.

Fig. 7. Fraction of perturbation energy in less viscous half ( <TEµ ) for optimal
perturbation as a function of Ri for different values of ΔT at (a) =t 0 and (b)

=t Topt . Note that, when =T 0 K, =<TE 0.5µ for all values of Ri at both =t 0
and =t Topt . Viscosity defined by Arrhenius model for water.
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maximum viscosity to minimum viscosity is 1.0642 when Sutherland’s
law is used; for the same ΔT, this ratio is 1.6452 when the viscosity is
defined by the Arrhenius model in Eq. (15); the effective bulk Reynolds
number is 2605.47 and 2729.79 for the upper and lower halves re-
spectively. Therefore the viscosity stratification can be deemed as weak
in air.

For evaluating the optimal perturbations, we use =Re 2000 and
=Pr 1. As before, the flow is linearly stable for this choice of the

governing parameters. To keep the focus on the localisation of the
optimal perturbations, the nonmodal stability characteristics are pro-
vided in Appendix B. Here, we only state that the variation in the op-
timal transient growth Gmax for the values of ΔT selected is not sig-
nificant. As discussed above, considering the small variations of Gmax,
one might be tempted to not consider variable viscosity effects in the
analysis.

With regard to the structure of the optimal perturbations, we find a
clear localisation due to viscosity stratification. In Fig. 9(a), we show
the optimal perturbation to be more pronounced in the less viscous
(lower) half of the channel. Once again, this points to a stronger streak
in the less viscous half of the channel at the time when the perturbation
energy is maximum. In Fig. 9(b), we plot the fraction of perturbation
energy <TEµ in the less viscous half as a function of Ri for different
values of ΔT at =t Topt . At =t 0, the variation of <TEµ of the optimal
perturbations with Ri is very similar. For the cases with variable visc-
osity, as <TEµ is greater than 0.5, the optimal perturbations are asym-
metric about the channel centreline. The results presented in this sec-
tion show that the localisation of optimal perturbations due to viscosity
stratification is not an artefact of the viscosity model selected.

6. Conclusion

In this article, the nonmodal characteristics of a pressure driven
channel flow with variable fluid viscosity have been discussed. We have
considered two models for defining viscosity: Arrhenius model for
water and Sutherland’s law for air. For a large range of Richardson
number, the optimal transient growth obtained is found to be sig-
nificant regardless of the strength of the viscosity stratification, and
therefore subcritical mechanisms can be considered strong candidates
for causing the transition of the flow. However the difference in the
optimal gain obtained despite including variable viscosity is not very
drastic. On the other hand, we have shown that variable viscosity ef-
fects have strong implications on the structure of the optimal pertur-
bation. The perturbation energy is found to be localised in regions
where the fluid viscosity is lower. The localisation features survive
throughout the linear evolution of the perturbation, and one therefore
obtains strongly localised streaks in the system. On neglecting variable
viscosity, we show that the localisation features are entirely missed.
Such features are expected to have a significant bearing on the transi-
tion in these systems. A full nonlinear analysis of such transiently
growing, localised optimals is required to get a more complete picture
of the distribution of secondary fluid motions and eventually transition
to turbulence. Therefore we conclude that judicious considerations
must be taken before a choice can be made regarding whether variable
viscosity can be neglected or not.
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Appendix A. Derivation of laminar base flow

Here, we present the derivation of the mean flow when the viscosity is a function of the normal coordinate y. Under steady state conditions, the
streamwise momentum equation reduces to:

= +
y

µ U
y

0 d
d

¯ d
d

.
(17)

Above, is the nondimensional mean pressure gradient in the streamwise direction. Integrating once, we get:

+ =y µ U
y

¯ d
d1 (18)

Above, 1 is the constant of integration. Integrating again, we get:

= + +U y y y
µ y

y
µ y

( ) d
¯ ( )

d 1
¯ ( )

y y

1 1 1 2 (19)

Above, 2 is another constant of integration. The mean flow obeys no-slip boundary conditions at the walls, i.e., ± =U ( 1) 0. As a consequence,
= =U ( 1) 02 . Using the boundary condition at the upper wall, we get:

=

= =

I
I

I y
µ y

I y y
µ y

where d 1
¯ ( )

and d
¯ ( )

.

1 2

1

1 1

1
2 1

1

(20)

As the viscosity is not constant across the channel, U is no longer symmetric about the channel centreline. Let Um be the maximum velocity at
=y ym; typically we choose =U 1m for simplicity. As the RHS of Eq. (18) goes to zero at =y y ,m we get:

= =y I
I

.m
1 2

1 (21)

Note that ym depends only on the viscosity profile. When the fluid viscosity is constant, it can be readily verified that =y 0,m i.e., the channel
centreline.

As =U y U( ) ,m m using Eqs. (19) and (20), we can derive expressions for and 1 as follows:

= U I
I I I I

m 1

1 2 2 1 (22)

=

= =

U I
I I I I

I y
µ y

I y y
µ y

where d 1
¯ ( )

and d
¯ ( )

.

m

y y

1
2

1 2 2 1

1 1 2 1
m m

(23)

Finally, the mean flow is obtained as follows:

=U y U
I I I I

I y y
µ y

I y
µ y

( ) d
¯ ( )

d 1
¯ ( )

.m y y

1 2 2 1
1 1 2 1 (24)

When the viscosity is constant ( =µ̄ 1), it can be verified that the familiar parabolic profile that is symmetric about the centreline is obtained.

Appendix B. Optimal perturbation characteristics for air

With the viscosity of air modelled by Sutherland’s law, Fig. 10 shows the optimal transient growth characteristics as a function of Ri for different
ΔT. We note insignificant changes in the optimal transient growth, which also holds true for the other features of the optimal perturbation such as the
optimal time Topt when the disturbance attains its maximum energy. For a wide range of Ri, the optimal perturbations are streamwise independent,
i.e., = 0opt . Unlike for the results obtained with the Arrhenius model, the optimal spanwise wavenumber βopt does not change considerably. It is to
be noted that variations of βopt with viscosity stratification offers a preliminary clue about the structure of the optimal perturbation. Furthermore, we
confirm that the early time dynamics is buoyancy driven before momentum forcing takes over at later times.
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