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Receptivity, disturbance growth and transition to turbulence of the three-dimensional
boundary layer developing on a swept flat plate are studied by means of numerical
simulations. The flow is subject to a favourable pressure gradient and represents
a model for swept-wing flow downstream of the leading edge and upstream of
the pressure minimum of the wing. The boundary layer is perturbed by free-
stream turbulence and localized surface roughness with random distribution in the
spanwise direction. The intensity of the turbulent free-stream fluctuations ranges
from conditions typical for free flight to higher levels usually encountered in turbo-
machinery applications. The free-stream turbulence initially excites non-modal streak-
like disturbances as in two-dimensional boundary layers, soon evolving into modal
instabilities in the form of unsteady crossflow modes. The crossflow modes grow
faster than the streaks and dominate the downstream disturbance environment
in the layer. The results show that the receptivity mechanism is linear for the
disturbance amplitudes under consideration, while the subsequent growth of the
primary disturbances rapidly becomes affected by nonlinear saturation in particular
for free-stream fluctuations with high intensity. Transition to turbulence occurs in the
form of localized turbulent spots randomly appearing in the flow. The main features
of the breakdown are presented for the case of travelling crossflow vortices induced by
free-stream turbulence. The flow is also receptive to localized roughness strips, exciting
stationary crossflow modes. The mode with most efficient receptivity dominates the
downstream disturbance environment. When both free-stream fluctuations and wall
roughness act on the boundary layer at the same time, transition is dominated by
steady crossflow waves unless the incoming turbulence intensity is larger than about
0.5 % for roughness amplitudes of about one tenth of the boundary-layer displacement
thickness. The results show that a correct prediction of the disturbance behaviour can
be obtained considering the receptivity and evolution of individual modes. In addition,
we provide an estimate for the amplitudes of the external disturbance sources above
which a fully nonlinear receptivity analysis is necessary.

1. Introduction
Receptivity, disturbance growth and breakdown are the fundamental stages through

which laminar flow becomes turbulent. Numerous issues are involved in the transition
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process, for example how external perturbations enter the boundary layer and excite
internal disturbances (receptivity), how the latter grow (instability), and when and
where the flow first becomes turbulent (breakdown). The relevance of these issues is
closely related to applications, where, for instance, drag reduction on aircraft wings
by suppression or downstream delay of transition is of interest (flow control).

1.1. Transition in two-dimensional boundary layers

The classical transition scenario in two-dimensional boundary layers originates from
exponentially growing Tollmien–Schlichting (T-S) waves and is observed in flows
with low background disturbance levels. When these primary waves grow above a
threshold amplitude, the flow becomes susceptible to secondary instability that is
three-dimensional in nature and characterized by the occurrence of lambda-shaped
vortices (cf. the reviews by Herbert 1988 and Kachanov 1994). Several experiments (see
e.g. Taylor 1939; Klebanoff 1971; Westin et al. 1994) reveal, however, that transition
in boundary-layer flows exposed to free-stream turbulence with intensity � 1 % of
the free-stream velocity is initiated by the growth of perturbations elongated in the
streamwise direction rather than by T-S waves. These take the form of streaks with
high and low streamwise velocity alternating in the spanwise direction. The streamwise
velocity perturbations of the streaks are due to the wall-normal displacement of fluid
particles in shear flows by weak pairs of counter-rotating streamwise vortices (lift-up
mechanism). The lift-up is promoted by low-frequency oscillations of the turbulent free
stream, whereas the high-frequency components are highly damped inside the shear
layer (Jacobs & Durbin 1998; Zaki & Saha 2009). As the streaks grow downstream,
they become susceptive to high-frequency secondary instability triggered by free-
stream turbulence (Zaki & Durbin 2005; Hœpffner & Brandt 2008) or by streak
interactions (Brandt & de Lange 2008), and breakdown to turbulent spots is initiated.
These spots appear at random locations, grow in size and number and merge with
each other until the flow is fully turbulent (bypass transition). A detailed numerical
analysis of bypass transition under free-stream turbulence can be found in Jacobs &
Durbin (2001) and Brandt, Schlatter & Henningson (2004).

1.2. Transition in three-dimensional boundary layers

Boundary layers on swept wings, plates and wedges, on cones or on rotating disks are
three-dimensional, and the transition mechanisms differ from those in two-dimensional
flow owing to the existence of different instability types. Saric, Reed & White (2003)
list four kinds of instabilities, relevant in different regions of the boundary layer:
attachment-line, Görtler, streamwise (T-S waves) and crossflow instabilities. The focus
is here on the crossflow instability type in accelerated swept-plate flow. Crossflow
instability is related to the inflectional velocity profile of the cross component of
the mean flow. The base flow is therefore susceptive to strong inviscid instability,
which can be both steady and unsteady (see also the review article by Bippes
1999). Crossflow disturbances are intensified in the forward part of a wing by the
favourable pressure gradient, whereas growth of T-S waves is suppressed in this region.
These become instead relevant in the decelerating flow in the rear portion of the
wing.

Whether steady or unsteady crossflow waves lead to transition of swept flow is
a relevant issue for the correlation between wind-tunnel experiments and free-flight
tests with significantly lower levels of external vortical disturbances. Experiments by
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Deyhle & Bippes (1996) and White et al. (2001) and numerical studies by e.g. Crouch
(1993), Choudhari (1994) and Schrader, Brandt & Henningson (2009) suggest that
steady crossflow modes induced by wall roughness dominate in an environment of
low-amplitude free-stream disturbances (at free-flight conditions), whereas travelling
modes become dominant at higher intensities of the background disturbance (in turbo-
machines or some wind-tunnel tests). As the crossflow waves grow downstream in
amplitude, they distort the chordwise mean-velocity profiles in the spanwise direction
such that the flow becomes susceptive to high-frequency secondary instability. Results
of the secondary instability of swept-wing flow based on the parabolized stability
equations (PSE) are available in Malik et al. (1999) and Haynes & Reed (2000);
findings from direct numerical simulation (DNS) are presented by Wintergerste &
Kleiser (1997) for the temporal framework and by Högberg & Henningson (1998)
and Wassermann & Kloker (2002, 2003) for spatially evolving flows. Flow control
in swept-wing boundary layers has been addressed experimentally by Saric, Carillo
& Reibert (1998). These authors used arrays of distributed roughness elements with
different spanwise spacing near the leading edge of a swept wing. They show that the
most amplifying steady crossflow mode can be suppressed if the spacing between the
roughness elements is smaller than the most unstable spanwise wavelength. Under
these conditions, a less unstable, ‘useful’ crossflow mode becomes dominant, and
transition to turbulence occurs farther downstream than in the uncontrolled scenario.
Wassermann & Kloker (2002) confirmed this passive control strategy by means of
DNS.

This work studies receptivity, growth and breakdown of crossflow instability
in swept-plate flow under free-stream turbulence, surface roughness and the
combination of both by means of nonlinear large-eddy simulation (LES) and
DNS. This type of simulations is presented here for the first time. In a previous
investigation, Schrader et al. (2009) analysed linear receptivity mechanisms in swept
boundary layers. These authors isolated the effect of different components of free-
stream disturbances, modelled by single free-stream Orr–Sommerfeld modes, and
demonstrated that travelling crossflow modes can be forced by vortical disturbances
in the free stream via a scale-conversion process. In addition, scattering of free-
stream modes on chordwise localized surface roughness with spanwise periodicity
was examined and shown to become relevant only for high levels of free-stream
turbulence.

However, in three-dimensional boundary layers, the interaction between
exponentially growing modes may continuously induce waves with large amplification
and quickly create a disturbed boundary-layer flow. To better analyse this scenario,
full nonlinear simulations are needed and presented here. We employ a more complex
model for free-stream vorticity by considering the superposition of a large number
of Orr–Sommerfeld/Squire modes with a turbulent energy spectrum. Localized
roughness with spanwise random amplitude is modelled through a sum of Fourier
modes. These disturbance sources will bring nonlinear effects into play and provide
a more complete picture of receptivity and transition in three-dimensional boundary
layers. Moreover, we investigate herein the breakdown of the three-dimensional
boundary layer. The first part of the results is meant to illustrate the disturbance
features inside the shear layer during growth, saturation and breakdown of the
primary instabilities induced by free-stream turbulence. In the second part, the focus
is on the early receptivity process, where receptivity of unsteady and steady crossflow
instability is compared with the linear results of Schrader et al. (2009).
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Figure 1. (a) Wall-normal profiles of streamwise and crossflow velocities for
Falkner–Skan–Cooke boundary-layer flow. (b) Reynolds number based on displacement
thickness (black) and downstream location (grey) versus chord coordinate. (c) Angle of
external streamline along chordwise coordinate.

2. Flow configuration and numerical approach
2.1. Base flow

Here, boundary-layer flow over a swept flat plate is considered. The mean flow is
obtained by solving the Navier–Stokes equations with Falkner–Skan–Cooke velocity
profiles as the initial condition. This configuration often serves as a prototype
for swept-wing boundary-layer flow, including many of its characteristics such as
chordwise pressure gradient, streamline curvature and crossflow, while leading edge
and surface curvature are not taken into account. The stream- and cross-wise velocity
profiles of swept-plate flow are depicted in figure 1(a), where the coordinate system
adopted is also shown. The basic flow is completely described by the Reynolds number,
the Hartree parameter and the sweep angle. These are chosen in correspondence with
the values in Schrader et al. (2009). This set of parameters defines conditions similar
to those of the airfoil experiments at Arizona State University reported by Reibert
et al. (1996). The chordwise pressure gradient is quantified by the Hartree parameter
βH , chosen to be βH =0.333. This establishes a favourable pressure-gradient boundary
layer with chordwise flow acceleration:

U ∗
∞(x∗) = U ∗

∞,0

(
x∗ + x∗

0

x∗
0

)βH /(2−βH )

and W ∗
∞ = U ∗

∞,0 tan φ0, (2.1)

where U and W indicate chord- and spanwise mean velocity and the asterisk denotes
dimensional quantities. The sweep angle φ0 = 45◦ is defined at a reference station
x∗

0 , which corresponds to the inflow plane of the computational domain. The sweep
together with chordwise flow acceleration causes curved streamlines and a force
imbalance inside the boundary layer, driving a secondary mean-flow component in
the cross-stream direction, the crossflow. The sweep angle under investigation is
characterized by significant crossflow and thus by strong crossflow instability.

Lengths are normalized by the chordwise boundary-layer displacement thickness
δ∗
0 ≡ δ∗(x0) at the reference location x0 and velocities by the chordwise free-stream

velocity U∞,0 ≡ U∞(x0). Reference length and velocity define the Reynolds number at



Swept-plate boundary-layer transition under free-stream turbulence 301

the computational inlet,

Reδ∗
0
=

U∞,0δ
∗
0

ν
, (2.2)

where ν is the kinematic viscosity. The local Reynolds number Reδ∗ is obtained by
replacing δ∗

0 and U∞,0 in (2.2) by their local values. The inflow Reynolds number is
fixed at Reδ∗

0
= 220. The Reynolds number Rex based on the chordwise location is

also common in literature, related to Reδ∗
0

via

Rex = [x0U∞,0 + xU∞(x)]Reδ∗
0
. (2.3)

Figure 1(b) shows the Reynolds numbers Reδ∗ and Rex and figure 1(c) shows the
local angle φ of the external streamline versus the chordwise coordinate x for the
configuration adopted here.

2.2. Numerical method

The present results are obtained using a spectral method to solve the three-dimensional
time-dependent incompressible Navier–Stokes equations; see Chevalier et al. (2007).
The simulation code builds on a Fourier representation along the chord- and spanwise
coordinates x and z and on Chebyshev polynomials in the wall-normal direction y,
along with a pseudo-spectral treatment of the nonlinear terms. A zero-slip condition
is imposed along the wall for the base flow and the perturbed flow (base flow
plus disturbances). For the simulations with free-stream turbulence, von Neumann
conditions are applied in Fourier space at the far-field boundary above the plate.
To reduce the computational effort, the top boundary for the simulations with
surface roughness has been placed nearer the plate, achieved by using the asymptotic
conditions first proposed by Malik, Zang & Hussaini (1985). Periodic boundary
conditions are enforced in the spanwise and chordwise directions z and x. The swept-
plate flow develops along x: the boundary layer grows and the streamlines change
direction continuously. Nonetheless, to obtain the chordwise periodicity required by
a Fourier representation, a ‘fringe region’ is used at the downstream end of the
computational domain, as described by Nordström, Nordin & Henningson (1999).
In this region, the velocity field is forced to the desired inflow velocity profiles; they
consist of the Falkner–Skan–Cooke similarity profiles in the present case with/without
incoming free-stream disturbances.

To validate the present implementation, we show in figure 2 the chordwise evolution
of a steady crossflow mode as obtained with two different spectral methods. The mode
is computed for Reδ∗

0
= 220, inserted in the fringe region of the present spectral code

and prescribed as an inflow condition of a simulation using a spectral element method.
The spectral element code (see Tufo & Fischer 1999) builds on an inflow–outflow
formulation rather than a fringe technique. Good agreement of the modal N factor
and the growth rate σ is obtained for the two spectral methods. As we will later show
results from PSE calculations we also validate the PSE code in figure 2: the PSE
results compare well with the numerical solutions of the Navier–Stokes equations (see
also Tempelmann, Hanifi & Henningson 2009).

2.3. Subgrid-scale modelling

This study requires a computational domain of rather large spanwise and wall-
normal size to accommodate a free-stream turbulence field with a wide enough range
of length scales. The resolution of all scales would, however, result in prohibitively
large computational costs such that the simulations are only affordable by employing
an LES model. The ADM-RT subgrid-scale (SGS) model by Schlatter, Stolz & Kleiser
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Figure 2. (a) N -factor for energy and (b) growth rate of the steady crossflow mode with
spanwise wavenumber β = −0.19, initialized at Reδ∗

0
= 220. Comparison between results from

the present spectral code (black), a spectral element method (SEM; black diamonds) and a
PSE calculation (grey circles).

(2004) is used for the present simulations, building on the approximate deconvolution
model (ADM). This model has been successfully applied in incompressible transitional
and turbulent flow (see e.g. the recent work by Monokrousos et al. 2008). The main
ingredient of the ADM-RT model is the so-called relaxation term (RT) used as a
closure for the subgrid-scale stresses τij ,

∂τij

∂xj

= χHN ∗ ūi with HN = (I − G)N+1. (2.4)

Here, ūi indicates the velocity field implicitly filtered by the reduced resolution of the
LES grid, and HN denotes a three-dimensional high-pass filter of high order derived
from the low-order low-pass filter G of Stolz, Adams & Kleiser (2001), and the star
stands for convolution in physical space. Here, HN is characterized by the exponent
N = 5 and the cutoff wavenumber κc = 2π/3 of the filter G. Numerical stability is
ensured by a model coefficient χ in the range 0 � χ � 1/Δt . Here, we chose χ = 0.2,
as in Schlatter, Stolz & Kleiser (2006), Schlatter, de Lange & Brandt (2007) and
Monokrousos et al. (2008). The role of the RT term in (2.4) is to drain kinetic
energy from the resolved fluctuations at the smallest represented length scale and
thereby to model the impact of the unresolved motion on the resolved structures.
Note that all simulations were performed adding the subgrid-scale stresses. However,
the computations focusing on the boundary-layer receptivity consider only the initial
phase of the disturbance growth. In these cases, the extra relaxation term is practically
zero and the computations can be considered as DNS.

2.4. Disturbance generation

Two different disturbance sources are considered: a vortical perturbation in the free
stream and a roughness element on the wall near the inflow plane of the computational
domain. These two types of disturbances are listed in the review article by Saric et al.
(2003) as particularly relevant in swept boundary layers. The free-stream turbulence
at the inflow plane and the roughness element are shown in figures 3(a) and 3(b), and
their numerical generation is described below.
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Figure 3. (a) Turbulent free-stream fluctuations at the inflow plane of the computational
domain for a turbulence intensity of 2.53% of U∞,0. (b) Chord- and spanwise contours of the
wall roughness. The r.m.s. amplitude is 0.15 (dashed line).

2.4.1. Free-stream turbulence

The turbulent inflow disturbances are numerically generated as in Jacobs & Durbin
(2001) and Brandt et al. (2004), i.e. by the superposition of eigenmodes from the
continuous spectrum of the Orr–Sommerfeld and Squire operator—however, modified
here for the Falkner–Skan–Cooke base flow. A wave vector is associated with each
free-stream mode, where the complex chordwise wavenumber α is the eigenvalue
of the corresponding Orr–Sommerfeld and Squire problem and the wall-normal
wavenumber γ determines the position along the continuous spectrum (see e.g. Schmid
& Henningson 2001). After choosing the spanwise and wall-normal wavenumbers β

and γ and angular frequency ω, the eigenvalue α of the continuous-spectrum modes
can be obtained from analytical expressions (see Schrader et al. 2009, for swept
boundary layers). The velocity profiles pertaining to each eigenfunction are computed
numerically, whereas the free-stream behaviour can also be obtained analytically.

An isotropic perturbation field is obtained in Fourier space by considering
20 concentric spherical shells of radius κ spanning the range of wave vectors of
length κl � κ � κu. The limits κl and κu depend on the size and resolution of the
computational domain and are chosen to be κl = 0.05 and κu = 1.1. The frequency
range covered by the turbulence model is 1.5 × 10−4 � |ω| � 1.1. Forty points are
distributed with constant spacing on each shell: these define the wave vectors and
continuous-spectrum eigenmodes to be included in the expansion for the free-stream
disturbance,

uFST =

20∑
k=1

ak

40∑
l=1

ûkl(y; γ )ei(αklx+βklz−ωkl t), (2.5)

where ûkl denotes the wall-normal disturbance–velocity profiles of the free-stream
mode and contains the wall-normal oscillations. The randomness inherent in turbulent
fields is obtained through a random rotation of the shells, provided by random
phase angles of the complex coefficients ak in (2.5) as well as by the random phase
in the complex function ûkl . The energy density pertaining to the wavenumber
κk of the kth shell is equally distributed among all modes on the shell, and the
energy distribution across the wavenumbers included is approximated by the von
Kármán spectrum. Details of the spectrum can be found in Brandt et al. (2004).
The relevant measure for the disturbance amplitude is the turbulence intensity T u,
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εh hstart hend hrise hfall

0.0375, 0.075, 0.15 6 34 12 12

Table 1. Parameters of the surface-roughness shape.

defined as T u =

√
(1/3)(u2 + v2 + w2). The wall-normal distribution of the free-stream

fluctuations at the inlet is depicted in figure 3(a).
We conclude by noting that the quantitative results on the boundary-layer response

will depend on the turbulence model spectrum chosen; the relevant physics, on the
other hand, will be independent of the spectrum if the receptivity process is linear
and if there is no significant nonlinear interaction in the free stream. In that case, the
amplitude of the boundary-layer disturbances will be proportional to the amplitude
of the free-stream modes, with the turbulence intensity T u0 being the factor of
proportionality. We will show below that this holds for most of the T u0 values
studied. The random phases used for the combination of the continuous modes do
not correctly reproduce the energy transfer in a natural turbulent flow. However,
these effects appear to be relevant only for the largest T u0 examined, as shown
below; moreover, the synthetic inflow will adjust to the mean-flow conditions farther
downstream.

2.4.2. Surface roughness

The surface roughness is modelled through non-homogeneous boundary conditions
for the disturbance velocities u and w at the wall,

⎛
⎜⎝

u

v

w

⎞
⎟⎠

wall

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

−h(x, z)
∂U

∂y
0

−h(x, z)
∂W

∂y

⎞
⎟⎟⎟⎟⎠

wall

, hstart � x � hend

0, elsewhere.

(2.6)

In the expression above, h(x, z) is the shape of the roughness bump

h(x, z) = εhhx(x)hz(z), (2.7)

with the amplitude εh and the functions hx(x) and hz(z) along the chord- and
spanwise coordinates, respectively. The function hx(x) builds on a smooth, localized
step function (cf. Schrader et al. 2009), rising from x = hstart along the flank hrise , falling
till x =hend along hfall and centred at the location xr = (hstart + hend )/2, the nominal
roughness station (see figure 2b and table 1). This particular shape is characterized by
a broad spectrum of chordwise wavenumbers, giving rise to a broadband disturbance
including unstable modes. The function hz(z) is obtained through an expansion in
sinusoidal functions with 16 different spanwise wavenumbers and random phases,

hz(z) =

16∑
n=1

sin
(
nβ0z + φrand

n

)
, (2.8)

where the fundamental spanwise wavenumber β0 = 2π/Lz is defined by the spanwise
width Lz of the computational domain and φrand

n are random angles. The characteristic
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Box Reδ∗,0 Lx × Ly × Lz Nx × Ny × Nz Lfringe

L 220 1500 × 90 × 200 768 × 121 × 128 135
S 220 750 × 90 × 200 384 × 121 × 128 80

Table 2. Size and resolution of the computational domains ‘L’ and ‘S’, length of the fringe
region and inflow Reynolds number.
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Figure 4. Validation of the roughness model for the highest roughness (εh = 0.15, dotted
line). Comparison between the specified shape h(xr , z) at the roughness station xr (—) with
the no-slip contour u = 0 (grey ----). −u(xr, y =0) is plotted as well for comparison (—– thin).

roughness height εh in (2.7) is

εh =

√
h2

z

∣∣∣∣
xr

, (2.9)

i.e. the root mean square (r.m.s.) of the random spanwise hump contour at the
roughness station xr . Figure 4 gives a validation of the roughness model for the highest
roughness (εh =0.15): good agreement is found when comparing the prescribed shape
h(xr, z) at the roughness station xr with the no-slip contour u =0.

The present roughness model is linear in εh; this assumption is valid only for small
enough roughness elements. Figure 8 of Schrader et al. (2009) gives the range of εh for
which roughness receptivity is linear in εh. The present roughness elements—similar
to shape I in that reference—are in the linear range of that figure. Moreover, the
individual amplitudes of the 16 modes included in (2.8) are smaller than εh; the
present bumps can therefore be considered as low-amplitude roughness. The use of a
linear roughness model is hence justified for the values of εh considered.

2.5. Computational domain

Two computational domains with different chordwise length are used: a long one, ‘L’,
to capture the breakdown of the boundary layer and a short one labelled ‘S’ for the
receptivity study. The size Lx × Ly × Lz, resolution Nx × Ny × Nz and length Lfringe of
the fringe region of the boxes L and S are listed in table 2 together with the Reynolds
number Reδ∗,0 defining the location of the inflow plane.

2.5.1. Domain size and resolution study

The resolution in wall-normal direction y is finer than that in the wall-parallel
planes (see table 2), in particular inside the boundary layer due to the clustering of
the Chebyshev points near the wall. The normal resolution is in fact comparable
with that of Brandt et al. (2004), where no SGS model was used. Since the flow is
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Figure 5. Boundary-layer response to free-stream turbulence with T u0 = 3.73 % and L = 10.
Study of the influence of chordwise resolution Δx of the computational domain on (a) the
skin-friction coefficient (dots: Falkner–Skan–Cooke solution) and (b) the evolution of the
wall-normal maximum of urms . Δx = 5.86 (Nx = 256) (—); 3.91 (Nx =384) (grey ----); 2.93
(Nx = 512) (-·-·-) and 1.95 (Nx =768) (grey —–).

swept at 45◦, the resolution requirements in the x and z directions are expected to be
similar. The laminar structures preceding the breakdown—the crossflow modes—can
thus be fully resolved, while the SGS model will compensate mainly for unresolved
small wall-parallel scales occurring at and after the turbulent breakdown. Owing
to a wall-normal resolution typical for DNS, the resolution study is restricted to
the chord- and spanwise directions. Figure 5 shows the influence of the chordwise
resolution in (a) on the skin-friction coefficient and in figure 5(b) on the chordwise
fluctuation amplitude in terms of the maximum of the r.m.s. The transition location,
identified by the rapid increase of the skin friction, moves drastically upstream as the
chordwise resolution is refined from Δx = 5.86 to 3.91. This trend becomes slower
at a further increase in resolution, and the transition location is observed at nearly
the same downstream location when the numerical resolution is further refined from
Δx =2.93 to 1.95. Figure 5(b) shows that, while the early transient and linear growth
phase is captured with similar accuracy in the different cases, the subsequent rapid
amplification observed around x ≈ 600 is underpredicted on the coarser domains.
Small structures responsible for the excitation of the secondary instability need to
be represented on the grid for the correct prediction of the transition location. This
requirement is met on the fine meshes, and a further refinement below Δx = 1.95
will only weakly affect the results while significantly increasing the computational
costs. The differences in the maximum levels of cf and urms observed in the regime
after transition are due to the different range of resolved scales, and uncertainties in
the turbulent fluctuations associated with resolution may therefore be relevant for
x � 700 when T u0 = 3.73 %. However, we do not investigate the turbulent regime
here; the main focus of the paper is on the receptivity phase and the structures at the
breakdown stage. The SGS model is not designed to effect the physics of transition
but to prevent unphysical parasitic upstream influences from the highly fluctuating
turbulent region farther downstream for simulations where transition occurs (see also
Schlatter et al. 2006).

On the short domain S, on the other hand, a finer resolution is computationally
feasible. Two modifications of box S in table 2 are considered, first a refinement
in the streamwise direction, from Δx =1.95 to 1.46, and second a higher resolution
(1.5 times) in the z direction. The vortical perturbation prescribed at the inlet of
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Figure 6. Study of the influence of resolution and size of the computational domain.
Boundary-layer response to free-stream turbulence with L =10. (a) T u0 = 2.53 %. Variation of
chord- and spanwise resolution of box S; see table 2. Nx × Ny × Nz = 384 × 121 × 128 (—–);
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the original and the modified domains is composed of modes with wavenumbers
between κl = 0.05 and κu = 1.1 with a turbulence intensity of T u0 = 2.53 % and a
characteristic length of L =10. It becomes clear from figure 6(a) that the receptivity
and the subsequent growth of the instability obtained on the coarsest grid do not
differ from the results on the two refined meshes.

Next, the influence of the width Lz of the numerical domain on the boundary-
layer response is examined. This is investigated by considering the shorter box S
with Lz = 300 and Nz = 192, i.e. the spanwise resolution is kept fixed. For a fair
comparison, the parameters defining the free-stream turbulence are left unchanged:
the turbulence intensity considered is T u0 = 3.73 % and the integral length L =10.
Figure 6(b) shows the downstream evolution of the excited boundary-layer disturbance
in the wider domain as well as in box S. The initial transient disturbance growth is
slightly enhanced in the wider domain whereas the disturbance growth rate farther
downstream is hardly affected. This difference can be explained by the nonlinear
interactions occurring between wider structures at the initial receptivity phase. The
spanwise scale of the disturbance is not changed by the increased domain size as
shown by the identical growth rates downstream. Note, however, that the results are
obtained for the second highest free-stream turbulence intensity studied, T u0 = 3.73 %,
and the agreement between the curves is expected to improve at lower T u0. In light
of the rather small influence of Lz on the boundary-layer response and for the sake
of the computational costs, the subsequent simulations are performed on the default
domain in table 2 with Lz = 200.

2.6. Characterization of the free-stream turbulence

Because of the distribution of the modal wavenumbers defining the free-
stream turbulence on concentric spherical shells, the resulting disturbance field is
homogeneous and isotropic. In swept-plate flow with favourable pressure gradient,
however, the mean flow is subject to chordwise acceleration (∂U/∂x > 0). This gives
rise to non-zero production terms in the Reynolds-stress transport equation (see for
instance Pope 2001). Figure 7 displays the behaviour of the artificial turbulence field
in the free stream. In figure 7(a), the downstream decay of the total turbulence
intensity at three different levels above the plate is plotted. The turbulent inflow
conditions are T u0 = 3.73 % with L = 10. It is apparent that the turbulence intensity
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decays at a rate similar to that in homogeneous isotropic turbulence, where the
energy decay obeys a power law. In Fransson et al. (2005), the exponent of this law
has been experimentally determined as −0.6 for grid-generated turbulence, while the
parameters C and xr depend on the turbulence grid. Here, the curve fit has been done
with C = 1.73 and xr = −600. The plot also shows that the decay rate depends only
weakly on the wall-normal level and hence that homogeneity is maintained across the
free stream. However, figure 7(b) reveals that the turbulent kinetic energy is not equally
distributed among the fluctuation components and their individual decay differs. The
adjustment to the free-stream conditions occurs already in the fringe region and
in the region near the inflow plane where ∂U/∂x and the streamline curvature are
maximum. The wall-normal fluctuations are larger than their chordwise counterpart.
This can be explained by considering the production terms in the Reynolds-stress
transport equation for the chordwise u and wall-normal v fluctuations in accelerating
flows,

P11 = −2u2
∂U

∂x
, (2.10a)

P22 = −2v2
∂V

∂y
= 2v2

∂U

∂x
. (2.10b)

A negative production term is seen in the first equation, whereas positive production
of wall-normal fluctuations is caused by the flow acceleration, where the continuity
equation has been used to relate the mean-flow gradients. Energy is drained from the
u-component of the free-stream turbulence into the v-component by the chordwise
acceleration of the underlying mean flow. The spanwise velocity fluctuations, initially
strong, decay rapidly until they reach amplitudes similar to those pertaining to u.
The relative enhancement of the wall-normal fluctuations can also be related to the
stretching of chordwise vorticity, as observed for example in the convergent section
of a wind tunnel, while the drop of u and w is associated with the decrease of
wall-normal vorticity induced by the negative ∂V/∂y.
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Disturbance source Amplitude

Free-stream turbulence T u0 × 102 0.17; 0.42; 0.84; 1.26; 1.69; 2.11; 2.53; 2.95; 3.73; 5.06
Surface roughness εh × 102 3.75; 7.5; 15

Table 3. Amplitude of the forcing disturbance. Turbulence intensity of the free-stream
turbulence at the inflow plane and r.m.s. height of the surface-roughness strip.

3. Results
The response of the three-dimensional swept-plate boundary layer to free-stream

turbulence and surface roughness is studied. The disturbance amplitude is expressed
in terms of the turbulence intensity for the free-stream disturbance and the r.m.s.
height for the roughness. The values considered are compiled in table 3. The statistics
presented in the following are obtained by averaging in time and in the spanwise
direction. Note that the r.m.s. values are indicative of the total disturbance energy, sum
of the energy in the modes with different wavenumbers. The phase relation between
the individual components, however, determines the local distortion. Therefore, r.m.s.
values can mask large localized distortions, the origin of secondary instabilities.

3.1. Part I. Laminar–turbulent transition

Results on the transition under a high-amplitude disturbance environment are
presented first. The skin-friction coefficient provides a good indication of the transition
location. This is shown in figure 8(a) for free-stream turbulence with inflow intensities
of T u0 = 2.53 % and 3.73 %. The completion of transition is observed farther
upstream when increasing the level of the external disturbance. Bonfigli (2006) pointed
out that the skin friction does not exhibit an overshoot before approaching the value
for fully turbulent flow, in contrast to the case of Blasius flow (cf. Monokrousos
et al. 2008, for instance), and this observation is confirmed here. In figures 8(c) and
8(d ), the boundary layer is characterized in terms of displacement and momentum-
loss thickness as well as shape factor. These quantities are computed from both the
chord- and the spanwise mean flows. A substantial rise of the thicknesses and drop of
the shape factor is observed around x ≈ 700 and x ≈ 900, respectively, indicating the
region of laminar–turbulent transition. In agreement with experimental and numerical
findings for bypass transition in two-dimensional boundary layers (Matsubara &
Alfredsson 2001; Brandt et al. 2004), the displacement thickness is seen to decrease
slightly below the laminar values in the transitional region, and then to increase faster
in the turbulent flow. The momentum loss is, on the contrary, always larger than
in the laminar case owing to the increase of skin friction caused by the occurrence
of the turbulent spots. Note in figure 8(d ) that the shape factor computed from the
chordwise mean velocity slightly increases in the laminar region rather than being
constant. This shows that the chordwise base-flow profiles, solution to the Navier–
Stokes equations, are not exactly self-similar, in contrast to the initial Falkner–Skan
profiles.

The wall-normal maximum of the chordwise, wall normal and spanwise velocity
fluctuations is reported in figure 8(b). Upstream of x ≈ 200 the v component is weak
while the horizontal components rapidly grow. This indicates that the boundary layer
is initially subject to non-modal instability, as typically observed in two-dimensional
boundary layers. In Blasius flow, only the streamwise velocity component grows at the
initial stages of the transition while the cross-stream components decay (Brandt et al.
2004). In three-dimensional boundary layers, in contrast, the basic flow is characterized
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Figure 8. Visualization of breakdown to turbulence of swept-plate flow exposed to free-stream
turbulence with inflow turbulence intensity of T u0 = 2.53 % (grey) and 3.73 % (black) through
(a) skin-friction coefficient and (b) downstream evolution of the r.m.s. of chordwise (—–),
vertical (----) and spanwise disturbance velocities (-·-·-·-). (c) Evolution of displacement (—–)
and momentum-loss thickness (----) and (d ) shape factor, based on chord- (top) and spanwise
mean velocity (bottom). The laminar solution (thin grey) and the theoretical curves for
Falkner–Skan–Cooke flow (dots) are given as well.

by wall-normal shear in both the chordwise and spanwise directions; therefore, the lift-
up effect induces the growth of both components, as observed in the figure. Upstream
transient growth is thus found to be a precursor of downstream crossflow modes,
providing crossflow modes with initial energy. After the initial phase of primary
growth, a fast increase in the amplification rate is observed in figure 8(b) first for
the case with T u0 = 3.73 %, x ≈ 600, and later for the lower intensity T u0 = 2.53 %,
x ≈ 800. This is associated with the rapid rise in skin-friction coefficient in figure 8(a)
and is due to the appearance of high-frequency secondary instabilities and turbulent
spots in the flow. The weak overshoot in the curves for the velocity fluctuations can
be related to the maximum values of skin friction. The maximum amplitude prior
to breakdown is slightly larger for T u0 = 2.53 % than that for T u0 = 3.73 %, i.e. the
breakdown is not initiated at the same disturbance level inside the shear layer. This
suggests that the transition location can only approximately be predicted from a
certain threshold amplitude of the primary crossflow mode alone. At the end of the
computational domain, the level of velocity fluctuations is almost the same for the
two cases: the flow has reached an equilibrium turbulent state.
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It is worth pointing out the difference between the disturbance evolution depicted
in figure 8(b) and, for instance, the data in figure 10(a) of Fransson et al. (2005)
pertaining to non-modal growth of streaks in two-dimensional boundary-layer flow.
Fransson et al. (2005) report a strong overshoot in the curves for the streamwise
fluctuation energy, intensifying with increasing T u, before the energy level sets to
a constant value in the fully turbulent boundary layer. This behaviour suggests a
pronounced region of intermittency in two-dimensional flow, which is not observed
here in the swept boundary layer. This discrepancy can be explained with the different
dominating instability types prior to transition: the crossflow vortices in swept flow are
destabilized much faster by secondary instability than the streaks in two-dimensional
flow. Therefore, the amplitude of the crossflow modes (upon nonlinear saturating
effects) and the average transition location may be more closely correlated in three-
dimensional boundary layers than in their two-dimensional counterpart.

An overall picture of the transition in swept boundary layers exposed to free-stream
turbulence is provided in figure 9. This figure displays a time series of snapshots of
the flow in a wall-parallel plane inside the boundary layer, y =2, together with a
view of the free-stream fluctuations in a plane located at y =40 well above the
boundary layer, figure 9(a). The results are obtained with inflow turbulence of
intensity T u0 = 3.73 % and length scale L = 10, and the snapshots are taken after
the flow field has reached a statistically converged state. The flow is swept from left
to right and bottom to top in the figure. As seen in figure 9(a), the finer length
scales of the external disturbance disappear farther downstream, indicating decay of
the free-stream turbulence. Figures 9(b)–9(g) show that instabilities in the laminar
region of the boundary layer appear in the form of long structures, tilted about
45◦ with respect to the chord of the plate. Around x = 500, these structures have
reached a threshold amplitude such that the boundary layer becomes susceptive to
secondary instabilities: high-frequency modes are triggered at random locations and
grow rapidly in amplitude. Instabilities are most likely triggered by high-frequency
components of the free-stream turbulence. An alternative mechanism may be the
nonlinear interaction between low-frequency modes already in the boundary layer
(see also Brandt & de Lange 2008, for two-dimensional flow).

Patches of irregular motion are seen to appear farther downstream, forming local
regions of turbulence called spots. The spot seen in figure 9(b) grows in size with
time; a second spot occurs in figure 9(c) and both spots become wider and longer as
they travel downstream. At time t =6230 (figure 9e), a third spot can be identified
in the lower part of the domain and later (figure 9g), the three turbulent spots have
almost merged to form one large region of turbulent motion. Downstream of x = 700
the boundary layer is fully turbulent, and the turbulent region is constantly fed by
merging spots incident from the upstream laminar part of the layer. It becomes
apparent that the dominant disturbance structures in the fully turbulent boundary
layer are still elongated and tilted in the free-stream direction (Schlatter & Brandt
2008). Note, finally, that all spots in figure 9 form in a rather limited chordwise
region. This provides further indication for a less pronounced intermittency phase of
this transition scenario as compared with bypass transition in the two-dimensional
flow.

Figure 10 characterizes the wall-normal and spanwise length scales of the
disturbance structures inside the boundary layer by showing contour lines of
instantaneous chordwise velocity in lateral planes at four downstream locations.
At x = 300 (figure 10a), the deformation of the mean flow is still moderate, and
the smallest observed spanwise length scale is about 10, i.e. comparable to the
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Figure 9. Free-stream turbulence with intensity T u0 = 3.73 % and integral length L = 10 and
the response of the swept-plate boundary layer to it. The flow is from left to right. (a)
Downstream evolution of the chordwise fluctuation u in the free stream at y = 40. (b–g)
Boundary-layer response in terms of the chordwise fluctuation u at y = 2 at different instants
of time.

integral length scale of the free-stream turbulence. Farther downstream, at x =400
and 500, contour lines typical for crossflow modes are identified, the gradients in
instantaneous chordwise velocity have become steeper and the structures have grown
in size in the wall-normal direction with the boundary layer. Their spanwise size
has, in contrast, decreased relative to the layer thickness; see figures 10(b) and 10(c).
Owing to the noisy environment and random superposition of different modes, the
mean flow deformation does not resemble that usually observed under controlled
disturbance generation. Crossflow modes of different amplitude, spanwise and wall-
normal scales appear side by side in an unpredictable fashion. However, the formation
of strong shear layers supporting rapid secondary instabilities is clearly observed. In
figure 10(d ), regions of strong flow deformation, steep velocity gradients and fine
spanwise scales are identified near the edges of the depicted domain, while the flow
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Figure 10. Boundary-layer response to free-stream turbulence with intensity T u0 = 3.73 %
and integral length L = 10. y–z planes showing contour lines of instantaneous chordwise
velocity in the boundary layer for time t = 6270 (compare with figure 5f ) at four chordwise
stations upstream of the breakdown location. (a) x = 300, (b) x =400, (c) x = 500 and (d )
x =600. The contour lines show levels between 0.05 and 1.25 (from black to grey) with spacing
0.15. Note that the y axis is enlarged by a factor of 1.67.

field in the neighbourhood is smoother. These highly perturbed regions are referred
to as turbulent spots (cf. figure 9f ) and indicate where the boundary layer first
approaches the turbulent state. Note that these turbulence patches are located closer
to the wall than the original crossflow modes. As in two-dimensional boundary layers,
the late-stage high-frequency instability moves from the upper part of the boundary
layer towards the wall (Jacobs & Durbin 2001; Brandt et al. 2004; Zaki & Durbin
2005).

Next, the disturbance structures caused by the secondary instabilities shortly
upstream of the transition location are examined. Secondary instability of crossflow
modes has been considered theoretically (Malik et al. 1999), experimentally (White
& Saric 2005, more recently) and numerically (Bonfigli & Kloker 2007, for a
comparison with stability analysis). These instabilities are of inviscid inflectional
type and associated with strong shear layers of the mean flow induced by saturated
crossflow modes. Following Malik et al. (1999), three different classes of modes are
identified: (i) mode I or ‘z’, associated with the minimum of the spanwise gradient of
the streamwise velocity and characterized by high-frequency oscillations; (ii) mode II
or ‘y’, associated with the maximum of the wall-normal gradient, also characterized
by high-frequency oscillations; (iii) mode III, associated with the maximum of the
spanwise gradient, characterized by lower frequencies and located closer to the wall.
These modes have been clearly identified when considering secondary modal stability
of saturated steady crossflow modes, whereas a less clear-cut distinction has been
observed for travelling waves, which are more relevant for the transition scenario in
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Figure 11. Instantaneous flow field upstream of the transition location (t = 6270,
T u0 = 3.73 %). (a) The y–z plane (x = 600) showing contour lines of chordwise velocity
with levels between 0.08 and 1.28 and spacing of 0.08. The shaded areas identify regions of
high-intensity secondary disturbances (chordwise component). (b) Contours of positive and
negative chordwise disturbance velocity (grey: u =0.12; black: u = −0.12 and of λ2 (light grey:
λ2 = −1.4 × 10−3).

the presence of free-stream turbulence. A combination of modes ‘z’ and ‘y’ seems to
appear in the experiments reported by Bippes (1999) under natural conditions.

To identify the relevant flow structures of the spot precursors, numerous velocity
fields have been examined in detail. Note that the identification of the various
secondary instability modes of travelling crossflow vortices presented by Wassermann
& Kloker (2003) required a spanwise Galileian transformation to travel with the
primary wave and an adapted temporal–spanwise Fourier decomposition of the
disturbance (see the above reference for details). Such an analysis is impossible in
the case of disturbances randomly induced by free-stream turbulence. The primary
crossflow modes are periodic neither in time nor in space; they appear as elongated
structures of finite length. Similarly, the high-frequency perturbations leading to
formation of turbulent spots appear as localized, rapidly amplifying wave packets.
As a consequence, a visual analysis is adopted to characterize the late stages of the
laminar–turbulent breakdown.

An example of typical pre-transitional disturbance structures is provided in figure 11.
Figure 11(a) is a close-up of figure 10(d ) displaying contour lines of instantaneous
chordwise velocity typical for a saturated crossflow vortex. In addition, regions of the
most intense secondary perturbation riding on top of the crossflow vortex are shown
as shaded areas. These are obtained by following the primary instability mode over
a short downstream distance and correlating the instantaneous chordwise velocity
at two locations �x1 and �x2, u(�x1)u(�x2)/u2(�x1). The perturbation determined in this
way represents streamwise fluctuations of the chordwise velocity component along the
crossflow vortex. The fluctuations will inevitably also contain the streamwise variation
of the underlying primary mode due to non-parallel effects and inhomogeneities;
however, this contribution turns out negligible when considering only the regions of
largest disturbance.

In the figure, two regions are identified, where the chordwise component of the
secondary disturbance velocity is larger than 50 % of the maximum. These two areas
can be related (i) to strong shear at the updraught side of the primary vortex in
what appears as a combination of modes ‘z’ and ‘y’ and (ii) to the region of positive
spanwise gradient located closer to the wall, as typically observed for mode III. The
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first type of high-frequency perturbation is observed to appear more frequently and to
dominate during the breakdown. This can be explained by the fact that the secondary
instability is most likely triggered by high-frequency disturbances in the free stream:
modes located in the upper part of the boundary layer are thus most easily excited.
Note, in addition, that largest growth rates are obtained for modes ‘z’ and ‘y’ when
examining the linear instability of individual steady crossflow modes or their packets
(Wassermann & Kloker 2002).

Finally, vortical structures typical of spot precursors are displayed in figure 11(b).
These are identified by the λ2 criterion (Jeong & Hussain 1995). Finger vortices
located on the updraught side of the primary vortex are clearly visible, in agreement
with previous numerical studies with controlled disturbances (Wintergerste & Kleiser
1997; Wassermann & Kloker 2002, 2003). Typically, packets of two to three vortices
are observed in our simulations.

3.2. Part II. Receptivity

First, synthetic turbulence with different intensities is prescribed at the inflow plane
of the computational domain, from where it is convected by the free stream while
decaying. This disturbance source will occupy the entire free stream and, therefore, act
non-locally on the boundary layer. Secondly, a thin roughness strip with a step-like
contour in x and a random shape in z direction is placed parallel to the leading
edge near the inflow plane of the domain. This disturbance is confined to a small
downstream region and hence interacts locally with the boundary layer. Finally, we
combine both disturbance sources to determine whether steady or unsteady modes
dominate the boundary-layer response. The following results are obtained on the short
domain, box S, sufficiently long to include receptivity, primary disturbance growth
and nonlinear interaction even for the lowest amplitudes of the forcing disturbance.

3.2.1. Response to free-stream turbulence

Figure 12 depicts the downstream evolution of the boundary-layer disturbance
forced by free-stream turbulence with different intensities in the range T u0 ∈
[0.17, 5.06] %. Here, T u0 is defined by its value at the inflow plane. In figures 12(a)
and 12(b), the wall-normal maximum of the r.m.s. of the chordwise fluctuation u

is shown versus x for increasing inflow turbulence intensities. The results pertaining
to the lower turbulence intensities are reported in figure 12(a) and those for the
higher free-stream turbulence levels are reported in figure 12(b) with the curve
obtained at lowest T u0 repeated for comparison. Initially, x � 100, the instability
growth is dominated by transient behaviour, followed by a region of exponential
growth. The linear regime extends nearly throughout the whole domain for weak
free-stream perturbations with T u0 = 0.17 % and T u0 = 0.42 %, whereas the curves
obtained in a disturbance environment of higher intensity start to bend off for x > 400.
This indicates that nonlinear interaction becomes relevant for T u0 > 0.42 %, causing
saturation of the primary disturbances. At the highest inflow turbulence levels of
T u0 = 3.73 % and 5.06 %, secondary instabilities occur within the short computational
domain, as apparent by the upward bending growth curves for x � 600 (T u0 = 3.73 %)
and x � 400 (T u0 = 5.06 %). Moreover, breakdown of the laminar boundary layer is
observed for T u0 = 5.06 % at x ≈ 550. The extent of the linear growth region and the
onset of nonlinear behaviour becomes more distinct in figures 12(c) and 12(d ), where
the curves of figures 12(a) and 12(b) are shown after rescaling the disturbance
amplitudes with the inflow turbulence intensity. Clearly, the initial disturbance
amplitude and the incipient transient growth scale with T u0 for all intensities under
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Figure 12. Boundary-layer response to free-stream turbulence with integral length L = 10
and different intensities: (a) T u0 = 0.17 % (black —–); 0.42 % (black ----); 0.84 % (black
-·-·-); 1.26 % (grey —–); 1.69 % (grey ----) and 2.11 % (grey -·-·-). (b) T u0 = 0.17 % (repeated
for comparison; black —–); 2.53 % (black ----); 2.95 % (black -·-·-); 3.73 % (grey —–) and
5.06 % (grey ----). (c) The data from (a) scaled with the inlet turbulence intensity T u0 and (d )
the curves from (b) scaled by T u0.

investigation, indicating that the receptivity process is linear. In particular, the first
data point at x = 0 can be interpreted as receptivity coefficient based on T u0: here,
a value of about 0.2 is obtained. At the lower intensities in figure 12(c), the primary
instability growth depends linearly on T u0 in the region x � 450, while saturation of
the amplitude sets in farther downstream. The present results also suggest that the
individual instability modes evolve independently for turbulence intensities T u0 � 2 %.
Figure 12(d ) reveals that the curves obtained at higher intensities (T u0 � 2.53 %) do
not collapse as well with the data for T u0 = 0.17 %, showing that the dependence
of the primary instability evolution on the incoming turbulence intensity becomes
nonlinear at the highest levels of T u0. The larger amplification observed is most
likely due to nonlinear forcing among unsteady low-frequency modes with different
spanwise scales rather than to a different behaviour of the free-stream turbulence
when T u0 is large (e.g. nonlinear interaction in the free stream).

The receptivity mechanism to free-stream turbulence can be summarized as follows.
The upstream disturbance, undergoing non-modal growth because of the excitation
and interaction of a vast number of scales, soon evolves into an exponential
disturbance composed of unstable crossflow modes. This suggests that the receptivity
mechanism is active in the upstream part of the boundary layer; farther downstream
the crossflow modes develop rather independently from the free stream until the onset
of secondary instability. Schrader et al. (2009) demonstrate, in fact, that receptivity
to free-stream vortical disturbances like those used here is in particular relevant near
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Figure 13. Boundary-layer response to forcing with free-stream turbulence of T u0 = 0.17 %.
(a) Growth of crossflow modes with angular frequency ω = −0.01 and various spanwise
wavenumbers in the range (−0.27,−0.09) obtained through the PSE method (—–, thin). The
curves are weighted with the corresponding receptivity coefficients (insertion from Schrader
et al. 2009). The envelope curve is also shown (—–, thin). (b) Boundary-layer response for
T u0 = 0.17 % (—–) in comparison with the envelope curve from (a) (----).

the leading edge where the length scales of the unstable crossflow modes are most
efficiently generated by a scale-conversion mechanism; thus, the receptivity depends
on the inflow location of the simulation. This points to the need of including the
leading-edge region in order to exactly capture the receptivity of the shear layer to
free-stream turbulence, which is beyond the scope of this work.

The existence of different spanwise wavenumbers β and angular frequencies ω in the
free stream leads to the excitation and competition between unstable crossflow modes
with different β and ω, growing at different rates and becoming dominant at different
downstream locations. Therefore, the curves for the evolution of the boundary-layer
instabilities in figure 12 do not exhibit a clean exponential behaviour; instead, they
represent the envelope for the evolution of individual unstable crossflow waves.
Figure 13(a) provides data for the downstream development of the amplitude of a
number of unstable modes with ω = −0.01 and with various spanwise wavenumbers
β . Note that β and ω of the most unstable crossflow modes take negative values
for the reference system and modal ansatz function adopted, while the streamwise
wavenumber α is positive. The curves are obtained through the solution of the PSE.
As the receptivity is not included in the PSE framework, the evolution curves need to
be weighted with the corresponding receptivity coefficients. Here, the coefficients for
vortical free-stream disturbances from Schrader et al. (2009) (inset of figure 13a) are
used. To obtain the total amplitude of the boundary-layer disturbance, the envelope of
the weighted amplitude-evolution curves is computed and compared with the present
results from the full nonlinear simulation; see figure 13(b). Although the envelope
curve only includes crossflow modes with frequency ω = −0.01, it provides a good
approximation of the actual disturbance growth observed in the simulations. This
demonstrates, on the one hand, that low frequencies like ω = −0.01 play a major role
during the receptivity process and, on the other hand, that the receptivity coefficients
computed by Schrader et al. (2009) for vortical free-stream disturbances of single
wavelength also properly describe receptivity to free-stream turbulence. Note that
larger growth rates downstream may be obtained when including modes with lower
frequency.

Next, we investigate the characteristic size and spacing of the boundary-layer
instability structures. In figure 14, the spacing Δz between the disturbance structures in
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free-stream turbulence at various intensities. (a) T u0 = 0.17 % (—–); 0.42 % (----); 0.84 %
(-·-·-); 1.26 % (-◦–◦-); 1.69 % (—–, thin) and 2.11 % (----, thin). (b) T u0 = 0.17 % (—–);
2.53 % (----); 2.95 % (-·-·-); 3.73 % (-◦–◦-) and 5.06 % (—–, thin). (c, d ) The same data as in
(a) and (b), respectively, but Δz is normalized by the local instead of the inflow displacement
thickness.

the region of primary instability growth is displayed versus the chordwise coordinate.
The spacing Δz is determined by computing the spanwise two-point correlations
u(z)u(z + Δz)/u2(z) for the chordwise fluctuation u and is defined as twice the location
Δzmin of the first minimum of the obtained correlation curve, Δz(x) = 2Δzmin(x). It can
be interpreted as the spanwise spacing between two adjacent instability structures with
a disturbance velocity in the same direction, for instance two contiguous crossflow
modes or two high-speed streaks. Figure 14(a) shows the characteristic spacing
obtained under turbulence with T u0 � 1.69 %, revealing that Δz is independent of
T u0 in this range and that it slowly drops downstream. In figure 14(b), a slightly faster
decrease of the spacing is observed for the more intense free-stream fluctuations, in
particular for the two largest values of T u0 = 3.73 % and 5.06 %. This is in line with
the experimental findings of Matsubara & Alfredsson (2001) for the two-dimensional
boundary layer exposed to turbulence from grid B, where the downstream decrease in
spacing has been reported to be slower under free-stream turbulence of low intensity
than in high-level turbulence. The rapid drop in Δz for T u0 = 5.06 % downstream of
x = 500 reveals that breakdown to turbulence is observed within the domain for this
case: the disturbance structures rapidly break up into smaller scales in this region.
Upstream of the breakdown location, Δz increases somewhat before it finally drops.
This increase is also seen at the second highest turbulence intensity of T u0 = 3.73 %,
indicating imminent transition. In figures 14(c) and 14(d ), the data from figures 14(a)
and 14(b) are rescaled with the local displacement thickness instead of its inflow
value. These figures demonstrate that the characteristic size of the primary instability
decreases relative to the local size of the boundary layer for all values of T u0.

3.2.2. Response to surface roughness

Steady surface roughness provides an efficient receptivity mechanism for stationary
crossflow vortices (e.g. Crouch 1993; Choudhari 1994). Here, a chordwise localized
spanwise surface-roughness strip with the shape shown in figure 3(b) is placed on
the plate near the inflow plane of the computational domain, while the free stream is
now disturbance free. Roughness elements with different r.m.s. heights are considered:
εh =0.0375, 0.075 and 0.15. The total perturbation induced by the roughness strip
will be distributed among the 16 spanwise wavenumbers included in the bump shape
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Figure 15. Boundary-layer response to forcing through a random surface-roughness strip.
(a) Growth of steady crossflow modes with various spanwise wavenumbers in the range
(−0.47,−0.097) (—–, thin). The curves are from Schrader et al. (2009) and weighted with the
corresponding receptivity coefficients from the same reference (insertion). The envelope curve
is also shown (—–, thick). (b) Boundary-layer response for εh = 0.0375 (—–), εh = 0.075 (----)
and εh = 0.15 (-·-·-) in comparison with the envelope curve from (a) (grey).

such that the individual modal amplitudes are lower. The present roughness elements
can be considered as low-amplitude roughness. Because of the forcing at various
wavelengths, different crossflow waves will appear and compete with each other.
Figure 15 shows the response of the shear layer to the roughness. In figure 15(a), the
growth of various steady crossflow modes with spanwise wavenumbers included in
the lateral contour of the roughness strip is depicted. The curves are weighted with the
receptivity coefficients from Schrader et al. (2009) and their envelope is compared with
the downstream evolution of the disturbance amplitude from the present nonlinear
simulations (figure 15b). The envelope is dominated by the crossflow mode β = −0.22,
the mode of strongest receptivity among those forced in the simulation. The agreement
between the envelope and the evolution curve for the layer disturbance is good for
εh = 0.0375 and 0.075, revealing that the receptivity coefficients computed within the
linear approximation and for the simplified roughness model of Schrader et al. (2009)
are also valid for receptivity to the random roughness strip considered here. Nonlinear
interaction between the forced crossflow waves is not significant, and the disturbance
growth exhibits a rather clean exponential behaviour. It is concluded that both rough-
ness receptivity and the subsequent disturbance growth are linear for the two lower
values of εh: the solid curve (εh = 0.0375) in figure 15(b) collapses with the dashed
line (εh = 0.075) when multiplied by 2. If the height of the roughness strip is further
increased to εh = 0.15, nonlinear effects become visible downstream of the roughness.
The disturbance amplitude just downstream of the bump becomes larger than twice
that for εh =0.075. Since it has been shown by Schrader et al. (2009) that receptivity
is still linear in εh for εh =0.15, we ascribe the behaviour seen in figure 15(b) to the
downstream nonlinear interaction of linearly excited modes. Finally, the disturbance
amplitude bends downward for x � 500, indicating saturation due to nonlinearity.

3.2.3. Response to free-stream turbulence with surface roughness

It is of interest to determine which type of disturbance—steady or unsteady
crossflow vortices—dominates inside the layer and causes the breakdown to
turbulence. This issue has so far been addressed only through wind-tunnel
experiments; see the review by Saric et al. (2003). In Schrader et al. (2009), a
numerical analysis involving the combination of simplified models for free-stream
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Figure 16. Swept-plate boundary layer exposed to turbulent fluctuations of (a) T u0 = 0.42 %
and (b) T u0 = 0.84 % and to a localized wall-roughness strip with r.m.s. amplitude εh =0.075.
The thin black curves represent the unsteady (----) and the steady disturbance evolution (—–)
due to turbulence and roughness alone. Their sum (thick grey —–) is compared with the total
disturbance (black ----) observed in the simulations with combined perturbation sources.

vorticity and roughness is presented. The threshold in turbulence intensity, above
which travelling crossflow instability dominates over stationary disturbance waves,
has been estimated to T u0 = 0.5 %. Here, we use more complex representations for
free-stream turbulence and surface roughness and examine the response of the swept
boundary layer to different combinations of the amplitudes T u0 and εh of free-stream
turbulence and roughness. T u0 is varied while the roughness height is kept fixed at
εh =0.075. This value is larger than those in the experiments by Reibert et al. (1996)
(εh ≈ 0.025), where the roughness has, however, a dominant spanwise length scale.
Note that the threshold beyond which the predominant crossflow waves are unsteady
is dependent on the roughness height chosen.

The results from two simulations differing in the inflow intensity T u0 of the
turbulent free-stream fluctuations are shown in figure 16: T u0 = 0.42 % in figure 16(a)
and 0.84 % in figure 16(b). The amplitude of the roughness strip is identical in both
cases (εh = 0.075). The evolution of the boundary-layer disturbance obtained in the
presence of both perturbation sources is displayed together with the development of
the perturbation induced by free-stream fluctuations and wall roughness alone. In
figure 16(a) steady crossflow modes dominate over travelling waves, while the situation
is vice versa at larger free-stream turbulence intensity as shown in figure 16(b). It
can, thus, be concluded that the threshold, above which unsteady modes become
significant, is passed in the region 0.42 % < T u0 < 0.84 %, when the roughness height
is εh = 0.075. The estimate from Schrader et al. (2009) is within this range. Figure 16
further reveals that the total shear-layer disturbance in the simulations with combined
perturbation sources can be correctly estimated by summing the unsteady and the
steady contribution. This observation holds in the steady-wave-dominated case in
figure 16(a) as well as in the travelling-mode-dominated situation in figure 16(b).
The interaction between the travelling and the stationary disturbances appears to be
negligible for the present configuration and an accurate prediction of the boundary-
layer response can be obtained by considering both disturbance sources independently.

4. Discussion and conclusions
Receptivity, disturbance growth and breakdown in three-dimensional boundary-

layer flow developing on a swept plate under a favourable pressure gradient have been
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investigated. The flow has been perturbed by free-stream turbulence, a roughness strip
with spanwise random amplitude and the combination of both. Under the conditions
studied, both disturbance sources efficiently excite crossflow vortices.

In the first part of the paper, the route of laminar–turbulent transition is illustrated
by describing the disturbance structures dominating during the different stages of
transition. Although there exist publications on wind-tunnel experiments of swept-
plate flow (e.g. Bippes 1999), the present work is to our knowledge the first that
presents a numerical simulation of crossflow-mode-dominated transition in swept-
plate flow with free-stream turbulence. Numerical studies on transition initiated
by controlled wall disturbances are, in contrast, already available for both steady
and travelling crossflow instabilities (Wassermann & Kloker 2002, 2003). Our study
reveals that, owing to their large amplification rate, the crossflow modes dominate
the disturbance environment of the boundary layer prior to the breakdown. This
is in contrast to two-dimensional boundary layers, where T-S waves are irrelevant
compared to non-modal streaks already for moderate levels of external turbulence.
However, we speculate that non-modal disturbances become more relevant in three-
dimensional boundary layers when decreasing the sweep angle and the free-stream
acceleration. With only roughness the dominant pre-transitional structures are steady
crossflow vortices. Although transient behaviour is observed in the vicinity of the
roughness, non-modal disturbances do not play any significant role in this case.

Unlike the breakdown of streamwise streaks in two-dimensional boundary layers
(Fransson et al. 2005), transition in three-dimensional laminar flow is characterized
by a low intermittency between laminar and turbulent flows. An analysis of
instantaneous velocity fields confirms that turbulent spots indeed originate in a
narrower streamwise region than in Blasius flow. In addition, simulations with
different external perturbations show that transition occurs when the level of
velocity fluctuations inside the boundary layer reaches similar threshold values.
These facts indicate that breakdown is triggered by rapid secondary instability of
the crossflow modes and that transition–prediction models may be based on a critical
threshold amplitude of the primary disturbance, as suggested by Poll (1984) (see also
Wassermann & Kloker 2002). Poll (1984) suggests to correlate the onset of secondary
instabilities to a local Reynolds number variation related to the local mean flow
deceleration and the wall distance of the location of the maximum negative spanwise
gradient. However, so far a critical value for this Reynolds number variation has not
been established for the case of travelling modes (Wassermann & Kloker 2003). To
predict where the critical threshold amplitude of the crossflow modes has reached,
computations will also have to include nonlinear saturating effects, the PSE method
probably being the most suited candidate. Such calculations will not be useful, though,
unless a correct initial amplitude for the instability mode is provided. This is the aim
of the receptivity analysis discussed next.

The second part of the paper focuses on receptivity and the early stages of
primary disturbance growth in the swept-plate boundary layer. The results indicate
that the initial amplitude of the instability modes scales linearly with the free-stream
turbulence intensity. Larger downstream amplification induced by nonlinear forcing
among unsteady modes of low frequency and different spanwise scales is observed
for free-stream turbulence intensities T u0 � 2 %. Above this level, the amplitude of
the shear-layer perturbation cannot be correctly estimated only by considering the
evolution of individual modes. Furthermore, the receptivity coefficients from Schrader
et al. (2009) for simplified vortical disturbances have been applied here and compared
with the amplification observed in the present, fully nonlinear simulations. This is, in
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practice, done by weighting the evolution of the various excited unstable modes with
their individual receptivity coefficients and computing the envelope curve. Although
the linear receptivity model of Schrader et al. (2009) accounts for one—however,
dominant—angular frequency only, good agreement between the amplification from
the present simulations and the envelope has been found for the case of free-stream
turbulence. This confirms that the receptivity mechanisms for the different excited
unsteady modes are independent of each other for moderate turbulence levels and
that linear receptivity models are also valid for receptivity to complex free-stream
turbulence fields. This conclusion can also be drawn for receptivity to localized
roughness with spanwise random amplitude. Whereas the receptivity mechanism has
been found to be linear even for the highest considered roughness (15 % of the
local displacement thickness), nonlinear interaction between the excited steady modes
soon sets in downstream of the highest roughness. It is concluded that the onset of
nonlinear interaction of the triggered modes is found for roughness heights between
7.5 % and 15 % of the boundary-layer displacement thickness.

Finally, the co-existence of unsteady and steady crossflow vortices has been studied,
when free-stream turbulence acts on the boundary layer over a wall with localized
roughness. Stationary crossflow vortices dominate the pre-transitional boundary layer
when the intensity of the free-stream turbulence is low (see also Saric et al. 2003): for
low-amplitude roughness (7.5 % of the local displacement thickness) and a turbulence
intensity of 0.42 %, the total boundary-layer disturbance is dominated by the steady
contribution due to roughness, while at a turbulence level of 0.84 % unsteady crossflow
instability is more energetic than the steady modes. Even in the presence of two distinct
disturbance sources where nonlinear interaction may be expected, a correct prediction
of the evolution of the boundary-layer perturbations can be obtained by investigating
the development of individual crossflow modes. This conclusion holds for amplitudes
at which the changeover between steady- and travelling-mode-dominated transitions
is identified. However, the experimental investigations reviewed by Bippes (1999)
suggest that the simultaneous presence of different crossflow modes may affect the
late stages of breakdown. This remains an open issue worthy of further analysis.

In summary, our results suggest that receptivity coefficients from simplified models
like those proposed by Schrader et al. (2009) can be combined with established
transition-prediction tools such as the eN -method or more advanced approaches
based on a critical threshold amplitude of the primary instability. This presumes
the exact knowledge of the receptivity coefficients for the disturbances relevant
in the flow of interest. Simplified approaches, for instance the method based on
finite-Reynolds number theory (FRNT; e.g. Crouch 1992; Choudhari 1994), may
for many flow types prove accurate enough to establish receptivity coefficients for
different disturbance conditions. However, a counterexample is given by Collis &
Lele (1999), where receptivity to roughness close to the leading edge of a parabolic
body is investigated through DNS. The results show that receptivity is enhanced
by convex surface curvature and suppressed by non-parallelism—effects that are not
captured by FRNT. Comparing the receptivity coefficients from DNS with those
from theoretical approaches, these authors conclude that the prediction of crossflow
instability receptivity near a leading edge must account for the strongly non-parallel
flow around the upstream neutral point. Unfortunately, stability predictions using
a perturbation approach for non-parallel effects proved inadequate for the most
dangerous crossflow mode at the conditions studied in that work. A similar indication
for the relevance of the leading-edge region is seen in the results by Schrader et al.
(2009) when analysing receptivity to free-stream vortical modes.
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To conclude, the good news is that receptivity coefficients obtained for single modes
appear to be sufficient in order to predict the disturbance behaviour in swept boundary
layers even in the presence of free-stream turbulence of moderate amplitude. On the
other hand, simple perturbation approaches for theoretical non-parallel receptivity
prediction may prove inadequate. More research is, in fact, needed to verify this claim.
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