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This study discusses turbulent suspension flows of non-Brownian, non-colloidal, neutrally
buoyant and rigid spherical particles in a Newtonian fluid over porous media with particles
too large to penetrate and move through the porous layer. We consider suspension flows
with the solid volume fraction Φb ranging from 0 to 0.2, and different wall permeabilities,
while porosity is constant at 0.6. Direct numerical simulations with an immersed boundary
method are employed to resolve the particles and flow phase, with the volume-averaged
Navier–Stokes equations modelling the flow within the porous layer. The results show
that in the presence of particles in the free-flow region, the mean velocity and the
concentration profiles are altered with increasing porous layer permeability because of
the variations in the slip velocity and wall-normal fluctuations at the suspension-porous
interface. Furthermore, we show that variations in the stress condition at the interface
significantly affect the particle near-wall dynamics and migration toward the channel core,
thereby inducing large modulations of the overall flow drag. At the highest volume fraction
investigated here, Φb = 0.2, the velocity fluctuations and the Reynolds shear stress are
found to decrease, and the overall drag increases due to the increase in the particle-induced
stresses.

Key words: particle/fluid flow, turbulence simulation

1. Introduction

The turbulent flow of suspensions over porous media is crucial in various environmental
phenomena and industrial technologies. These include sedimentation in rivers, pyroclastic
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flows, flow through unconsolidated sand (Zhai et al. 2005), and hydraulic fracturing (Song,
Jinzhou & Yongming 2014). In these applications, both inertia and the presence of a porous
surface play a critical role in the suspension dynamics and fluid–solid interactions. This
study therefore focuses on understanding how the permeability of a porous medium affects
the dynamics of suspensions and the behaviour of particles in a turbulent channel flow with
fixed porosity and porous layer thickness.

1.1. Turbulent flows over porous media
The flow over and through a porous medium with a complex structure can be examined
by modelling the porous medium as a continuum with given physical properties (i.e.
porosity and permeability). The porosity ε of a porous medium is defined as the ratio of
its void volume to its bulk volume. Fractions and percentages can be used to express this
dimensionless quantity. A porous material’s permeability K, on the other hand, determines
how well fluids can pass through it. A porous material with high permeability allows fluids
to flow more easily than one with low permeability. The permeability of a porous medium
is related to the porosity, shape and level of connections of the pores (Bear 1988).

One of the first studies on flow through porous media was published by Darcy (1856).
In his experiments, he demonstrated that the average flow rate flowing through sand
(porous media) is proportional to the pressure gradient across it. Darcy’s experimental
data demonstrated clearly a linear relationship between average discharge rate and pressure
gradient. Darcy’s law consists of two terms: one term can be interpreted as an average drag
felt by the fluid as it passes through the porous medium and is balanced by the second
term, which is the pressure gradient term. For the low porous Reynolds number for which
Darcy’s law holds, i.e. Rep � 1, the flow is governed by Stokes’ equation, in which the
viscous term is responsible for the Darcy drag. A deviation from linearity is observed
as Re increases. A nonlinear relationship was proposed by Forchheimer, with a quadratic
drag term that better fits experimental data; the equation is called Forchheimer equation
(Joseph, Nield & Papanicolaou 1982; Whitaker 1996; Giorgi 1997; Lage 1998). As a result
of inertial effects in the pores, the quadratic term appears in this equation. When the flow
is no longer governed by Stokes’ equation, the quadratic drag term is due to the convective
term, (u · ∇)u, in the Navier–Stokes equations.

Subsequently, Brinkman (1947) suggested extending Darcy’s law to high-permeability
materials by adding a sort of viscous term in Stokes’ equation. The Brinkman model
has been studied over the years by different researchers interested in many different
applications (see, among others, Neale & Nader 1974; Vafai & Thiyagaraja 1987; Vafai
& Kim 1990; Hahn, Je & Choi 2002; Mirbod, Andreopoulos & Weinbaum 2009; Mirbod,
Wu & Ahmadi 2017; Wu & Mirbod 2018, 2019; Haffner & Mirbod 2020; Kang & Mirbod
2021; Hooshyar, Yoshikawa & Mirbod 2022). Importantly, Beavers & Joseph (1967)
improved the Darcy equation to introduce interface jump conditions between liquid and
porous media. In 1996, Whitaker derived the so-called volume-averaged Navier–Stokes
(VANS) equations from the Navier–Stokes equations in a porous media (Whitaker 1996).
The VANS equations contain new terms, including the Darcy term, an average adhesion
resistance, and the Forchheimer term, a second-order tensor due to the inertial effects
of the resistance function of the geometric structure of the porous medium. It should be
noted, however, that defining a model for the fluid-porous interface remains a challenge. In
fact, the structure of a porous medium modifies rapidly within the small layer next to the
fluid-porous interface, i.e. the so-called Brinkman layer (Neale & Nader 1974); therefore,
the Navier–Stokes averaging over a volume containing the interface is not consistent.
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To properly connect the VANS and Navier–Stokes equations, Ochoa-Tapia & Whitaker
(1995) introduced momentum-transfer conditions, which improved the computation of
the transferred stress to both the fluid phase and the porous media. Here, in particular,
we employ the Navier–Stokes equation for the free fluid flow and the VANS equations
inside the porous media. These equations are connected using the interface jump condition
between liquid and porous media as proposed by Ochoa-Tapia & Whitaker (1995). It
is worth noting that over the past 20 years, several groups have also tried to model the
interface layer and control the momentum transfer (see e.g. Alazmi & Vafai 2001; Goyeau
et al. 2003; Chandesris & Jamet 2006; Valdés-Parada, Goyeau & Ochoa-Tapia 2007).

Both numerical and experimental works have been conducted to study the effect of
isotropic and anisotropic porous materials on turbulent flows. Using a continuum approach
for porous media, laminar and turbulent flows were investigated by Breugem, Boersma
& Uittenbogaard (2004). The authors showed that the permeability of the porous wall
depends not only on the porosity but also on the gradient of the volume-averaged velocity
inside the porous media. The same group later used direct numerical simulations (DNS)
to investigate the turbulent channel flow over three-dimensional (3-D) regular cubes
mimicking porous structures (Breugem & Boersma 2005). They showed quantitatively
that the VANS equations are able to simulate accurately the turbulent flows over and
through permeable walls. They also analysed the impact of a packed-bed porous wall
on the turbulent channel flow (Breugem, Boersma & Uittenbogaard 2006) and found
the near-wall structures to be significantly different: streamwise-correlated streaks almost
disappear, while the spanwise vorticity near the wall increases for a highly permeable
surface. This is consistent with the decrease in the peak value of the streamwise
root-mean-square (r.m.s.) velocity normalized by the friction velocity at the permeable
wall. Furthermore, they showed that the turbulence near a highly permeable wall
is dominated by relatively large vertical structures generated by a Kelvin–Helmholtz
instability. Turbulent flows over porous media considering the porous layer as a continuum,
without a need for knowledge of the porous media microstructure, have also been examined
by Rosti, Cortelezzi & Quadrio (2015) and Rosti, Brandt & Pinelli (2018). These authors
also found that permeability plays a critical role and showed that porous materials with
high wall-normal and low wall-parallel permeabilities are characterized by increased
turbulence isotropy (Rosti et al. 2018). In a more recent work, Rosti et al. (2020) studied
the flow inside a deformable porous medium for the case of a viscous fluid and an
incompressible viscoelastic material. It was found that in a poroelastic medium, the flow
permeability is a function of the elastic shear modulus of the deformable surface and of the
imposed pressure difference, suggesting that the dynamics of the flow over such a complex
medium cannot be deduced directly from studies over rigid porous walls.

While most of the previous work discussed above considered isotropic porous media,
anisotropic porous layers have been found to be effective for passive control of turbulence
(see e.g. Gomez-de Segura, Sharma & García-Mayoral 2017; Rosti et al. 2018). Kuwata
& Suga (2017) used multiple-relaxation-time lattice Boltzmann DNS to simulate the
turbulent flow over a porous layer. Considering anisotropic permeable walls and squared
pore arrays aligned with the Cartesian axes, they found that streamwise and spanwise
permeabilities considerably enhance the Reynolds stresses over the porous walls when
compared to the vertical permeability. The turbulent channel flow over porous layers has
also been studied experimentally by Suga et al. (2010) and Suga, Nakagawa & Kaneda
(2017); the authors showed that the spanwise scales of the measured structures can be
reasonably correlated with the wall-normal distance plus the zero-plane displacement,
estimated from the mean velocity profile.
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1.2. Turbulent suspension flows over impermeable walls
Particle-laden turbulent flows over impermeable walls have been investigated extensively.
Many earlier studies considered small heavy particles in the very dilute regime. It has
been shown that inertia induces particle preferential sampling and migrations that lead to
clustering in both homogeneous and inhomogeneous flows (see, among many, Bec et al.
2007; Toschi & Bodenschatz 2009; Sardina et al. 2012).

Pan & Banerjee (1996) were the first to study the effect of finite-size particles
in a turbulent channel flow at very low concentrations and showed that smaller
particles decrease turbulence forces and Reynolds stresses, while larger particles increase
turbulence intensities and stresses. These findings were in line with the other works
that considered the effect of the particles on the spectral energy distribution and the
turbulent cascade (Francesco Lucci & Elghobashi 2010; Yeo et al. 2010). The appearance
of different numerical algorithms has facilitated an increasing number of studies on
finite-size particles in turbulence. Among these, Kidanemariam et al. (2013) examined
open channel flow with heavy particles of finite size in the dilute regime, and showed
that the solid phase is preferably assembled near the wall in low-speed regions. Later,
the same approach was used by these authors to study pattern formation in turbulent
channel flow over a mobile sediment bed (Kidanemariam & Uhlmann 2014). Concerning
neutrally buoyant particles in channel flow, Picano, Breugem & Brandt (2015) studied
neutrally buoyant spheres, while Ardekani & Brandt (2019) considered non-spherical
particles, showing a reduced drag. The effect of particles on the critical Reynolds number
for turbulence onset in semi-dilute suspension flows was studied in Matas, Morris &
Guazzelli (2004), Loisel et al. (2013) and Yu et al. (2013), and the chaotic flow of
relatively dense suspensions of neutrally buoyant and heavy particles in channel flows, for
a volume fraction of 7 %, was examined in Shao, Wu & Yu (2012). Vowinckel, Kempe &
Fröhlich (2014) reported on various regimes that differ depending on the particle buoyancy.
Recent studies conducted by us have examined both suspensions and solvent, and their
related instabilities over and through various porous media models, in Bagheri et al.
(2022), Haffner et al. (2019), Mirbod & Shapley (2022), Bagheri, Kang & Mirbod (2019),
Moradi Bilondi et al. (2022) and Kang & Mirbod (2021). However, the impact of different
porous media on non-Brownian, non-colloidal, neutrally buoyant, rigid, spherical particles
flowing in a channel remains unknown.

Thanks to recent developments in algorithms and computational power, suspension
flows with inertia can be studied by interface-resolved DNS, with ten thousand finite-size
particles. Using fully resolved DNS and the immersed boundary method (IBM) for
neutrally buoyant spheres as conducted here, Lashgari et al. (2014) reported a transition
akin to that found in the pure fluid case at low volume fractions, i.e. from the laminar
base state directly to turbulence as the Reynolds number was increased. However, a
‘shear-thickening’ regime (distinct from laminar flow and turbulence) was identified when
the volume fraction was sufficiently large, dominated by the particle-induced stresses.
Later, Picano et al. (2015) and Costa et al. (2016) observed that under fully turbulent
conditions, significant particle-induced stress first appears at lower solid volume fraction
Φb in a layer close to the wall of size similar to the particle diameter; with increasing
Φb, the wall layer is characterized by large particle-induced stress and found to be
responsible for the increased drag. These authors also reported that because of these
non-homogeneities in concentration distribution, the increase in the overall drag cannot
be explained simply by using the notion of an increased effective suspension viscosity.
The study by Ardekani et al. (2017) considered non-spherical oblate particles and showed
that the drag is reduced, as these particles do not accumulate in the particle layer but
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remain away from the wall, confirming the importance of the particle dynamics in the
near-wall region for the global flow behaviour (Peng, Ayala & Wang 2019, for the role
of particle rotation, see also). Numerous DNS have also been performed to examine
the sediment transport of particle-laden flows over mobile and immobile beds (Herwig,
Kempe & Fröhlich 2011; Kempe, Vowinckel & Fröhlich 2014; Vowinckel et al. 2014,
2017, 2019a,b, 2021; Biegert, Vowinckel & Meiburg 2017; Jain, Tschisgale & Fröhlich
2020, 2021; Köllner et al. 2020; Papadopoulos et al. 2020). Few studies, on the other
hand, have investigated the particle flow over complex walls. Recently, Rosti, Mirbod &
Brandt (2021) have investigated the rheology of particle suspensions flowing over porous
walls in a plane Couette flow and in a laminar regime; they found that the porous walls
induce a progressive decrease in the suspension effective viscosity as the wall permeability
increases. This behaviour was explained by the weakening of the wall-blocking effect and
by the appearance of a slip velocity at the interface of the porous medium.

1.3. Outline
This study employs DNS to simulate turbulent suspension flows of monodisperse, rigid,
spherical particles over various porous media where particles interact with the porous layer
but do not enter into it. The solid volume fraction Φb considered varies in the range 0–0.2.
We fully describe the solid phase dynamics via an IBM for the finite-size particles, with
a ratio between the radius a and the channel half-width h equal to 1/10, while solving
the VANS equations for flow inside the porous media. The porous layer porosity and
thickness are kept constant, while their permeability varies. The organization of the paper
is as follows. Section 2 shows mathematical formulations, numerical procedures, system
configuration and related parameters. The results and discussions are presented in § 3.
Section 4 addresses the summary and conclusion of the study.

2. Methodology

2.1. Governing equations
We study the fully developed flow of monodispersed suspensions of rigid, spherical
particles of radius a suspended in a Newtonian fluid in a channel bounded by identical,
rigid, homogeneous and isotropic porous media. The incompressible Navier–Stokes
equations are used to describe the Eulerian fluid phase:

∇ · uf = 0, (2.1)

∂uf

∂t
+ uf · ∇uf = − 1

ρ
∇p + μ

ρ
∇2uf + f . (2.2)

Here, uf and p represent the velocity and pressure fields, respectively, and the term f
is a generic force field. In addition, the parameters μ and ρ are the dynamic viscosity
and the density of the fluid phase, respectively, and their ratio ν = μ/ρ indicates the
kinematic viscosity of the fluid. The centroid linear and angular velocities of neutrally
buoyant particles, up and ωp, are governed by the Newton–Euler Lagrangian equations,
defined as

ρpVp
dup

dt
=

∮
∂Vp

(−pI + μ(∇uf + ∇uT
f )) · n dA + F p, (2.3)

Ip
dωp

dt
=

∮
∂Vp

r × (−pI + μ(∇uf + ∇uT
f )) · n dA + T p, (2.4)
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where ρp indicates the particle density, and Vp is the particle volume, defined as 4πa3/3.
In addition, I is the unit tensor, Ip = 2

5ρpVpa2 is the moment of inertia, r is the distance
vector from the centre of the particle, and n is the unit vector normal to the particle surface
∂Vp. The terms F p and T p represent the force and torque acting on the particles as a result
of the particle–particle and particle–wall interactions. To couple the solid and fluid phases,
an IBM is used. This accounts for a body force f added to the right-hand side of (2.2) to
mimic the actual no-slip and no-penetration boundary conditions at the moving particle
surface (Breugem 2012; Picano et al. 2015; Ardekani et al. 2016):

uf |∂Vp = up + ωp × r. (2.5)

We denote the porous layer with the porosity ε and the permeability with the tensor Kij.
When the porous medium is isotropic, the permeability reduces to a single scalar value,
i.e. K. In this study, we employ the VANS equations to describe the fluid motion in the
porous medium, as proposed by Whitaker (1969, 1986). For isotropic porous media with
negligible fluid inertia and large-scale separation, the VANS equations can be stated as
(Kang & Mirbod 2019; Rosti et al. 2021)

∇ · 〈uf 〉s = 0, (2.6)

∂〈uf 〉s

∂t
= − ε

ρ
∇〈p〉f + ν ∇2〈uf 〉s − νε

K
〈uf 〉s, (2.7)

Notably, the VANS equations are based on two different averaging methods (see
Ochoa-Tapia & Whitaker 1995), namely the superficial volume average 〈ψ〉s =
(1/V)

∫
Vf
ψ dVf , and the intrinsic volume average 〈ψ〉f = (1/Vf )

∫
Vf
ψ dVf , where the

superficial and intrinsic volume averages are linearly related to each other using the
condition ε, 〈ψ〉s = (Vf /V)〈ψ〉f = ε〈ψ〉f . Here, Vf is the volume occupied by the fluid
within the averaging volume V . Note that superficial and intrinsic volume averages are
employed for the velocity and pressure fields as reported by Quintard & Whitaker (1994)
and Whitaker (1996).

In our analysis, we assume pressure and velocity continuity at the suspension-porous
interface, while the shear stress displays a jump that can be controlled by the parameter
τ (Ochoa-Tapia & Whitaker 1995; Goyeau et al. 2003; Rosti et al. 2021). The value
of τ determines the stress transfer between the suspending fluid and the porous media.
Consequently, the boundary conditions at the fluid-porous interface can be written as

uf = 〈uf 〉s, p = 〈p〉f , (2.8a,b)

σ

(
∂uf

∂y
− 1
ε

∂〈uf 〉s

∂y

)
= ±τuf , (2.9)

σ

(
∂wf

∂y
− 1
ε

∂〈wf 〉s

∂y

)
= ±τwf . (2.10)

In (2.8a,b), uf is the fluid flow velocity vector, while uf and wf in (2.9) and (2.10) are the
streamwise and spanwise components of the fluid velocity, respectively. In (2.9) and (2.10),
on the right-hand side, a positive sign indicates that the pure fluid region is above the
porous media, while a negative sign indicates the opposite. The dimensionless parameter
σ = √

K/h is the so-called Darcy number or the non-dimensional permeability parameter,
where h is the half-channel height. The coefficient τ represents the stress transfer between
the suspending fluid and the porous media, and takes varying values (zero, positive or
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negative) depending on how the porous material’s structure varies in the heterogeneous
transition layer, and how the interface is fabricated. A detailed comparison of the different
boundary conditions can be found in (Alazmi & Vafai 2001). There were also several
attempts to calculate τ theoretically (Goyeau et al. 2003; Deng & Martinez 2005; Min &
Kim 2005; Chandesris & Jamet 2006, 2007; Valdés-Parada et al. 2007, 2009; Carotenuto
& Minale 2011). Recently, also attempts to measure the jump coefficient were carried out
by Carotenuto & Minale (2011) and by Bagheri & Mirbod (2022). In the present study,
we assume τ = +1, 0 and −1. Note that τ = 0 implies that the stress carried by the
suspending fluid is fully transferred to the fluid flow inside the porous layer. More details
can be found in § 3.3.

2.2. Numerical implementation
Our numerical simulations are based on a 3-D solver that adopts an IBM for coupling the
fluid and particle phases in the pure Newtonian fluid region, 0 < y < 2h. The IBM was first
developed by Peskin (1972), who simulated blood flow patterns around heart valves. Since
then, it has been widely modified and improved, as reported in Mittal & Iaccarino (2005).
Among others, Uhlmann (2005) proposed a direct forcing IBM and showed the ability of
the method to simulate large-scale configurations with many particles. Here, we use the
IBM as first proposed by Breugem (2012), while the various modifications introduced by
this author enabled us to also reach second-order accuracy in space. It is worth noting
that the IBM has first-order accuracy in the local velocity field, and may have apparent
second-order accuracy in force/torque as reported by Peng & Wang (2020). Moreover, the
particle–particle and particle–wall interaction force and torque in (2.3) and (2.4) include
a lubrication correction and a soft collision model as reported in Costa et al. (2015). In
particular, we use Brenner’s asymptotic solution (Brenner 1961) to correct the lubrication
force when the distance between solid objects is less than a certain threshold and cannot
be resolved accurately by the numerical mesh. At such small distances, surface roughness
is accounted for by saturating this force. When spherical particles are in contact, both the
normal and tangential contact force components are obtained from the overlap and the
relative velocity. It is worth noting that in this analysis, we considered that the particles do
not enter the porous layer. In other words, the particles approach an impermeable wall at
the suspension-porous interface where the above lubrication and collision models can be
applied.

The governing differential equations are solved on a staggered grid using a second-order
central finite-difference scheme, while the dispersed phase is represented by a set of
Lagrangian points that are distributed uniformly on the surface of each particle. The
forces were computed at each Lagrangian grid point on the particle surface based on the
difference between the computed velocity at the particle surface and the first prediction
velocity of the fluid at the same point in space; the first prediction velocity was obtained by
time integration of the free-flow equations before imposing the continuity constraint. The
forces are extrapolated on the Eulerian grid used for the momentum equations and added to
the first prediction velocity, followed by the correction pressure scheme (Breugem 2012).
For the time integration, we use the explicit fractional-step method, while all the other
terms are advanced with the third-order Runge–Kutta scheme. More details in terms of
the numerical procedures for both the IBM and VANS equations and the code validations
can be found in Lashgari et al. (2014), Picano et al. (2015), Ardekani et al. (2016), Rosti &
Brandt (2017), Izbassarov et al. (2018) and Rosti et al. (2021).
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2h + hp

2r
–hp

2h

0

y
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Figure 1. Sketch of the 3-D channel flow with 50 particles overlying porous media followed by the coordinate
system adopted in this study.

2.3. System configuration
Herein, we investigate turbulent suspensions flowing in a channel between two infinite
walls located at y = −hp and y = 2h + hp. The two porous layers have thickness hp
placed at the top and bottom of the channel, while the suspension-porous interface is
located at y = 0 and y = 2h; see figure 1. Periodic boundary conditions are applied in
the wall-parallel directions over a domain of size Lx = 6h, Ly = 2(h + hp) and Lz = 3h
in the streamwise, wall-normal and spanwise directions, respectively. A time-dependent
pressure gradient acting in the streamwise direction imposes a constant bulk velocity
U0 corresponding to a constant bulk Reynolds number Re = 2hU0/ν = 5600. For the
simulations presented here, we use 960 grid points in the streamwise direction x, 320 + 32
grid points in the wall-normal direction y (where 32 is the number of points used for
the porous layers), and 480 points in the spanwise direction z. The non-dimensional
parameters and their values are as follows. The non-dimensional permeability parameter
is σ ∈ [0.63, 6.3] × 10−3, while the ratio between the porous and the channel height is
hp/h = 1/10, and the porosity of the porous layers is constant at 0.6. The ratio of particle
diameter to channel height is a/h = 1/10, and the particle volume fraction ranges from 0
to 20 %. Table 1 reports all different conditions considered in this study. For the sake of
comparison, the simulation parameters are chosen to be similar to those in previous works
on single-phase turbulent channel flows over porous walls, and turbulent suspension flows
in smooth channels, as reported in Rosti et al. (2015), Picano et al. (2015) and Rosti &
Brandt (2017). All the simulations are started from a fully developed turbulent channel
flow. After the flow has reached statistical steady state, the calculations are continued for
an interval 480h/U0 time units, during which 96 full flow fields are stored for further
statistical analysis. To verify the convergence of the statistics, we have computed them
using different numbers of samples, and verified that the differences are negligible.

3. Results

We study the turbulent suspension flow of monodispersed, neutrally buoyant, rigid,
spherical particles over porous media in a channel where the particles do not enter inside
the porous layers. Figure 2 compares the contours of the normalized streamwise velocity
component from instantaneous snapshots for the three different volume fractions under
investigation. From the qualitative results shown in the figure, it can already be seen that
the suspension flow streamwise velocity is sensitive to the particle volume fraction Φb.
In particular, the turbulence activities are greatly enhanced throughout the channel due
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ε Re σ Φb (Np) τ

0.6 5600 0.63 × 10−3 0 % 0
0.6 5600 2.00 × 10−3 0 % 0
0.6 5600 6.30 × 10−3 0 % 0
0.6 5600 0.63 × 10−3 0 % +1
0.6 5600 0.63 × 10−3 0 % −1
0.6 5600 0.63 × 10−3 5 % (434) 0
0.6 5600 2.00 × 10−3 5 % (434) 0
0.6 5600 6.30 × 10−3 5 % (434) 0
0.6 5600 0.63 × 10−3 10 % (868) 0
0.6 5600 2.00 × 10−3 10 % (868) 0
0.6 5600 6.30 × 10−3 10 % (868) 0
0.6 5600 0.63 × 10−3 20 % (1736) 0
0.6 5600 2.00 × 10−3 20 % (1736) 0
0.6 5600 6.30 × 10−3 20 % (1736) 0
0.6 5600 0.63 × 10−3 20 % (1736) +1
0.6 5600 0.63 × 10−3 20 % (1736) −1

Table 1. List of simulations performed. The porosity is fixed at ε = 0.6, and the bulk Reynolds number is Re =
5600, whereas the non-dimensional permeability parameter and the solid volume fraction vary as indicated.
The parameter Np indicates the number of particles at each particle volume fraction.

to the disturbances from the particles inside the channel. As the particle volume fraction
increases, the streamwise velocity increases at the centre of the channel; however, the
velocity intensity decreases near the interface, suggesting that the slip velocity decreases
when increasing the number of particles in the flow. Visualizations of the normalized
streamwise velocity are shown in figure 3 for three different wall non-dimensional
permeability parameters σ . The wall permeability also has a critical impact on the
turbulence suspension flows. By increasing the wall permeability, the turbulence activity
is greatly enhanced throughout the channel. Clearly, as the wall permeability increases,
the streamwise velocity intensity increases near the interface, which suggests that the slip
velocity increases by increasing the wall-normal velocity at the interface.

3.1. Flow statistics
We start our quantitative analysis of the different suspension flows with the normalized
pressure drop needed to drive the suspensions at a constant suspension flow rate. Figure 4
shows the friction Reynolds number Reτ for all cases considered in this study as a function
of both the wall non-dimensional permeability parameter σ and the volume fraction Φb.
The friction Reynolds number is based on the fluid viscosity that can be defined as
Reτ = uτh/ν, where uτ = √

τinterface/ρ is the friction velocity, and τinterface is the total
mean shear stress at the interface. The total mean shear stress at the interface is the sum
of the viscous shear stress, the Reynolds shear stress and the particle contribution (see
§ 3.2 for more details). In the absence of particles, i.e.Φb = 0, Reτ increases with the wall
permeability, as was also observed in previous studies, e.g. Rosti et al. (2015). Although
some works (Hahn et al. 2002; Itoh et al. 2006) showed that a surface with preferential
streamwise permeability might have a drag-reducing effect, permeable surfaces have
generally been reported to increase the turbulent drag (Jimenez et al. 2001; Breugem
et al. 2006; Rosti et al. 2015; Kuwata & Suga 2016). Our results are then consistent with
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(a)
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(c)

Figure 2. Contours of the instantaneous turbulent streamwise velocity u in the x–y plane for a fixed wall
non-dimensional permeability parameter σ = 0.63 × 10−3 and three different particle volume fractions: (a)
Φb = 0.05, (b) Φb = 0.1, and (c) Φb = 0.2.

1

0.66

0.33

0

u/
U

0

(a)

(b)

(c)

Figure 3. Contours of the instantaneous turbulent streamwise velocity u in the x–y plane for a fixed particle
volume fraction Φb = 0.10 and three different wall non-dimensional permeability parameters: (a) σ = 0.63 ×
10−3, (b) σ = 2 × 10−3, and (c) σ = 6.3 × 10−3.

previous works, observing a rise in turbulent drag compared to a smooth wall. Note that
the skin-friction coefficient of a pure fluid flow on porous walls was first studied by Ruff
& Gelhar (1972), who showed experimentally that the skin-friction coefficient is higher
than that of impermeable walls. Later, several researchers (Kong & Schetz 1982; Zippe
& Graf 1983) measured the increase in the skin-friction coefficient over the porous layers
and compared the results with the case of impermeable walls. These authors showed that
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Figure 4. Friction Reynolds number Reτ as a function of (a) wall non-dimensional permeability parameter σ ,
for different values of the particle volume fraction Φb, and (b) the particle volume fraction Φb for different
values of wall non-dimensional permeability parameter σ .

the presence of a permeable wall reduces the turbulence intensity, Reynolds shear stress,
pressure and vorticity fluctuations throughout the channel except very near the wall. The
results in figure 4 also reveal that adding particles to the flow leads to a further increase in
the friction Reynolds number Reτ . It is worth noting that the increase in drag has been
associated with the appearance of Kelvin–Helmholtz-like rollers over the surface that
increase both momentum transfer and the Reynolds stresses near the interface, as shown in
figure 5 and reported in Jimenez et al. (2001), Breugem et al. (2006), Rosti et al. (2015) and
Kuwata & Suga (2016). This figure shows snapshots of the fluctuating streamwise velocity
at the free-flow porous interface for the cases of a pure solvent and flow with Φb = 0.1
at fixed σ = 0.63 × 10−3. The high- and low-velocity regions represent the footprints of
the streaky pattern of the flow over the porous layer, shown in figure 5(a), that are similar
to those observed over smooth walls. A Kelvin–Helmholtz-like pattern is indicated by
these streaky patterns, which are wider and have coherence structures when pure solvent
is present. When particles are added to the flow, the coherent structures appear shredded
over the porous layer, while the longitudinal streamwise vortices become more twisted.
The Kelvin–Helmholtz-like rollers have also been analysed for the solvent flowing over
both isotropic and anisotropic porous media in Rosti et al. (2018). These structures can be
further detected and analysed from the two-point correlation functions, as has been studied
by others (Jimenez et al. 2001; Kuwata & Suga 2016), which is the subject of our future
investigations.

Figure 6 shows the mean streamwise fluid velocity profiles for different particle volume
fractions Φb and the non-dimensional permeability parameter σ = 0.63 × 10−3, the
lowest considered in this study. Here, we observe that while the mean fluid velocity is
blunted in the pure turbulent flow, it increases at the channel centreline when increasing
the volume fraction, leading to a more laminar-like flow. In contrast, near the wall, the
fluid velocity decreases by increasing the particle volume fraction Φb; this effect is
more pronounced for highly viscous suspension flows, as shown in Rosti et al. (2021).
Increasing the volume fraction does not modify the velocity inside the porous layer,
i.e. for y < 0. This is because the wall permeability is very low and constant in this
case, and the particles are not moving inside the flow either; therefore, any disturbances
produced by the particles vanish rapidly inside the porous layer. On the other hand, as

954 A8-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

98
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.982


P. Mirbod, S. Abtahi, A. Moradi Bilondi, M.E. Rosti and L. Brandt

7.0 × 10–2

–7.0 × 10–2

0 u′
/U

0

(a) (b)

Figure 5. Instantaneous streamwise velocity fluctuation contours in the x–z plane at the interface y = 0 (flow
going from bottom to top): (a) for solvent Φb = 0.0, and (b) for suspension with the particle volume fraction
Φb = 0.1 at a fixed wall non-dimensional permeability parameter σ = 0.63 × 10−3.

expected and can be observed in figure 7 for a fixed particle volume fraction Φb =
0.10, by increasing the non-dimensional permeability parameter, the velocity inside the
porous layer increases. In this case, for high wall permeability, the fluid moves easily
inside the porous layer. Larger values of σ also result in higher slip velocity at the
suspension-porous interface (the velocity at y = 0). This increase in the slip velocity
when increasing the wall non-dimensional permeability parameter from σ = 0.63 × 10−3

to σ = 6.3 × 10−3 (see figure 7) implies that the local shear rate decreases with σ .
Nevertheless, it appears that the parameter σ does not significantly affect the maximum
velocity in the centre of the channel and, in general, the velocity profile in the fluid region,
0 < y/h < 1. Similar observations can be made by examining the data for the other volume
fractions.

Both the presence of particles in the flow and the existence of the porous layers alter the
velocity fluctuations in the bulk as well as at the wall. The r.m.s. values of the three fluid
velocity fluctuations, normalized by the bulk velocity, are displayed in figure 8 for the
wall non-dimensional permeability parameter σ = 0.63 × 10−3 and the different values
of the particle volume fraction Φb. We note that a reduction in the fluid streamwise
velocity fluctuations occurs with increasing volume fraction to Φb = 0.20. On the other
hand, the intensity of the cross-stream velocity fluctuations increases by adding particles
in suspensions up to Φb = 0.1, indicating that the presence of particles creates a more
isotropic flow, and then decreases at the largest Φb considered, in agreement with the
results for the flow over a rigid wall reported by Lashgari et al. (2014) and Picano et al.
(2015) for smaller particles. Moreover, in the presence of particles, the Reynolds shear
stress increases consistently up to Φb = 0.10, as shown in figure 8(d). Upon further
increasing the particle volume fraction to Φb = 0.20, the Reynolds shear stress decreases,
confirming a reduction in turbulent activity as shown in Picano et al. (2015) for the case
of a solid wall. This reduction, however, is not associated with a decreased drag because
the larger particle stresses at higher Φb more than compensate for the lower turbulence
levels. The results pertaining to the flow over a porous wall confirm this picture, with
some differences, as will be discussed further below.
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Figure 6. Mean fluid streamwise velocity component uf normalized by the bulk velocity U0 as a function of the
wall-normal distance y for various particle volume fractions Φb at a fixed wall non-dimensional permeability
parameter σ = 0.63 × 10−3.
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Figure 7. Mean fluid streamwise velocity component uf normalized by the bulk velocity U0 as a function of
the wall-normal distance y for different values of the wall non-dimensional permeability parameter σ at a fixed
particle volume fraction Φb = 0.10.

The variation of the r.m.s. values of the fluid velocity fluctuations with the wall
non-dimensional permeability parameter σ is depicted in figure 9 for the flows at particle
volume fraction Φb = 0.10. The magnitude of the r.m.s. values of all the fluid velocity
fluctuations increases with the wall permeability, consistent with previous studies for
single-phase flows (Breugem et al. 2006; Rosti et al. 2015) where the increase in the
streamwise velocity component is larger than that of the wall-normal and spanwise
velocity fluctuations. In the boundary layer above the permeable wall, a sharp increase
in the r.m.s. velocities is observed when compared to the layer below the permeable
wall, as also seen for the spanwise and wall-normal wall fluctuations. This can be
attributed to the strengthening of the viscous effects near a permeable wall (Perot & Moin
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Figure 8. Intensity of the fluid fluctuation velocity components normalized by U0 and the Reynolds shear
stress for different particle volume fractions and non-dimensional permeability parameter σ = 0.63 × 10−3:
(a) streamwise urms velocity fluctuations, (b) wall-normal vrms velocity fluctuations, (c) spanwise wrms velocity
fluctuations, and (d) shear stress (uv)′.

1995). Note that due to the fact that the r.m.s. values of true local velocities inside the
permeable walls are negligible, we can assume that the turbulent flow in the channel is not
affected significantly either by the thickness of the porous layer or by the distance to the
solid wall.

The results suggest that the particle dynamics is indeed modified by the wall
permeability and, in turn, the particle motion modifies the flow. Figure 9(d) shows
the profiles of the Reynolds stresses for different values of the wall non-dimensional
permeability parameter σ , normalized by the bulk velocity, U2

0. The maximum shear stress
occurs near the interface with the permeable wall. The data also show that the Reynolds
shear stress increases with the wall permeability. This confirms that for the higher wall
permeability, the weakening of the wall-blocking effect causes a strong increase in the
Reynolds shear stress, as reported by Breugem et al. (2006). In other words, fluid with
high streamwise momentum may penetrate inside the porous surface, while to satisfy the
conservation of mass, the fluid with relatively low streamwise momentum is transported
from the porous region into the channel.

The slip velocity us at the interface y = 0, normalized by the bulk fluid
velocity, is shown in figure 10(a) for different values of the wall non-dimensional
permeability parameter and the particle volume fraction. As expected, by increasing
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Figure 9. Intensity of the fluid fluctuation velocity components normalized by U0 and the Reynolds shear
stress for Φb = 0.10 and different values of the wall non-dimensional permeability parameter: (a) streamwise
urms velocity fluctuations, (b) wall-normal vrms velocity fluctuations, (c) spanwise wrms velocity fluctuations,
and (d) shear stress (uv)′.

the non-dimensional permeability parameter σ , the slip velocity increases, while with
increasing particle volume fraction, it decreases for all cases studied here. Interestingly,
for Φb ≤ 0.10, the slip velocity is weakly dependent on the volume fraction, and
it is determined mainly by the permeability under dilute conditions. Indeed, a more
significant variation in the us values is observed when further increasing the dispersed
phase concentration to 0.2. These results confirm that the suspension slip velocity in
turbulent flows depends on the porous permeability, and when the porous non-dimensional
permeability parameter is low, i.e. of the order of σ = O(10−4), the slip velocity depends
mainly on the suspension concentration.

We then characterized the normalized wall-normal velocity fluctuations at the interface
for different values of the wall non-dimensional permeability parameter σ and the particle
volume fraction Φb, as shown in figure 10(b). The wall-normal velocity fluctuations
increase with both the particle volume fraction and the wall permeability, from zero for
small wall permeability to the largest value for the highest Φb. Note that the velocity
fluctuations at the suspension-porous interface do not change significantly with the values
of σ investigated; instead, the effect of the particle volume fraction is more pronounced
with a more significant increase for Φb = 0.2. Comparing figures 10(a,b), one can
conclude that the mean slip at the wall is determined mainly by the wall permeability,
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Figure 10. (a) Normalized interface slip velocity as a function of the wall non-dimensional permeability
parameter σ for the different particle volume fractions under investigation. (b) Normalized interface
wall-normal fluctuation velocity as a function of the wall non-dimensional permeability parameter σ for
different particle volume fractions.

while the velocity fluctuations are significantly influenced by the particle dynamics in the
free-flow region.

To understand further how turbulent structures are modified by the presence of both
porous media and particles, we examine some basic features of turbulent coherent
structures. As shown in Rosti & Brandt (2020), the turbulent fluctuations are generally
reduced and the flow is very anisotropic in the case of drag reduction. On the other hand,
the presence of particles causes the opposite effect, i.e. more isotropic structures. Here, in
particular, we study the effect of wall permeability on the distribution of the wall-normal
and streamwise fluctuation velocity. Figure 11 shows the joint probability distribution
functions (p.d.f.s) of the wall-normal and streamwise fluctuation velocity at the interface of
the porous layer and suspensions between the centre of the channel and the interface, and
also at the centreline of the channel for the flows at particle volume fractionΦb = 0.10 and
the three wall non-dimensional permeability parameters under consideration. The ejection
and sweep events are disrupted by increasing the wall permeability, leading to a decrease
in the streamwise velocity fluctuations u′ and an increase of the wall-normal component v′.
These results show that permeability creates a more isotropic flow; this has been associated
with drag increase, as reported in several previous studies, e.g. Breugem et al. (2006). Note
also that the differences are minor in the channel centreline. Similarly, figure 12 shows
the joint p.d.f.s of the wall-normal and streamwise fluctuation velocity at the suspension
flow-porous interface, between the centre of the channel and the interface, and at the
centreline of the channel, for the flows at wall non-dimensional permeability parameter
σ = 0.63 × 10−3 for different particle volume fractions. As observed, the presence of
particles induces a disruption of the structures in the near-wall region, resulting in a
decrease in u′ and an increase in v′, leading to an overall more isotropic state. In other
words, both wall permeability and the presence of dispersed particles induce a more
isotropic flow. However, as discussed above, the increase in wall permeability also leads to
an increase in the turbulent Reynolds stresses, while the more isotropic turbulence due to
the presence of the particles is associated with less correlated motions, i.e. lower Reynolds
stresses (cf. figures 8d and 9d).
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Figure 11. Normalized probability distribution functions (p.d.f.s) of the streamwise fluctuation velocity u′ and
wall-normal fluctuation velocity v′ for a fixed particle volume fractionΦb = 0.10 and various non-dimensional
permeability parameters: (a–c) σ = 0.63 × 10−3, (d–f ) σ = 2.0 × 10−3, and (g–i) σ = 6.3 × 10−3. (a,d,g) At
the flow-porous interface, (b,e,h) between the centre of the channel and the interface, and (c, f ,i) at the centreline
of the channel.
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Figure 12. Normalized probability distribution functions (p.d.f.s) of the streamwise fluctuation velocity u′ and
wall-normal fluctuation velocity v′ at the interface for a fixed wall non-dimensional permeability parameter σ =
0.63 × 10−3 and various particle volume fractions: (a–c) Φb = 0.05, (d–f ) Φb = 0.10, and (g–i) Φb = 0.20.
(a,d,g) At the flow-porous interface, (b,e,h) between the centre of the channel and the interface, and (c, f ,i) at
the centreline of the channel.
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Figure 13. Average particle concentration φ as a function of the wall-normal distance y for: (a) different
particle volume fractions at fixed non-dimensional permeability parameter σ = 0.63 × 10−3; (b,c) various
wall non-dimensional permeability parameters σ at fixed particle volume fractions Φb = 0.10 and 0.20.

3.2. Particle dynamics and stress budget
In this subsection, we investigate the particle dynamics in turbulent channel flow in the
presence of porous walls. In the case of spherical particles, the formation of a particle wall
layer and the rotation rate close to the wall are shown to have a significant impact on the
turbulent global drag (Costa et al. 2016, 2018; Peng et al. 2019). Indeed, in the presence
of an elastic wall, particles are shown to migrate away from the wall, which significantly
reduces the overall pressure drop (Ardekani, Rosti & Brandt 2019). Figure 13(a) shows
the mean local volume fraction φ for the case of wall non-dimensional permeability
parameter σ = 0.63 × 10−3 and the three nominal volume fractionsΦb investigated, while
figures 13(b,c) display how the particle distribution changes with the permeability for two
different values of the particle volume fraction. Note that the oscillations in figures 13(b,c)
can be attributed to particle layering close to the interface, and as the particle diameter is
0.2, these oscillations occur at one, two or three times the particle diameter.

Overall, we note the formation of a first local maximum close to the interface, associated
with the particle-wall layers in the free-flow region. As also observed in highly dense
suspensions in laminar flows (Yeo & Maxey 2010), the intensity of the particle wall
layer increases as the particle volume fraction increases (see figure 13a). Its formation
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is explained by the solid lubrication interactions when a particle reaches the wall, which
stabilizes the near-wall particle position; once close to the wall, the motion of finite-size
particles is influenced mainly by collisions with other particles. Consequently, it is difficult
for particles belonging to the first layer to escape.

In the presence of a permeable wall, we note weak migrations of particles away from the
wall and a less pronounced wall layer for Φb = 0.05 and 0.10, with the peak value close
to the wall found to decrease with the permeability, consistent with the observation of
increased wall-normal fluctuations (Ardekani et al. 2019, for the case of suspension flows
over elastic walls, see also). Note that these near-wall maxima are of the order of the bulk
concentrations and are not related to the turbophoretic drift observed in dilute suspensions
of heavy particles (Reeks 1983). The same trend observed here was reported in Rosti
et al. (2021) for laminar Couette flow of suspensions over a porous substrate. Finally, we
also see an increase in the local volume fraction φ towards the channel centreline for the
largest volume fraction examined,Φb = 0.20. This migration toward the channel core was
observed experimentally in turbulent flows over solid walls and related to inertial effects
in Zade et al. (2018). The accumulation towards the centreline was also associated with
quenching of the turbulence fluctuations and reduced mixing (Ardekani et al. 2018; Yousefi
et al. 2021).

To examine further the global suspension behaviour, we look at the streamwise
momentum budget. The total momentum budget in the free-flow region (i.e. 0 < y < 2h)
can be written as the sum of the viscous stress, the Reynolds stress, and the particle
contribution (Picano et al. 2015, for more details and derivations, see) as

τ = τvisc + τ reyn + τ part. (3.1)

Here, τ is the mean total shear stress balancing the imposed pressure gradient, τvisc =
μ(du/dy) is the viscous shear stress, τ reyn = −ρ(uv)′ is the Reynolds shear stress
associated with the fluid and particle velocity correlation, and τ part is the particle
contribution, including particle collisions, which was found by subtracting the other two
components from the total shear stress.

The different contributions to the total shear stress in the turbulent suspension flows
are displayed for the different particle volume fractions and wall non-dimensional
permeability parameter σ = 0.63 × 10−3 in figure 14(a), and for σ = 6.3 × 10−3 in
figure 14(b). Overall, we note that the relative viscous stress varies weakly with both
the volume fraction and the wall permeability, whereas the percentage contribution of
turbulence decreases with Φb. Although the level of fluctuations increases up to Φb =
0.1, the turbulent stress decreases because these chaotic motions are less correlated.
The contribution associated with the particle stresses increases with Φb, differently for
different permeabilities. In particular, we see a significant increase when increasing from
0.05 to 0.1 at the lowest permeability, and the most significant growth at Φb = 0.2
at the highest permeability studied. This suggests that the weakening of the particle
wall layer is responsible for the reduced turbulent transport at low values of Φb, which
is more significant at lower values of the wall permeability. On the other hand, the
particle accumulation towards the channel core by inertial collisions is responsible for
the reduction of the turbulence activity at Φb = 0.2, an effect more weakly dependent
on the wall permeability; cf. figures 14(a,b). To summarize, the main contribution to
the total shear stress is the particle stress at high concentrations, while the Reynolds
stress contribution is higher for lower concentrations. The viscous shear stress remains
constant for all the volume fractions and the different wall permeabilities considered here.
The values of viscous stress are small compared to the two other components because
of the turbulent flow considered here, despite the moderate Reynolds number. Focusing
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Figure 14. Histograms showing the different components of the mean shear stress balance as a function of the
particle volume fraction Φb for (a) σ = 0.63 × 10−3, and (b) σ = 6.3 × 10−3. Blue, red and yellow show the
viscous stress, Reynolds shear stress, and particle contributions, respectively.

on the effect of permeability, the particle-stress contribution decreases with increasing
wall non-dimensional permeability parameter σ , whereas the Reynolds stress shows the
opposite behaviour, i.e. it decreases with the volume fraction Φb and increases with the
wall non-dimensional permeability parameter σ because of the increase in fluctuations at
the interface.

Figure 15 displays the spanwise component of the mean particle angular velocity for
different particle volume fractions as a function of the wall permeability, where the
values are averages over all the particles close to the interface, i.e. y/h = 0.05. It can
be revealed that the particle-averaged angular velocity decreases by increasing the wall
non-dimensional permeability parameter σ . As expected, this is because the near-wall
shear decreases with permeability, as discussed above. In addition, we note that the
spanwise component of the mean particle angular velocity decreases with the particle
volume fraction Φb, as observed in previous studies (Ardekani & Brandt 2019). However,
this effect is small in comparison with the variations induced by the wall permeability.
In brief, with increasing wall permeability, the particle rotation decays; consequently,
this causes a reduction in particle-induced interactions. The inset of figure 15 plots the
ratio of particle angular velocity with respect to the fluid shear rate as a function of
bulk particle volume fraction Φb for various permeability parameter σ . Interestingly, the
data in the main plot of figure 15 for both Φb = 0.05 and 0.1 are now collapsed onto a
curve ωz/[(du/dy)interface] = 0.03346 − 4.419σ + 313.3σ 2 that has been determined from
a polynomial data fit. There is, however, a higher ratio forΦb = 0.2. AtΦb = 0.2, the fluid
shear rate is lower, as shown in figure 6, and the induced particle velocity and angular
velocity are both affected by particles gathered at the interface.

Figure 16(a) shows the mean streamwise particle velocity profiles for different volume
fractions Φb at a fixed wall non-dimensional permeability parameter σ = 0.63 × 10−3,
while figure 16(b) displays the particle velocity profile for different wall non-dimensional
permeability parameters and a fixed particle volume fraction Φb = 0.10. Comparing the
mean particle velocity profiles (lines) with the mean fluid velocity values (symbols)
indicates that the mean particle velocity and mean fluid velocity profiles are comparable
inside the free-flow region, except near the porous wall where the mean particle velocity
is larger than the mean local fluid velocity. Although the fluid velocity at the interface is
almost zero, the particle velocity differs due to the lack of the no-slip condition, resulting
in a greater particle velocity than the fluid velocity.
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Figure 15. Spanwise component of the near-wall particle angular velocity as a function of the wall
non-dimensional permeability parameter σ for different volume fractions Φb = 0.05, 0.10 and 0.20.
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Figure 16. Mean particle streamwise velocity component up normalized by the bulk velocity U0 as a
function of the wall-normal coordinate y (lines): (a) for various particle volume fractions Φb at a fixed
wall non-dimensional permeability parameter σ = 0.63 × 10−3; and (b) for various wall non-dimensional
permeability parameters σ at a fixed particle volume fraction Φb = 0.10. The symbols represent the mean
fluid velocity profiles.

3.3. Effect of the momentum transfer coefficient τ
We now investigate the modification induced on the turbulence statistics by varying the
coefficient τ , which is used for the momentum transfer conditions at the flow-porous
interface. This coefficient can be related to the unknown structure of the suspending
fluid-porous interface. As mentioned above, the value of τ determines the stress transfer
between the suspending fluid and the porous media. This was first introduced by
Ochoa-Tapia & Whitaker (1995) as an additional boundary condition at the interface; it
is order one and can be positive or negative. It was characterized further by Ochoa-Tapia
& Whitaker (1995), Valdés-Parada et al. (2007, 2013), Minale (2014a,b) and Chen, Wang
& Yang (2016). In particular, Minale (2014a,b) showed that a negative τ quantifies the
amount of stress transferred from the free fluid to the porous matrix, while a positive
τ quantifies the amount of stress transferred from the porous matrix to the free fluid,
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Figure 17. (a) Friction Reynolds number Reτ as a function of τ , for different particle volume fractionsΦb = 0
and 0.2. (b) Average particle concentration φ as a function of the wall-normal distance y for different τ at a
fixed non-dimensional permeability parameter σ = 0.63 × 10−3.

whereas τ = 0 represents the case in which the stress carried by the free fluid is fully
transferred to the fluid saturating the porous matrix. Here, we consider the flow of a pure
fluid, Φb = 0, and a dense suspension, Φb = 0.20, for comparison; we expect that the
turbulence statistics for other volume fractions fall within these two cases. The porous layer
non-dimensional permeability parameter is fixed at σ = 0.63 × 10−3, and the porosity is
ε = 0.6, again with Reynolds number Re = 5600. We compare data from three values
of τ , i.e. −1, 0 and 1, chosen because the momentum transfer coefficient τ falls in this
range for most of the porous media. Note that the case τ = 0, as reported in the previous
subsections, is used as the reference case.

Figure 17(a) shows the friction Reynolds number Reτ , where we observe a significant
drag increase for a non-zero momentum transfer coefficient τ . Note that Reτ is calculated
using the mean pressure gradient needed to keep U0 constant. Decreasing the slip velocity
and particle rotation causes a decrease in the particle concentration near the interface,
as shown in figure 17(b), where we note that the particle wall layer is significantly less
pronounced when there is a net stress transferred from the porous matrix to the free fluid
(τ /= 0). The data in the figure also show that for non-zero values of τ , the local maximum
of the particle distribution near the channel centreline increases considerably.

Figure 18 shows the mean velocity profiles for the three momentum transfer coefficients
considered. Figure 18(a) shows the velocity profile pertaining to the single-phase flow
over porous media, Φb = 0, whereas figure 18(b) reports the data for Φb = 0.20. The
dashed line represents the case with positive τ , the dash-dot-dotted line shows the case
with negative τ , and the solid line shows our reference case where the momentum transfer
coefficient is τ = 0. The effects of the momentum transfer coefficient τ on the mean
velocity profile are clear, especially at the suspension-porous interface: a non-zero value
of τ induces a significant decrease in the velocity at the suspension-porous interface
for both the highly dense case (Φb = 0.20) and the single-phase case (Φb = 0), while
a different behaviour is observed at the centreline for the two cases. For the pure fluid
Φb = 0, the non-zero τ induces an increase in the velocity at the centreline. However,
for the highly-dense case, a velocity decrease can be observed at the centreline for the
non-zero values of the momentum transfer coefficient. The results for the pure fluid flow
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Figure 18. Mean fluid streamwise velocity component uf normalized by the bulk velocity U0 as a function of
the wall-normal distance y for different values of momentum transfer coefficient τ and wall non-dimensional
permeability parameter σ = 0.63 × 10−3: (a) pure fluid (Φb = 0), (b) Φb = 0.20.
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Figure 19. (a) Normalized interface slip velocity as a function of τ for different particle volume fractions under
investigation at wall non-dimensional permeability parameter σ = 0.63 × 10−3. (b) Normalized spanwise
component of the particle angular velocity as a function of τ for particle volume fractions Φb = 0.20.

over the porous layer are in agreement with previous works (Tilton & Cortelezzi 2008;
Rosti et al. 2015).

The normalized slip velocities for different cases studied here are shown in figure 19(a).
This figure shows that the slip velocities for non-zero momentum transfer coefficient τ
are much smaller than for the case τ = 0 in both single-phase flow, i.e. Φb = 0, and Φb =
0.20. Note also that even for larger permeabilities, previous works observed the same trend
for the slip velocity for both positive and negative τ ; see, for example, the results for
a single-phase flow over porous media in Rosti et al. (2015). Figure 19(b) displays the
normalized spanwise component of the mean particle angular velocity for the different
momentum transfer coefficients τ under consideration. Note that the values have been
averaged over all particles close to the interface. These data reveal that the particle average
angular velocity decreases significantly for values of the momentum transfer coefficient τ
different from zero, consistent with the trend exhibited by the slip velocity.
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Figure 20. Intensity of the fluid fluctuation velocity components normalized by U0 and the Reynolds shear
stress for different τ and a fixed particle volume fraction Φb = 0.20 and non-dimensional permeability
parameter σ = 0.63 × 10−3: (a) streamwise urms velocity fluctuation; (b) wall-normal vrms velocity fluctuation;
(c) spanwise wrms velocity fluctuation; and (d) shear stress (uv)′.

The variations in the r.m.s. values of the fluid velocity fluctuations with the momentum
transfer coefficient τ are depicted in figure 20 for the flows at particle volume fraction
Φb = 0.20. The magnitude of the r.m.s. values of the streamwise fluid velocity fluctuations
decreases for non-zero τ . The same can be seen for the wall-normal and spanwise velocity
fluctuations, although the reduction appears to be less pronounced and more evident
outside the viscous wall layer. The results therefore confirm the reduction in turbulent
transport observed from the momentum budget shown in figure 21.

To better understand the modifications on the dynamics and on the overall drag induced
by a different stress condition at the wall, we also performed the momentum budget
analysis; see (3.1) and relative discussion. The results of this analysis are displayed in
figure 21. For the pure fluid, Φb = 0, by changing the momentum transfer coefficient
from zero to −1 and 1, τvisc increases and τ reyn decreases. As a result, despite the
attenuation of the turbulence, the overall drag increases due to the increase in the viscous
stresses. For the case of a dense suspension, Φb = 0.20, we see that the attenuation of the
turbulence is relatively more important, which can be explained by the increased particle
migration towards the channel core region (see figure 17b). However, the formation of
a relatively densely packed region causes an increase in the particle stresses that more

954 A8-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

98
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.982


Turbulent suspension channel flow over porous media

τ

0

1

2

3

4

1–1 0

τ

0

1

2

3

4

1–1 0

τ reyn
τvisc

τ reyn
τvisc

τpart

(a) (b)

Figure 21. Histograms showing the different components of the mean shear stress balance as a function of τ
for (a) Φb = 0.0 and (b) Φb = 0.20. Blue, red and yellow show the viscous stress, Reynolds shear stress and
particle contributions, respectively.

than balances the decrease in turbulent transport. As a consequence, the drag increase at
Φb = 0.20 is more pronounced for τ = ±1. These results indicate that the condition at the
suspension-porous interface has a significant impact on the flow and particle dynamics for
the permeability of the porous medium considered here.

4. Conclusion

We employed direct numerical simulations to study turbulent suspension flows in a channel
covered with isotropic porous media on the top and bottom surfaces. The VANS equations
are used to describe the volume-averaged flow inside the porous layer, with the permeable
wall characterized by permeability and porosity. We then coupled VANS with the IBM to
resolve particle–particle and particle–fluid interactions. Here, we have kept the Reynolds
number Re = U0h/ν = 5600 and investigated the effect of particle volume fraction Φb,
non-dimensional permeability parameter σ , and the momentum transfer coefficient τ of
the porous layer for spherical and neutrally buoyant rigid particles.

Using the Reynolds turbulent friction number Reτ , i.e. the response to determining the
turbulent drag based on the friction velocity, we show quantitatively that turbulent stress
increases with both particle volume fraction Φb and wall non-dimensional permeability
parameter σ . Overall, we observed that wall permeability is associated with higher drag
due to increased turbulence activity compared to pure solvent. Turbulent suspension flows
over hyperelastic materials have also been reported in Rosti & Brandt (2017). Although
some experiments for pure fluid flowing over porous surfaces show that wall permeability
causes an increase in skin friction in the turbulent-flow regime (Zagni & Smith 1976; Zippe
& Graf 1983), others reveal a decrease in the skin friction in the laminar-flow regime (e.g.
Beavers & Joseph 1967).

Because the channel top and bottom walls have an isotropic porous medium, the velocity
profile in the free-flow region remains the same as if the walls were smooth, as reported in
Picano et al. (2015), but a slip velocity us is generated at the suspension-porous interface.
In our study, we found that the slip velocity us decreases with increasing particle volume
fraction Φb. By contrast, when the permeability of the wall increases, the slip velocity
increases. In general, the decrease in particle–particle interaction results from increasing
the slip velocity us with the wall permeability parameter σ .
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Our analysis of the flow streamwise momentum balance showed that as particle volume
fraction increases, the additional stress due to particles increases. For instance, at Φb =
0.20, the particle stress dominates the flow, while Reynolds transport dominates atΦb = 0
and Φb < 0.2. It is also shown that adding more particles increases particle-induced
stresses, which causes drag to increase. While turbulent stresses decay rapidly with
increasing particle volume fractions, viscous stresses remain nearly constant.

A final analysis was performed on the statistics of turbulence caused by momentum
transfer coefficients τ . Slip velocity decreases noticeably when momentum transfer
coefficient τ is changed. Based on our studies, we found that for a non-zero momentum
transfer coefficient, the average particle angular velocity near the wall is lower than τ = 0.
The other noticeable effect of the momentum transfer coefficient τ on the concentration
profile is where non-zero τ leads to the migration of particles to the centre of the channel,
which means that fewer particles gather near the free flow and porous interface compared
to τ = 0. Increasing particle contribution also decreases Reynolds shear stress, thereby
reducing total shear stress. The results also show that τ has a considerable effect on the
behaviour of turbulent suspension flow over porous media; therefore, we need to consider
the momentum transfer coefficient as an essential factor in future studies.

To improve this study further, other important factors can be considered. We should
certainly pay attention to the effect of particle size (Lashgari et al. 2017), shape (Bellani
et al. 2012) and deformability (Alghalibi, Rosti & Brandt 2019) as new insights to our
current study. In addition, experiments are needed to verify our results. We assumed
that particles in this study would not be able to enter the porous layer due to their size.
Understanding whether the same behaviour occurs when particles move inside the porous
media, and the impact of anisotropic porous media, will be the subjects of our future
investigations.
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