

Motivation

Wake studies usually consider steady-state towed or self-propelled cases despite steady motion being an unrealistic assumption due to unsteady upstream conditions, slight imbalances in thrust and drag, and the presence of maneuvers. It is generally thought that a small amount of injected momentum during acceleration/deceleration qualitatively changes wake behavior from a self-propelled wake to a momentum dominated wake, however this has not been shown numerically or experimentally.

Wake evolution in the vertical, x_3 , and horizontal, x_2 , directions. Curvy arrows show the time when internal waves are significant and pancake eddies are shown in the late wake.

Formulation

Computational domain Figure from K. Brucker, Ph.D. Thesis, UCSD, 2009

Computational cost

Re=10,000, Fr=3,20 cases Re=25,000, Fr=3 cases

Simulation details

Direct numerical simulation Temporal approximation Fully explicit staggered-grid 2nd order in space 3rd order in time (RK3) Multigrid pressure solver 3D domain decomposition Parallelization with MPICH-II

415 million grid points, 1,600 CPU hours 1.29 billion grid points, 5,500 CPU hours

Governing equations

3D incompressible, unsteady Navier-Stokes equations, Boussinesq approx.

Momentum	$rac{\partial u_i}{\partial t}$ -	$+ \frac{\partial \left(u_k u_i \right)}{\partial x_k}$	$= -\frac{\partial p}{\partial x_i}$	$+\frac{1}{Re}\frac{\dot{c}}{\partial x}$	$\frac{\partial^2 u_i}{\partial x_k}$
Density	$\frac{\partial \rho}{\partial t} +$	$-\frac{\partial \left(u_k\rho\right)}{\partial x_k} =$	$\frac{1}{RePr} \frac{\partial}{\partial r}$	$\frac{\partial^2 \rho}{\partial x_k \partial x_k}$	Mass
	Re	$=\frac{UD}{\nu},$	Fr =	$= \frac{U}{ND},$	F

Simulation of a self-propelled wake with excess momentum in a stratified fluid Mechanical and **₹UCSD** Matthew B. de Stadler, Advisor: Prof. Sutanu Sarkar Jacobs Aerospace Engineering

 $\frac{1}{Fr^2}\rho'\delta_{i3}$ $\frac{\partial u_k}{\partial u_k} = 0$ ∂x_k Pr = -

Adding excess momentum

Model maneuvers as an impulsive addition of thrust

Vary the amount of excess momentum: Vary the shape of excess momentum:

Simulations performed with Re=10,000, Pr=1, and Fr=3

Narrow jet, 40% momentum case reconsidered at Re=10,000, Fr=20 to study effect of Froude number Re=25,000, Fr=3 to study effect of Reynolds number

Wake evolution

Excellent qualitative agreement occurs for turbulent and mean flow statistics

(Right) Turbulent kinetic energy at t=1400. Note that TKE in the horizontal direction is Gaussian.

Conclusions

Principal conclusion:

A self-propelled wake with a small amount of excess momentum behaves qualitatively like a self-propelled wake.

Adding a small amount of excess momentum (see [1] for details) Increases defect velocity, mean kinetic energy, shear in velocity gradient Increased shear \rightarrow higher production \rightarrow higher turbulent dissipation Buoyancy decouples thrust and drag lobes in the vertical direction Excess momentum trapped near vertical center Wake expands in horizontal and large scale structures formed

Results are *not* sensitive to Reynolds number Some changes with increasing Froude number

[1] M.B. de Stadler and S. Sarkar, Simulation of a self-propelled wake with small excess momentum in a stratified fluid. Journal of Fluid Mechanics, 2011 (under review).

Future work

Spatially evolving simulations with a body in the domain.

Acknowledgments Matthew de Stadler received support from the Department of Defense (DOD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program, a Jacobs School Fellowship (UCSD), and an Achievement Rewards for College Scientists Scholarship. Partial support was provided by ONR grant N000140710133.