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Introduction 

 

From linear stability theory it is known that a shear layer is unstable to infinitesimal 

perturbations. Numerical simulations using the DIABLO code were used to observe the 

evolution of the shear layer once the perturbations are of finite amplitude. The effect of varying 

domain size, initial perturbation strength, and viscosity were all investigated. Testing of the order 

of convergence in space and time was also performed for the DIABLO code.  

 

Governing Equations 

 

The Navier-Stokes equations for a 2-dimensional parallel shear flow are given below. The 

buoyancy term is included to allow for the presence of a temperature stratification. 
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Where the subscript d indicates that quantities are dimensional. These equations can be non-

dimensionalized to give the form below.  
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Initial Conditions 

 

A hyperbolic tangent profile was given for both the u velocity and the passive scalar, written 

here as T. 
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For the simulations in this paper,  ∆U = ∆T = 2 and  δ = 0.2. Turbulent perturbations were added 

in the form 
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Where RNUM is a random number and kick is a scaling argument.  

 

Figure 1 Velocity and Temperature Profiles 

 
 

If stratification is present the pressure is hydrostatic, otherwise it is set to zero.  

 

Boundary conditions 

 

Neumann boundary conditions are imposed on the vertical velocity and horizontal velocity at the 

top and bottom boundaries. Dirichlet conditions are applied for the pressure. The grid is periodic 

in the x direction. The exact form of the boundary conditions used is given below for the top and 

bottom boundary. 
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Grid Parameters 

 

DIABLO is a mixed pseudospectral and finite difference code. In this problem, the grid is 

uniform in the x direction with spatial derivatives being done in Fourier Space. In the y direction 

finite differences are used with a stretched grid. An example grid in the y direction is shown. It is 

stretched so that more grid points are located in the shear layer.  

 

Figure 2. Computational Grid 

 
Qualitative behavior of the shear layer 

 

After a short time wiggles become apparent in contour plots of the vorticity. One can also look at 

a passive scalar to observe the development of the shear layer and Kelvin-Helmholtz instability. 

These wiggles correspond to growing perturbations. They have a shape that comforms to the 

wavelength of a growing mode. It is known from linear stability theory that inviscid parallel 

shear flows are unconditionally unstable to infinitesimal perturbations.  

 

Once the perturbations reach finite size they excite Kelvin-Helmholtz rollers. The number of 

these rollers that form is a function of the viscosity, domain size, Ri if used, and kick. 

Neighboring pairs of rollers will “pair” into one vortex and neighboring pairs will merge until 

one vortex is all that remains. This vortex will grow indefinitely, provided the horizontal and 

vertical domain size are large enough. For a given simulation, care should be taken not to use 

data that is gathered when the vortex is too close to the top wall.  

 

Addition of temperature 

 

If temperature is considered as well, the problem behaves very differently. Now buoyancy must 

be considered which will cause a restoring force opposing the formation of the kh rollers. A 

necessary condition for instability is that somewhere in the flow the gradient richardson number 

is < 0.25. Unlike the unstratified case, a stratified shear layer will not continue to grow 

indefinitely. The shear layer will reach a maximum height, this occurs when there is a balance 

between the kinetic energy and the potential energy of the perturbations. The turbulence in the 

flow will cause the ordered vortex structures to break down as the time evolves. This results in 

smaller and smaller scales being formed which requires high grid resolution to capture.  

 

Simulation Results 

 

An example of some of the data that one can obtain from a shear layer simulation is given below. 

The variable u is used to refer to the horizontal velocity and v the vertical velocity. These 

simulations were all run with the following parameters: 

 

 

 



Simulation parameters 

LX = 8, LY = 6,  NX = NY = 128,  ν = 0.001, Kick = 0.03,  Number of timesteps 4000, 

Initial dt = 0.025. Data was recorded every 10 timesteps.  

 

Figure 3 Scalar Vorticity Evolution 

  
 

  

  

  



  

  

  
 

Figure 4 u and v Velocity Evolution 

  



  

  

  

  



  

  
 

 

Figure 5 Evolution of <U> 

 
 



Figure 6 Streamlines 

 
Figure 7 Vorticity Evolution 

 



 

Figure 8 Turbulent Kinetic Energy Evolution 

 
ν = 0.001     ν = 0.005 

 

From the above images we can see about 8 Kelvin-Helmholtz rollers forming. This can be seen 

most clearly in the second scalar contour plot of Figure 3. We can later observe the process of 

pairing as the multiple rollers combine to form one large vortex. Viscosity causes the shear layer 

to grow, this can be seen most clearly by looking at <U> in Figure 5. Streamlines can be seen in 

Figure 6.  

 

The maximum vorticity decreases over time and the thickness of the shear layer increases over 

time. The “sideways M” shape from time t= 16.2385 occurs because two vortices are at an early 

stage of pairing and each has high vorticity in their core. The two vortices merge into one and the 

vorticity is again “hump” shaped.  

 

The streamlines in figure 6 show that away from the Kelvin-Helmholtz rollers the flow is parallel 

and in opposite directions. Inside the rollers the flow moves in an ovular path around the center. 

 

The turbulent kinetic energy initially decreases but quickly increases as the Kelvin-Helmholtz 

Instability leads to turbulence. The increasing thickness of the shear layer can be observed from 

figure 8 as well as the existence of pairing. Pairing is shown by the double hump that occurs 

from the presence of two vortices on top of each other. At longer times one would observe the 

decrease in turbulent kinetic energy due to viscous dissipation. This is shown for the case of  

ν = 0.005 (the yellow line). 

 

Another detail that can be observed from the numerical simulations is that there is an error 

forming at one of the boundaries. This can be seen at the bottom domain in the vorticity plots of 

figure 3 and also at the bottom at figure 7. One could remedy this error by imposing a dirichlet 

boundary condition, u = sign(1) at the top and bottom boundaries instead of using the neumann 

condition. One should not however that while this error is occurring, the effect appears to be 

localized and it does not affect the other results. 

 

 

 



Numerical Aspects 

 

Convergence in time 

 

To get an estimate of the order of convergence in time, simulations were conducted to observe 

the difference between an exact value (taken to be the results from an extremely small timestep) 

and a value obtained from a given value of ∆t. The values used as an estimate for the error were 

the mean horizontal velocity <U>(y) and the line averaged vorticity <ω>(y). The simulations 

were carried for small time to measure the error in the exponential growth phase of the 

perturbations. Another useful estimate would be to run this for a longer time so that a 

measurement could be taken when non-linear effects are strong. Unfortunately time constraints 

prevented this test from being performed. 

 

Testing parameters 

kick = 0.003, LX = 6, LY = 4, ν = 0.001, NX = NY = 128, tfinal = 0.75,  

exact values from dt = 0.0015625, 480 timesteps 

 

 

dt <U> error <ω> error 

0.025 0.2554*10^-5 0.5088*10^-4 

0.0125 0.0631*10^-5 0.1258*10^-4 

0.00625 0.0150*10^-5 0.0300*10^-4 

0.003125 0.0030*10^-5 0.0060*10^-4 

 

Order of accuracy         2.1308        2.1287 

 

Convergence in x 

A similar test as the one described above was performed for the spatial convergence in the x-

direction. 

 

Testing parameters 

kick = 0.003, LX = 4, LY = 4, ν = 0.001, NY = 128, tfinal = 0.75, dt = 0.003125, 240 timesteps 

exact values from NX = 512, dx = 0.0078125 

 

dx <U> error <ω> error 

0.125 0.3636*10^-5 0.2044*10^-3 

0.0625 0.3359*10^-5 0. 1819*10^-3 

0.03125 0.2616*10^-5 0.1351*10^-3 

0.015625 0.1696*10^-5 0.0447*10^-3 

 

Order of accuracy         0.3661         0.7011 

The data from this study does not have good agreement for an exponential relationship between 

the error and dx. The results were surprising because the code is intended to be spectral in the x-

direction and higher accuracy was expected. 

 

Convergence in y 



 

For this case it was necessary to define a different measure for comparison since problem varies 

in the y-direction. The stretching of the grid creates further difficulty because for a different 

number of grid points, in general points are not collocated. The plane averaged vorticity was 

used to compare the effect of different values of dy. 

 

Testing parameters 

kick = 0.003, LX = 4, LY = 2,  NX = 64, ν = 0.001, tfinal = 0.75, dt = 0.003125, 240 timesteps 

exact values from NY = 512, average dy = 0.00390625, mindy = 0.0014268 

 

Average dy Minimum dy Plane averaged vorticity error 

0.0625 0.02479 0.2480 

0.03125 0.01182 0.1133 

0.015625 0.00579 0.0480 

0.0078125 0.00287 0.0159 

 

Order of accuracy based on average dy:  1.3123 

Order of accuracy based on minimum dy:  1.2647 

 

Parameter Study 

 

Unfortunately Diablo is built to run for a specified number of timesteps. This combined with the 

variable timestep makes it difficult to run longer time parameter studies. One way to get avoid 

this issue is to run with a very small time step but this has the disadvantage of requiring a long 

computational time. The following sections describe the effect of different problem parameters 

on the shear layer evolution and the Kelvin-Helmholtz Instability. 

 

Varying the viscosity 

 

The effect of the viscosity is shown below in Figure 10. The first rollers to form are shown.  

 

Simulation parameters 

LX = 8, LY = 6,  NX = NY = 128,  ν = 0.001, Kick = 0.03,  Number of timesteps 4000, 

Initial dt = 0.025. Data was recorded every 10 timesteps.  

 

Figure 10 Effect of Viscosity 

 
ν = 0.0005     ν = 0.0005 



 
ν = 0.001     ν = 0.005 

 

The above figures show clearly the strong influence that viscosity has in this problem. This is 

most dramatic in the ν = 0.005 case where the thickness is significantly larger and the number of 

rollers that form is significantly lower. For lower viscosities, the rollers will form faster and 

smaller wavelength rollers can form as shown in the first figure for the ν = 0.0005 case. 

Viscosity will damp out and inhibit the growth of higher frequency modes, this results in a 

slower growth rate and can also result in a different number of rollers forming. 

 

Varying the kick 

 

The effect of the kick is shown below in Figure 11. The first rollers to form are shown.  

 

Simulation parameters 

LX = 8, LY = 6,  NX = NY = 128,  ν = 0.001, Kick = 0.03,  Number of timesteps 4000, 

Initial dt = 0.025. Data was recorded every 10 timesteps. 

 

 

Figure 11 Effect of the Kick 

 
kick = 0.006     kick = 0.03 

 



 
      kick = 0.1 

 

The kick gives a measure of the energy that will be present in the perturbations. Larger values 

result in more energy in all of the modes. This significantly increases the growth rate as shown 

above. More rollers will form for a larger value of the kick. If the kick is raised to a sufficiently 

large value, observable ordered vortex structure will not form and transition to turbulence will 

begin immediately. 

 

Figure 12 Kick effects on TKE 

 
kick = 0.006      kick 0.03 

 
      kick = 0.1 

 

 



Varying the domain size 

 

LY = 6,  NY = 128,  ν = 0.001, Kick = 0.03,  Number of timesteps 4000, initial dt = 0.025. Data 

was recorded every 10 timesteps. NX was chosen so that dx is the same in all 3 cases. 

 

Figure 13 Different Domain Sizes 

 

 
In principle there should be no difference when the horizontal size of the domain is changed as 

the base state does not vary in the x-direction. In practice there will inevitably be small 

differences owing to the random perturbation structure and the non-linearity of the problem. 

With random initial conditions it is not possible to construct exactly the same simulation. For LX 



= 4 four rollers form, for LX = 8, 8 form and for LX = 16, 15 rollers are observed. The time of 

plotting is slightly different but the qualitative behavior agrees very well. 

 

Increasing the domain size in the vertical direction will not have an effect provided the domain 

size is sufficiently large that any vortices formed do not grow to the boundary. The vertical 

domain in reality is -∞ to ∞ but by choosing appropriate boundary conditions one can model this 

using a finite boundary. It is best if the vertical boundaries are sufficiently far away that they 

have no effect on the flowfield. 

 

Conclusions 

 

Disturbances in a shear layer between two parallel, counterflowing streams evolve in a fixed 

manner. Initial perturbations grow and create Kelvin-Helmholtz rollers, these rollers then pair 

with their surrounding neighbors, which pair with their surrounding neighbors, until one large 

vortex is formed. This result was shown through the above simulations.  

 

Two important results from this study are that the viscosity and the initial kick are important 

parameters which have a large impact on the evolution of disturbances in the shear layer. A 

larger viscosity will slow down the growth rate of rollers and prevent the formation of rollers 

with a small wavelength. A larger initial kick gives more energy to the perturbations and 

increases their growth rate and allows smaller wavelength rollers to form.  


